Фармаکологічна корекція
перевтоми і відновлення спортивної працездатності

Навчально-методичний посібник

Запоріжжя
2017

Укладачі:
Михалюк Є.Л., д.мед.н., професор, завідувач кафедри фізичної реабілітації, спортивної медицини, фізичного виховання і здоров'я Запорізького державного медичного університету.
Бражко О.А., д.біол.н., професор, завідувач кафедри хімії, завідувач лабораторії біотехнології фізіологічно активних речовин Запорізького національного університету.

Рецензенти:
Клапчук В.В., доктор медичних наук, професор, завідувач кафедри спеціальної освіти і реабілітації Запорізького національного технічного університету.
Бєленічев І.Ф., доктор біологічних наук, професор, завідувач кафедри фармакології та медрецептури Запорізького державного медичного університету.

ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ

АМФ – аденозинмонофосфат
ATФ – аденозинтрифосфат
АФК – активні форми кисню
ВЖК – вища жирна кислота
ВОЗ – всесвітня організація охорони здоров’я
ДНК – дезоксирібонуклеїнова кислота
КоА – кофермент А
КФК – креатинфосфокіназа
Н+ – йон водню (протон)
Hb – гемоглобін
НАД – нікотинамідаденіндинуклеотид
НАДФ – нікотинамідаденіндинуклеотидфосфат
ПВК – піровиноградна кислота
ПОЛ – перекисне окиснення ліпідів
РНК – рибонуклеїнова кислота
УЗД – ультразвукова діагностика
ФМН – флавімононуклеотид
ФАД – флавінаденіндинуклеотид
ЦНС – центральна нервова система
ЦТК – цикл трикарбонових кислот
ЕКГ – електрокардіограма
ВСТУП

Сучасний професійний спорт – це можливість здорової людини розвинути адаптаційні можливості організму в умовах екстремальної діяльності та, перш за все, при великих фізичних і психоемоційних навантаженнях.

Ми вже неодноразово торкалися проблеми факторів, що обмежують працездатність спортсмена, як надзвичайно важливою в спортурі. Обмеження працездатності тим чи іншим фактором, що піддається корекції, але залишився непоміченним тренером і спортсменом, може перекреслити всю кар'єру останнього.

Своєчасне виявлення факторів, що лімітують фізичну діяльність, вміння усувати ці фактори і адекватне застосування засобів корекції допомагають досягти високих результатів в спорту та зберегти здоров'я спортсмена. Застосування фізичної сили, фармакологічних засобів дозволяє підвищувати працездатність і здатність до швидкого відновлення ресурсів організму спортсмена після екстремального навантаження. Невміле ж використання цих прийомів може виявитися малоїстетичним або негативно вплинути на здоров'я спортсмена.

Призначаючи спортсмену різні види стимуляції, завжди слід враховувати індивідуальні особливості саме його організму, ступінь тренованості і витривалості, що обмежують «верхню планку» – межа фізіологічно можливого форсажу при мобілізації ендогенних механізмів забезпечення кінцевого спортивного результату.

Стратегія використання ресурсів спортсмена з урахуванням його індивідуальних особливостей повинна бути орієнтована на найбільш важливий старт року.
Фактор, що лімітує працездатність, – це невідповідність певних функцій організму його запитам на пропоноване навантаження як в кількісному, так і в якісному аспектах (у тимчасових діапазонах), яке призводить до зниження фізичної працездатності аж до її повного зникнення.

Умовно фактори, що лімітують працездатність, можна розділити на системні (загальні) і органні. Тобто можна виділити систему або окремий орган, найбільш відповідальні за збій в працездатності всього організму при фізичному навантаженні більшою чи меншою напруженостю.

Відновити фізичну працездатність, нормалізуючи фактор, що лімітує (змінену функцію системи або органу), можливо за допомогою фармакології, фізіотерапії, спеціальної дієти, психотерапії і іншими способами корекції.

Серед основних факторів, що лімітують спортивну працездатність, виділяють: біоенергетичні (анаеробні і аеробні) можливості спортсмена; нейром'язові (м'язова сила і техніка виконання вправ); психологічні (мотивація і тактика ведення спортивного змагання).

Наявність методів дослідження (біохімічних і фізіологічних) – неодмінна умова встановлення фактора, лімітує працездатність (Сейфулла Р. Д., 1998). Наприклад, визначення показників глюкози, сечовини, лактату тощо, яке широко використовується у клінічній і спортивній медицині.

1.1 Системні фактори

При відсутності динаміки спортивного результату на певному тренувальному етапі необхідно виявити причину, що перешкоджає підвищенню працездатності. Знаючи причину, можна спробувати впливати на неї.

Для виявлення причин, що перешкоджають підвищенню працездатності, поточна діагностика стану спортсмена повинна бути терміновою, інформативною, достовірною, заснованою на логічно чітко побудованій системі простих і легко здійснених тестів, бажано не вимагаючих ні складного спеціального обладнання, ні особливої підготовки персоналу.

Під час аналізу, контролю та корекції функціонування провідних систем організму необхідно враховувати і їх взаємодію за участю у фізичній роботі:

реалізація – потужність і мобілізуємість; ефективність – економічність; резервні можливості – емність.

Зниження енергозабезпечення м'язів

Причини:
– нестача фосфокреатина, глюкози, глікогену, ліпідів, амінокислот;
– недостатність залучення в процес енергозабезпечення ліпідів, протеїнів;
– неефективна динаміка утворення АТФ.

Наслідки:
зменшення потужності роботи внаслідок зниження скорочення м'язів.

Виявлення і контроль:
– виявлення основного обміну;
– глікемічний профіль;
– біохімічне дослідження білкового і амінокислотного пулу, ліпідного обміну (ЛПВЩ, ЛПНЩ), креатинфосфату;
– ЕКГ.

Корекція:
– ініціація обміну фосфокреатина, вуглеводів, ліпідів;
– вуглеводне насичення;
– енергетзатори;
– антигіпоксанти.

Блокування клітинного дихання в працюючих м'язах

Причини:
– гіпоксія;
– порушення транспорту електролітів в дихальний ланцюг мітохондрій;
– нестача і порушення транспорту фосфокреатину.

Наслідки: зменшення потужності роботи через зниження скорочення м'язів.

Виявлення і контроль:
– вимірювання концентрації КФК, сечовини;
– визначення кислотно-лужного стану, рівнів гемоглобіну і феритину крові, мінералів Mg, K, Ca.

Корекція: додаткове введення дихальних ферментів, антигіпоксантів, макроергів, фосфагенів, енергетзаторів, мінералів: препаратів заліза, магнію, кальцію, калію тощо.

Порушення кислотно-основного стану і іонної рівноваги в організмі

Причини порушення кислотно-основного стану і іонної рівноваги в організмі при фізичних навантаженнях:
– довготривала робота в гліколітичному режимі;
– анемія;
– нестача бікарбонатів.

Наслідки:
– зміна буферної ємності крові;
– накопичення молочної кислоти (лактата);
– ацидоз;
– різке зниження фізичної працездатності. **Виявлення і контроль:** можуть бути використані показники лактата (La), pH крові в динаміці; гемоглобін; це показники – об’єктивні критерії підготовленості спортсмена до спортивних навантажень.

Корекція: збільшення буферної ємкості крові, олуження, зниження рівня La, збереження водно-солевого баланса; корекція анемії.

Запуск вільнопридиксальних процесів при великих фізичних навантаженнях

Причини запуску вільнопридиксальних процесів:
– позамежні фізичні навантаження;
– нестача антиоксидантів;
– утворення токсичних продуктів (прооксидантів). **Наслідки:** порушення функцій мітохондрій, клетинних мембран, біохімічних реакцій.

Виявлення і контроль: визначення рівня ПОЛ методом хемілюмінесценції.

Корекція: застосування антиоксидантів.

Порушення мікроциркуляції.

Зміна реологічних властивостей і згортання крові

Причини:
– позамежне фізичне навантаження при несприятливих зовнішніх чинниках, що призводить до пошкодження ендотелію судин;
– травма;

Наслідки:
– запуск механізмів порушення балансу в системі згортання;
– розвиток ДВС-синдрому;
– тканина гіпоксія;
порушення функцій внутрішніх органів (серця, печінки, нирок і т. д.).

Виявлення і контроль:
– дослідження рН крові, гематокриту, коагулограми, лейко-формули;
– дослідження осаду сечі;
– ЕКГ

Корекція: застосовуються препарати, що покращують мікроциркуляцію і реологічні властивості крові, нормалізують гемо- коагуляцію.

Зниження імунологічної реактивності

Причини:
– позамежне фізичне навантаження;
– несприятливі метеоелектричні умови;
– психоемоційне навантаження - стрес.

Наслідки:
– схильність до зараження будь-якою інфекцією;
– ризик онкологічних захворювань.

Виявлення і контроль: імунологічний статус.

Корекція:
– імунокоректори;
– адаптогени;
– вітаміни;
– амінокислоти (незамінні).

Дисбаланс ендокринної системи

Причини: можуть бути викликані широким спектром причин – від генетичних до інфекційних; допінг.

Наслідки: порушення всіх видів обміну.

Виявлення і контроль: гормональний профіль.

Корекція: відповідно виявлений причині.

Пригнічення центральної нервої системи, периферичної нервої системи, автономної нервої системи

Причини:
– навантаження, що виходить за межі фізіологічних можливостей організму;
– психологічна травма.

Наслідки:
– перетренованість, порушення динаміки психоемоційного стану спортсмена;
– травми;
– хвороби внутрішніх органів;
– інфекції та інтоксикації.

Виявлення і контроль:
– психологічні тести;
– час стартової реакції, швидкість проведення імпульсу;
– рівень норадреналіну.

Корекція: седативні препарати, ноотропи, адаптогени, засоби корекції порушень сну, засоби впливу на вегетативні центри.
1.2 Органні фактори

Зниження скорочувальної здатності міокарда

Причини:
- перетренованість;
- інтоксикація з вогнищ хронічної інфекції;
- зниження імунної реактивності організму;
- дисбаланс ендокринної системи;
- гіпертензії, шокові стани та ін.

Наслідки:
порушення метаболічних процесів в серцевому м'язі.
Виявлення і контроль:
ЕКГ, Ехо-КГ, добовий ЕКГ-моніторинг, функціональні проби, біохімія.
Корекція:
- енергетики;
- коронаролітікі, анаболіки рослинного походження;
- засоби, що регулюють метаболізм в серцевому м'язі;
- амінокислоти, вітаміни, мінерали.

Осмаблення функції зовнішнього дихання

Причини:
- перетренованість;
- хронічні захворювання верхніх дихальних шляхів; астматичні стани.

Наслідки:
зниження скорочувальної здатності дихальних м'язів, діафрагми.
Виявлення і контроль:
- пікова швидкість повітря, що видихається (пікфлоуметрія);
- форсована життєва ємкість легень (ФЖЕЛ).
Корекція:
енергетики, антиоксиданти, антигіпоксантів; лікування захворювань дихальних шляхів.

Енергетики, антиоксиданти, антигіпоксантів; лікування захворювань дихальних шляхів

Причини:
- позамежне тренувальне навантаження; перетренованість;
- функціональні дискардії жовчовивідних шляхів;
- запальні захворювання жовчних проток, жовчного міхура;
- допінг.

Наслідки:
- зниження активності печінкових клітин, рівня білка і амінокислот, імунних показників;
- печінково-болючий синдром, зниження функції травлення;
- зниження працездатності.
Виявлення і контроль:
УЗД черевної порожнини, реографія, біохімія і т. д.
Корекція:
гепатопротектори, енергетики, антиоксиданти, антигіпоксантів; жовчогінні засоби; препарати, що покращують мікроциркуляцію.

Зниження функції нирок при тренувальному навантаженні

Причини:
- позамежне тренувальне навантаження; перетренованість;
– несприятливі метеоумови при проведенні тренувань і змагань;
– порушення водно-сольового режиму;
– надмірне споживання білка;
– запальні захворювання;
– допінг.
Наслідки:
– уповільнення екскреції метаболітів, дисбаланс в обмінних процесах;
– зміна кислотно-лужного стану;
– «зашлакування»;
– зниження функції внутрішніх органів;
– зниження працездатності.
Виявлення і контроль:
УЗД, реографія, біохімія крові, сечі.
Корекція:
енергетики, антиоксиданти, антигіпоксантів; препарати, що покращують мікроциркуляцію; сечогінні засоби; дотримання водного режиму; корекція дієти; лікування захворювань сечостатевої системи.

Дисбактеріоз
Причини:
– порушення в імунному статусі;
– кишкова інфекція;
– гостре і хронічне отруєння харчовими продуктами, побутовими, лікарськими засобами;
– одноманітне харчування;
– гіповітаміноз.
Наслідки:
– зниження енергозабезпечення, імунітету;
– водно-електролітні порушення;
– харчова алергія;
– зниження працездатності.
Виявлення і контроль:
– консультація гастроентеролога;
– посів калу на мікрофлору.
Корекція:
– відновлення нормального кишкового біоценозу за допомогою еубіотиків; сорбенти; дієта; вітамінізація.

Пошкодження (травми) м'язів, сухожиль, суглобів
Причини:
– гальмування функцій центральної нервової системи – перевтома, перетренованість;
– «зовнішні» причини - кліматичні умови, порушення правил техніки безпеки проведення тренувань і змагань, гігієни і т. п.
Наслідки:
порушення або повна втрата локомоторних функцій і працездатності.
Виявлення і контроль:
– консультація травматолога-ортопеда;
– реографія, комп'ютерна томографія, УЗД.
Корекція (лікування, реабілітація):
– мобілізація; гірудотерапія; фізіотерапія; масаж; лікувальна фізкультура; аутотренінг;
– препарати, що прискорюють відновлення після травми: вітаміни, мінерали; засоби, що поліпшують обмін у кістковій, сполучної і м'язової тканини, муміє, зовнішні засоби.
1.3 Додаткові фактори

1. Режим. Порушення режиму, при яких значно знижується спортивний результат:
- недостатня кількість часу, відведений на відпочинок, сон;
- зміна «зимового», «літнього» часу, часових поясів;
- збії в хронобіології внутрішнього середовища організму;
- «звичні» порушення режиму.

2. Дієта. На спортивний результат впливають такі чинники порушення дієти:
- не відповідає виду спорту;
- незбалансована калорійність раціону;
- не відповідає завданням тренувального процесу;
- гіповітаміноз, нестача мінералів;
- незбалансоване споживання білків, жирів, вуглеводів;
- відсутність вуглеводного підживлення на тренуванні;
- порушення часу прийому їжі (режим);
- несумісність харчових інгредієнтів;
- зловживання газованою водою;
- безсистемне споживання мінеральної води;
- споживання некісної води;
- вживання в їжу продуктів, що містять трансгенні компоненти.

3. Навколишнє середовище.

Забруднення повітря. Спортсмени, що тренуються в міських умовах, відчувають на собі вплив різних забруднювачів, які можуть чинити опосередкований вплив на спортивні результати. Особливо згубним тренування поблизу промислових підприємств, автодоріг. Найпоширеніші атмосферні токсини: окис вуглецю, озон, сірчані окиси, азотні окиси і перекисні ацетілнітрати.

Спортові споруди (стадіони, палаці спорту, спортили, місця проведення змагань) повинні мати екологічний паспорт із зазначенням концентрації в повітрі тих чи інших речовин протягом доби. Відповідно до цього можна розрахувати заподіяну здоров'ю шкоду: концентрація отруйної речовини, помножена на обсяг легеневої вентиляції, помножена на частоту дихання.

При підвищеній температурі можливі: зневоднення, теплові хвороби, травми.
При зниженні температурі – зневоднення, гіпотермія, обмороження.
Висока вологоść сприяє появи гіпотермії, гіпертермії, перетренованості.
Високосп. Тренування в цих умовах можуть призвести до зневоднення, гіпотермії, перетренованості.

4. Інтоксикація.

Побутова:
побутова хімія; нейкісна питна вода; нітрати в продуктах.

Професійна:
– хлор (плавання);
– суміші для дихання (підводне плавання);
– канонові гази (стендова, кульова стрільба);
– синтетичні покриття (зали, доріжки);
– інше.

Вогнища хронічної інфекції:
– карієс;
– безсимптомні або малосимптомні хронічні захворювання вуха, горла, носа, нирок, печінки, кишечника;
– грибкові ураження шкіри.

Гостра інфекція:
небезпека «недолікованість» або занадто раннє відновлення тренувального процесу, виступи на змаганнях у хворобливому стані.

Алкоголь, куріння.
Алергія.
Інвазія глистная.

5. **Одяг, взуття, інвентар, захисне спорядження.**
У разі невідповідності стандартам виду спорту або несправності спортсмен отримує травми або патологічні стани (остеохондроз, остеопороз, плоскостопість, сколіоз, перегрів, відмороження та т. д.).

6. **Стреси.**
Особливості психіки спортсмена мають велике значення в досягненні спортивного результату, а також у втраті імунітету при інших захворюваннях.

7. **Ятрогенія («наведені» хвороби).**
При досить високій обізнаності в ряді питань медико-біологічного спрямування й підозріливості спортсмена можливі соматичні захворювання, в яких провідну роль відіграє психоемоційна складова (фобії).

8. **Ліки – небезпека інтоксикації:**
– необґрунтоване застосування;
– недотримання дозування;
– призначення великого числа препаратів;
– допінг.

9. **Обмежене і несистемне використання профілактичних, лікувальних, відбудовних засобів в річному циклі тренувань.**
– недотримання термінів щорічної диспансеризації;
– відсутність достатнього набору медичних методик при обстеженні;
– неможливість використовувати всі засоби відновлення;
– недотримання правил самоконтролю.
РОЗДІЛ 2
СИСТЕМА КЛІТИННОГО РЕГУЛЮВАННЯ НА МОЛЕКУЛЯРНОМУ РІВНІ

Глибоке, всебічне розуміння послідовності різноманітних процесів, що відбуваються в організмі, дозволяє вибрати найбільш раціональні варіанти тренувальної програми, профілактики перетренованості і оптимальні схеми лікування патологічних станів. Подібне розуміння проблеми можливо тільки після вивчення цих процесів в клітці на молекулярному рівні.

На рівні клітини є три системи, від взаємодії яких залежить кінцевий результат — призведе стресовий вплив тренування на організм до переходу функціонального стану спортсмена на більш високий рівень або негативно відіб’ється на його здоров’ї.

Перша система функціонує на рівні клітинних структур, що впливають на зміну клітинного гомеостазу.

Друга система пов’язана з механізмами, що обмежують пошкодження клітини при її активації.

Третя система спрямована на відновлення внутрішньоклітинного гомеостазу і пошкоджених ділянок клітини.

Будь-який стресовий вплив на організм в кінцевому рахунку досягає своєї основної мети — клітини. Спілкування навколошнього середовища з кожною клітинною організму реалізується за допомогою організованіх потоків газів, складових повітряного середовища, поживних речовин, а також численних команд, які направляються в кожну клітину за допомогою трьох регуляторних систем, що забезпечують координацію роботи всього організму і оперативно змінюють функціонування органу, тканини, клітини в зв’язку зі змінами, що відбуваються поза або всередині організму. Відповідна реакція клітини можлива тільки після її активації, яка відбувається при збереженні інтенсивно функціонуючих мембранних структур і рецепторного апарату на клітинній мембрані.

Перша клітинна система, що надає безпосередній вплив на здоров’я і довголіття людини, - це мембранна структура клітин, їх хімічний склад, мікров’язкість, величина мембранного потенціалу, наявність достатнього числа клітинних рецепторів. Всі перераховані параметри чутливі до кількості, сили і тривалості стресових впливів. Тому першочерговим завданням стає виняток, по можливості, впливу на організм сильних і тривалих стресових факторів (негативні емоції, тривале перебування в умовах високих або низьких температур), а також відмова від шкідливих звичок. Але це не означає необхідності повного усунення всіх стресів. Організм спортсмена відчуває стресові навантаження під час тренувань і змагань, проте ступінь їх впливу на тканини повинна бути адекватно дозованою.

Сильні стреси, як правило, закінчуються незворотними ушкодженнями клітинних структур, які поступово переводять організм на все більш низький рівень адаптаційних можливостей.

Друга клітинна система обмежує пошкодження клітин в період їх активації. В її основі лежить система антиоксидантного захисту, проте правильніше оцінювати результат її взаємодії з прооксидантною системою, що генерує активні форми кисню. Порушення балансу між двома системами на користь синтезу активних форм кисню, що спостерігається при більшості патологічних станів, означає прискорення старіння організму. Навпаки, вітамінізація, збалансоване харчування, підтримка пластичними препаратами, цілеспрямована корекція функцій органів і систем сприяють збереженню здоров’я. Зокрема, потреба у вітамінах залежить від фізичного навантаження (збільшується з її зростанням) і зростає з роками. Але їх передозування, особливо вітамінів А і Е, така ж небезпечна, як і їх дефіцит.

Третя і, ймовірно, найважливіша система (особливо впливає на працездатність і
тривалість спортивної кар'єри) – енергопродукуючої. З наростанням обсягу і інтенсивності фізичного навантаження, зі збільшенням спортивного стажу і віку, енергетичний запит з боку клітини безперервно зростає, а енергопродукуючої її функції знижуються. Згодом дана функція починає впливати на долю кожної клітини і всього організму в цілому. Робота клітин в несприятливих умовах, особливо при кисневій недостатності тканин, в умовах, ускладнених хронічним запаленням, викликає значний викид активних форм кисню і несе основну відповідальність за пошкодження і загибель енергопродукуючих станцій – мітохондрій. Адекватний тренувальний процес, збалансоване харчування, фармакологічна підтримка сприяють більш ефективній доставці в тканини кисню і харчування, підвищують енергетику клітини і, як наслідок, прискорюють процеси репарації.

Всі клітинні системи взаємопов'язані і утворюють єдину клітинну регуляторну систему циклічного типу.

Знання принципів її роботи дозволяє виробити певні правила проведення кожного тренування, річного тренувального циклу, системи відновлювальних заходів, які: по-перше, будуть сприяти збереженню фізико-хімічних параметрів клітинних мембран (при виключенні впливу надмірних і тривалих стресів); по-друге, забезпечать необхідний рівень антиоксидантів і, нарешті, збережуть енергопродукуючі функції клітин (при фізичних навантаженнях, відповідних фізіологічним можливостям).

При розвитку патології або старінні організму відбувається послідовне пошкодження клітинних структур: виснаження антиоксидантної системи > пошкодження біомембран > поява енергодефіцитного стану

Дану послідовність доцільно враховувати при розробці схем терапевтичної корекції.

Медичний аспект підвищення працездатності полягає в розробці та застосуванні таких засобів, які, не перешкоджаючи сприйняттю сигналів стомлення, віддаляли б настання стомлення за рахунок розширення біохімічних і функціональних резервів організму, але не за рахунок їх виснаження (Бобков Ю.Г.).
РОЗДІЛ 3
КОРЕКЦІЯ ФАКТОРІВ, ЩО ОБМЕЖУЮТЬ ПРАЦЕЗДАТНІСТЬ СПОРТСМЕНА

3.1 Енергозабезпечення м'язів

Енергетичне забезпечення клітини включає три складові: хімічну у вигляді набору макроергів, локалізованих в цитоплазмі; електричну (мембранний потенціал) і осмотичну (нерівномірний розподіл іонів по різним бокам клітинної мембрани). Всі три складові рівнозначні і взаємопов’язані (рис. 1).

М’язові клітини мають у своєму розпорядженні двома енергоперетворюючими системами: дихальною ланцюгом і гликолізом. Регуляція роботи кожної з систем і їх взаємодію в значній мірі реалізуються на молекулярному рівні. Обидві системи поліферментні, т.е. Освітту макроергів - результат різних послідовних реакцій.

В силу конструктивних особливостей м’язової тканини гліколітичний процес може стати оптимальним тільки через 40-50 с після початку м’язових скорочень. Дихальний ланцюг ще більш інертний, і він за енергетичною продуктивністю може порівнюватися з гліколізом тільки через 70 с після початку роботи.

Для початку роботи (особливо в спринті) потрібно величезна, швидко реалізована енергія. Під час бігу спринтери витрачають свої внутрішні резерви у вигляді макроергічних сполук. Перше «резервне паливо» — молекули АТФ. Депонована в АТФ енергія може бути швидко перетворена в м’язову.

Наявні запаси АТФ в тканинах невеликі, їх вистачає спринтерові лише на 2 с забігу. Потім починає віддавати енергію інше енергетичне депо, що знаходиться в м’язових клітинах – креатинфосfat. Його запасів вистачає ще на 10-12 с. Тому на перемогу в спринті можуть розраховувати лише ті спортсмени, організм яких здатний накопичувати значний резерв високоенергетичних речовин – макроергів (fosфагенов, рис.1).

![Рис. 1. Механізм синтезабезпечення](image)

Універсальне джерело енергії в клітині (в тому числі і м’язової) – вільна енергія макроергічних фосфатних зв’язків АТФ, що звільняється при гідролізі (розпаді) АТФ до АДФ і АМФ і неорганічного фосфору. Якщо концентрація АТФ велика, то відзначено зниження ферментів, що беруть участь в його синтезі. При зниженні концентрації АТФ і збільшенні концентрації АДФ активується дихальний ланцюг, а при зростанні концентрації АМФ – гліколіз. (табл. 1, рис. 2).

1 АДФ – аденозиндифосфат.
2 АМФ – аденозинмонофосфат.
Таблиця 1 - Час, необхідний для нормалізації біохімічних процесів
(Волков Н. І. з співавт., 2000)

<table>
<thead>
<tr>
<th>Процес</th>
<th>Час</th>
</tr>
</thead>
<tbody>
<tr>
<td>Відновлення запасів O₂ в організмі</td>
<td>10-15 с</td>
</tr>
<tr>
<td>Відновлення алактатних аеробних резервів в м'язах</td>
<td>2-5 хв</td>
</tr>
<tr>
<td>Оплата O₂ алактотного боргу</td>
<td>3-5 хв</td>
</tr>
<tr>
<td>Усунення молочної кислоти з сосудів</td>
<td>0,5-1,5 год</td>
</tr>
<tr>
<td>Усунення молочної кислоти з тканин</td>
<td>12-36 год</td>
</tr>
<tr>
<td>Ресинтез внутрішньом'язових запасів глікогену</td>
<td>12-48 год</td>
</tr>
<tr>
<td>Відновлення запасів глікогену в печінці</td>
<td>12-48 год</td>
</tr>
<tr>
<td>Посилення індуктивного синтеза ферментних і структурних білків</td>
<td>12-72 год</td>
</tr>
</tbody>
</table>

Примітка. У таблиці представлена динаміка відновлювальних процесів після значного фізичного навантаження. Інформація про усунення молочної кислоти представлена автором.

При систематично підвищеному енергетичному запиті включається вищий, клітинний рівень регуляції енерго-перетворюючої системи, що приводить до індукції (а при зниженні енергетичного запиту – до репресії) синтезу нових ферментів для енергетичних ланцюгів. Індукція або репресія ферментів стають в цьому випадку найбільш простим і економічним способом адаптації клітин до нових умов.

Підтримка енергетичного гомеостазу в клітці здійснюється в автоматичному режимі при збереженні сталості внутрішньоклітинного середовища (табл. 2).

Зниження енергобезпечення м'язів можливо внаслідок нестачі в організмі макроергів, фосфокреатину, глікози, глікогену, ліпідів, амінокислот; недостатності залучення в процес енергобезпечення ліпідів, протеїнів; неефективності динаміки утворення АТФ (рис. 2).

Корекція енергобезпечення

Рис. 2. Спрощена схема взаємодії білкового, вуглеводного і жирового обмінів

Результат – відбувається зменшення потужності роботи через зниження скоротливості м'язів.

Корекція енергобезпечення проводиться як призначенням додаткової кількості енергетиків, так і за допомогою препаратів, які здійснюють їх корекцію (табл. 3).
Таблиця 3 - Фармакологічна підтримка енергетичного забезпечення, фізичної працездатності різної спрямованості

<table>
<thead>
<tr>
<th>Фармакологічні групи</th>
<th>Метаболізм</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ПАО</td>
</tr>
<tr>
<td>Адаптогени</td>
<td>*</td>
</tr>
<tr>
<td>Амінокислоти</td>
<td>*</td>
</tr>
<tr>
<td>Анаболічні препарати</td>
<td>*</td>
</tr>
<tr>
<td>Антианемічні препарати</td>
<td>*</td>
</tr>
<tr>
<td>Антиоксиданти</td>
<td>*</td>
</tr>
<tr>
<td>Вітаміни, кітаамінні комплекси</td>
<td>*</td>
</tr>
<tr>
<td>Гепатопротектори</td>
<td>*</td>
</tr>
<tr>
<td>Коректори лактат-азидоза</td>
<td>*</td>
</tr>
<tr>
<td>Коректори рівня сечовини</td>
<td>*</td>
</tr>
<tr>
<td>Коферменти</td>
<td>*</td>
</tr>
<tr>
<td>Макроергіофосфагени</td>
<td>*</td>
</tr>
<tr>
<td>Мінерали (макро- і мікроелементи)</td>
<td>*</td>
</tr>
<tr>
<td>Поліетилени</td>
<td>*</td>
</tr>
<tr>
<td>Психоенергетики (пострани)</td>
<td>*</td>
</tr>
<tr>
<td>Регулятори вуглеводного обміну</td>
<td>*</td>
</tr>
<tr>
<td>Регулятори ліпідиного обміну</td>
<td>*</td>
</tr>
<tr>
<td>Регулятори мікроциркуляції і реології крові</td>
<td>*</td>
</tr>
<tr>
<td>Регулятори захисту та стабілізації статусу</td>
<td>*</td>
</tr>
</tbody>
</table>

Примітка. ПАО – поріг аеробного обміну; ПАНО 1 – поріг анаеробного обміну, лактат (La) 2-3 ммоль / л; ПАНО 2 – поріг анаеробного обміну, La 3-5 ммоль / л; МПК – максимальне споживання кисню, La 6-8 ммоль / л; глюкоза – аеробний обмін, La 6-18 ммоль / л і більше; * – тут і далі в аналогічних таблицях можливість призначення препаратів цієї групи відзначена зірочкою.

Фосфагени (макроергії)

Працюючий організм при безкисневих (алактатний, лактатний) варіантах забезпечення енергією в процесі синтезу і ресинтезу використовує наступні шляхи отримання енергії у вигляді АТФ:

Креатинфосфат + АДФ <-> креатин + АТФ
Фосфат + АДФ + вільна енергія <-> АТФ
2АДФ <-> АМФ + АТФ
Фосфат + АДФ + глюкоза (глікоген) <-> АТФ + лактат

Максимально ефективний креатинфосфатний шлях ресинтезу АТФ:
Креатинфосфат + АМФ —> АДФ + креатин
Креатин —> АДФ + креатин

Креатин (метилгуанідинатетатна кислота) – речовина природного походження, синтезується в організмі з амінокислот – аргініну, гліцину, метіоніну.

3 Аденозинтрифосфат.
Фосфокреатин як джерело енергії для м'язового скорочення відіграє провідну роль при виробленні енергії по анаеробного алактатну шляху. Його запаси в м'язових клітинах лімітують тривалість та інтенсивність фізичного навантаження в цьому режимі работы.

Додатковий прийом фосфокреатина, креатину моногідрату сприяє збільшенню тривалості швидкісно-силової роботи. Креатин особливо активно запасається організмом після фізичного навантаження. На тлі дефіциту його в клітинах, отже, повинен приймати креатин і спортсмен (табл. 4, 5).

Неотон (фосфокреатин) забезпечує готову до споживання енергію в процесі скорочення актоміозина.

Фосфокреатин (ФК) може допомогти протистояти явищам метаболічного стресу за рахунок позитивного впливу на енергетичні запаси, що клінічно виражається в кращій переносимості організмом фізичних навантажень.

Після одноразової внутрішньовенної інфузії неотону відбувається дозозалежне збільшення його вмісту в крові до максимального рівня протягом 1-5 хв.

Таблиця 4 - Застосування фосфагенів (макроергів)

<table>
<thead>
<tr>
<th>Види спорту</th>
<th>Циклічні</th>
<th>Швидкісно-силові</th>
<th>Єдиноборства</th>
<th>Координаційні</th>
<th>Спортивні ігри</th>
</tr>
</thead>
<tbody>
<tr>
<td>Підготовчий</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Базовий</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Спеціалізованій</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Чорні</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Відновлювальний</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Таблиця 5 - Препарати макроергів

<table>
<thead>
<tr>
<th>Препараты</th>
<th>Добові дози</th>
<th>Курс</th>
</tr>
</thead>
<tbody>
<tr>
<td>Неотон (фосфокреатин)</td>
<td>1 г в/в на 15 кг ваги</td>
<td>Одноразово або курсом</td>
</tr>
<tr>
<td>Димефокреатин 15% розчин</td>
<td>1 ст.л. 3 рази (30 мг/кг)</td>
<td>3-4 тижні</td>
</tr>
<tr>
<td>Езафосфіна (esafosfina)</td>
<td>1 г на 20 кг ваги</td>
<td>Одноразово</td>
</tr>
<tr>
<td>Кальция гліцерофосфат</td>
<td>0,5 г 3 рази</td>
<td>3-4 тижні</td>
</tr>
<tr>
<td>Креати моногідрат</td>
<td>5-10 г</td>
<td>2-3 тижні</td>
</tr>
<tr>
<td>Креаторжил</td>
<td>0,5 г в/м</td>
<td>1 тиждень</td>
</tr>
<tr>
<td>Фосфаден</td>
<td>0,5 г 3 рази</td>
<td>2-3 тижні</td>
</tr>
</tbody>
</table>

Примітка. Застосовується один (випробуваний) з представлених в таблиці препаратів, який надає максимальну дію з мінімальними ускладненнями і побічними ефектами.
Значна частина введеного ззовні ФК захоплюється клітинами різних органів. Аналіз розподілу (Сакс В.А., Струм Е., Перепечу Н.Б.) екзогенного ФК в крові і тканинах показав, що дане з'єднання специфічно накопичується в скелетних м'язах, міокарді і мозку – тканинах, в яких внутрішньоклітинний ФК грає функціонально важливу роль. Таким чином, екзогені ФК накопичується переважно в тих тканинах, які при ішемії швидко втрачають свої функції.

Виведення ФК з організму розділяється на дві фази. Перша фаза (швидка) характеризується часом напіввиведення ФК – 30-35 хв. Тривалість другої фази (повільної) становить кілька годин. Концентрація ФК в сечі починає збільшуватися через 30 хв і досягає максимуму через 60 хв після введення.

Показання. При метаболічних порушеннях в міокарді; для попередження розвитку синдрому перенапруження, при тривалому фізичному навантаженні в умовах гіпооксії; з метою відновлення працездатності після стартирів для підготовки до наступних стартирів в цей день, збільшення потужності специалізованої працездатності.

Димефосфон – фосфорорганічних сполук, що володіє здатністю посилювати тканинне дихання і стабілізувати стан клітинних мембр. Клінічна практика довела, що нормалізує, димефосфон на процеси перекисного окислення ліпідів. В результаті активує вплив димефосфонна на піріваткарбоксилазу ріновагу між La і бенкеті-Ватом зміщується в бік останнього, посилюється утилізація пірівату в циклі Кребса, збільшується фракція АТФ і підвищується відношення АТФ/АМФ.

Фосфаден (АМФ) може розглядатися як фрагмент АТФ. АМФ входить до складу ряду коферментів, що регулюють окисно-відновні процеси. Бере участь в нормалізації біосинтезу порфіринів. Має судинорозширильну дію. Володіє антиагрегаційними властивостями.

Показання. Як енергетичне джерело в видах спорту з переважним розвитком сили, швидкості. Порошок креатину вводиться з внутрішньовенним введення зі швидкістю не більше 10 мл в хв. Можливе з'явлення алергічних реакцій; попадання в підшкірну клітину викликає локальну болючу добробот. Протипоказані при нирковій недостатності, фосфатемії, непереносимості фруктози.

Езафосфіна (esafosfina). Випускається: 0,5 г (0,375 г) на 10 мл розчинника; 5 г (3,75 г) на 50 мл розчинника; 10 г / (7,5 г) на 100 мл розчинника. Внутрішньовенно вводиться зі швидкістю не більше 10 мл в хв.

Не використовують через низьку ефективність наступні фармакологічні форми: АДФ, АТФ, міотріфос, фітин. На сьогоднішній день відомо близько 2000 молекул, щодо яких в експерименті встановлено прямий захисний механізм дії на серце, однак в реальній клініці практику впровадження значно менше числа препаратів з кардіопротекторними властивостями. Механізм дії кардіопротекторів різноманітний і багатоплановий, тому виникає необхідність формування чіткої класифікації, що розглядає кардіопротекторні засоби даної категорії на види по їх біологічними властивостями і іншим факторам. У найзагальнішому вигляді кардіопротектори розділяються на засіб прямої (переважно використовуються в спортивній кардіології) та непрямої дії.

Найбільш продуманою і обґрунтованою є класифікація засобів, що відносяться до прямих кардіопротекторів – фармакологічних засобів регуляції обміну речовин в міокарді (міокардіальних цітопротекторів) і побудована на обліку основних напрямків дії даних препаратів.

Особливе місце із ефективністю і практично повній відсутності токсичної дії серед
метаболічних кардіпротекторів займає АТФ-лонг. Це перший оригінальний препарат групи прямих кардіпротекторів нового класу лікарських засобів – різноманітних координаційних сполук з макроергічними фосфатами, який надає виражене кардіопротекторну, енергозберігаючу, мембраностабілізуючу, метаболічну дію при гострих і хронічних захворюваннях серцево-судинної системи, а також при її перенапруженні і дисфункції у спортсменів. Препарат був отриманий шляхом спрямуваного синтезу з урахуванням результатів робіт, що стосуються захисної дії АТФ, амінокислот, макроелементів на органи і тканини в період ішемії.

АТФ-лонг синтезована таким чином, що макроергічний фосфат АТФ, іон магнію, амінокислота гистидин і іони калію, які входять до її складу, скоординовані так, що молекула легко вбудовується в різні ланки метаболічних процесів. Завдяки оригінальній структурі молекули вона має характерну тільки для неї фармакологічну дію, яка не властива окремо кожному з її хімічних компонентів (АТФ, гистидин, К+, Mg2+), що дозволяє препарату надавати коригуючий вплив на різні структурні і функції на системному, клітинному, субклітинному і молекулярному рівнях. Так, іони магнію, що є природним антагоністом іонів кальцію, забезпечує негативний інотропний ефект на серцевий м'яз, тим самим знижуючи споживання нею кисню, зменшуючи периферичний опір за рахунок зниження тонусу гладком'язових структур судин; магній також пригнічує процеси дезамінування і дефосфорилювання. Іони калію підтримують осмотичний і кислотно-лужний гомеостаз клітини, беруть участь в забезпеченні трансмембранної різниці потенціалів, активують синтез АТФ, креатинфосфату. Амінокислота гистидин є природною пасткою вільних радикалів, забезпечує інгібування процесів перекисного окислення ліпідів, тим самим захищаючи структурні компоненти мембран від переокислення і гідролізу, запобігаючи їх деградації. Неорганічний фосфор, що утворюється після гідролізу АТФ, разом з імідазольним кільцем гистидина збільшують ємність клітинного буфера, забезпечуючи чимало більшій стабільності і потенціалів, які забезпечують стабільну структурні й функції клітини в умовах ішемії. Збереження мембранних структур клітини відбувається завдяки стабілізації мембранних структур у відносно нормальному вигляді, що включає приємний ефект на клітинні потенціали, утримує стабільну структуру клітини в умовах гіпоксії, в тому числі гіпоксії навантаження. Завдяки вищевикладеним факторам препарат АТФ-лонг більш ефективний, ніж відома дінаугар АТФ, що застосовується в даний час для лікування ряду патологічних станів у спортсменів.

АТФ-лонг є таблетованим препаратом, що містить в своїй структурі макроергічний фосфат (АТФ) і випускається для сублінгвального застосування в двох дозуваннях – по 10 і 20 мг активної речовини, що зручно для спортсменів в реальних умовах тренувального процесу. Застосування АТФ-лонг сублінгвально дозволяє отримати первинний ефект через 20-30 с, що практично дорівнює за швидкістю настання дії внутрішньовенного введення препаратів. Великою перевагою, в порівнянні з іншими подібними препаратами, є відсутність токсичності та побічної дії, що притаманне метаболітотропним субстанціям.

Натепер у спортивній кардіології може використовуватися розроблений в Запорізькому державному медичному університеті синтетичний антиоксидант тіотриазолін (мorfолін-метил-триазоліл-тіоацетат), для якого характерна висока цитопротекторна активність незалежно від тканинного типу клітини, модулюючи дію в умовах норми і розвитку патології, що є відображенням універсального механізму його дії. В умовах ішемії препарат робить активний вплив на енергетичний обмін. За рахунок активації малат-аспартатного шунта він забезпечує окиснюальну продукцію енергії, підвищуючи рівень АТФ, забезпечуючи протонами транспортний ланцюг, посилюючи утилізацію відновних пірідинуклеотидів і окисного вуглеводного метаболізму. Тіотриазолін гальмує утворення активних форм кисню в біоенергетичних реакціях, знижує патологічний синтез ліпідів і значно стимулює синтез протеїнів. Це вказує на посилення процесів адаптації в клітинах, що забезпечує перебудову
метаболізму тканини в умовах гіпоксії без підвищення потреби в кисні і утворення вільних радикалів. Зменшує концентрацію таких активних форм кисню, як супероксидний аніон-радикал кисню і пероксинітрит, тіотриазолін знижує ступінь окислювальної модифікації низки білкових структур антиоксидантних ферментів, зберігає тіосульфідну рівновагу і сприяє синтезу ряду факторів, що підвищують стійкість клітини до екстремальних впливів. У цьому саме і полягає тісний зв'язок захисної антиоксидантної дії метаболітотропних засобів з їх енергозабезпечуючими властивостями. Тіотриазолін попереджає ініціювання активних форм кисню шляхом реактивації антирадикальних ферментів: супероксиддисмутази, каталази і глутатіонпероксидази. Антиоксидантні властивості тіотриазоліну проявляються завдяки наявності в його структурі молекули тіолу сірки, яка має окислювально-відновлювальну властивість, і третинного азоту, який зв'язує надлишок іонів водню. Дія тіотриазоліну реалізується на всіх етапах розвитку гіпоксичних і ішемічних ушкоджень на рівні клітин міокарда і центральної нервової системи. Даній препарат має властивості як прямого, так і непрямого кардіопротектора, тобто діє безпосередньо як метаболічний препарат, нормалізуючи енергетичні процеси в кардіоміоциті, надаючи антиагрегантний ефект і покращуючи релаксацію крові за рахунок активації фібринолітичної системи. Встановлено, що тіотриазолін підвищує концентрацію іонів Na⁺ в плазмі і попереджає її підвищення в еритроцитах і міокарді в умовах експериментальної аритмії, зменшує калій-натрієвий коефіцієнт в плазмі, збільшує вміст іонів K⁺ і калій-натрієвий коефіцієнт в еритроцитах і міокарді. Все це обґрунтовує доцільність використання тіотриазоліну в практиці фармакологічної корекції спортсмена, що тренується.

Вуглеводне насичення

Створення запасів вуглеводів у вигляді глікогену в м'язах, печінці – основа чіткого функціонування організму і успішного вирішення тренувальних і змагальних завдань, особливо в циклічних видах спорту. Крім того, енергозабезпечення головного мозку (центр управління) здійснюється виключно глюкозою (див. «Ендокринна система»). При виборі твердих вуглеводовмісних продуктів перевага віддається продуктам, які добре засвоюються з меншими енергетичними витратами. В даний час для цих цілей рекомендований прийом так званих продуктів з високим глікемічним індексом (табл. 6).

Вуглеводовмісні продукти. При виборі твердих вуглеводовмісних продуктів перевага віддається продуктам, які добре засвоюються з меншими енергетичними витратами. В даний час для цих цілей рекомендований прийом так званих продуктів з високим глікемічним індексом (табл. 6).

Вуглеводовмісні напої. Останнім часом у спорти для екстреного насичення вуглеводами перевага віддається вуглеводовмісним напоям. Як правило, рекомендуються напої, що містять суміші легкозасвоюваних вуглеводів, органічних кислот, вітамінів, мінералів, незамінних амінокислот і нenasичених жирних кислот. При складанні спортивних напоїв широко використовуються полімери глікози – мальтодекстрини, інвертований цукор. Велике значення має процентний вміст таких сумішей, тобто глікозоелектролітні розчини зі зниженою по відношенню до плазми осмолярністю сприяють збільшенню швидкості насичення і навпаки. Так, прийом 10% (і менше) розчину глікози підвищує швидкість засвоєння рідини майже вдвічі. Споживання 8-10% розчину в процесі тренування, змагання, спортивні ігри підвищує функціональні можливості організму.

Протягом 6 годин після фізичного навантаження для поповнення запасів ендогених вуглеводів споживані продукти повинні містити не менш 70% вуглеводів. Рекомендується дробовий прийом їжі: часто і малими порціями.
<table>
<thead>
<tr>
<th>Харчові групи</th>
<th>Продукти</th>
<th>Розмір порції (г), Включаючи 100г вуглеводів</th>
</tr>
</thead>
<tbody>
<tr>
<td>Зернові</td>
<td>Білий хліб</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Житній хліб</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Печево</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Рис (не шліфований)</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>Кукурудзяни хлоп'я</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Мюслі</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Пшеничні хлоп'я</td>
<td>150</td>
</tr>
<tr>
<td>Сніданок із зернових</td>
<td>Напівсолодкий бісквіт</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Сухе печево</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Шоколадна плитка (пуга)</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>Солодкі зерна</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>Боби</td>
<td>1410</td>
</tr>
<tr>
<td></td>
<td>Пастернак</td>
<td>740</td>
</tr>
<tr>
<td></td>
<td>Картофля (азрена)</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>Картофля (печена)</td>
<td>400</td>
</tr>
<tr>
<td>Кондиторські вироби, боби, картопля</td>
<td>Глікоза</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Мальтоза</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Мед</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Сахароза</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Медаса</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Зерновий сироп</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>6% розчин сахарози</td>
<td>1670</td>
</tr>
<tr>
<td></td>
<td>7,5% розчин мальтодекстрин і цукру</td>
<td>1330</td>
</tr>
<tr>
<td></td>
<td>10% вуглециклотно-зерновий сироп</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>20% мальтодекстрин</td>
<td>500</td>
</tr>
<tr>
<td>Фрукти</td>
<td>Ізюм</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Банани</td>
<td>520</td>
</tr>
<tr>
<td>Цукор</td>
<td>Глікоза</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Мальтоза</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Мед</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Сахароза</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Медаса</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Зерновий сироп</td>
<td>125</td>
</tr>
<tr>
<td>Напої</td>
<td>6% розчин сахарози</td>
<td>1670</td>
</tr>
<tr>
<td></td>
<td>7,5% розчин мальтодекстрин і цукру</td>
<td>1330</td>
</tr>
<tr>
<td></td>
<td>10% вуглециклотно-зерновий сироп</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>20% мальтодекстрин</td>
<td>500</td>
</tr>
</tbody>
</table>

Приготувати напій можна самостійно: 1 ч. л. цукру (меду), сіль на кінчику ножа розчинити в 100 мл води. Незважаючи на те що за смаковими якостями (не солодко) такий напій п'ється спортеменом (звикилим до солодкого) з працею, користь його очевидна.

Прийом вуглеводних напоїв на дистанції під час змагань (де це можливо за умовами змагання) або на тренуванні під час виконання тривалих фізичних навантажень абсолютно необхідний для поповнення запасів енергії (табл. 7).

Велике значення у вуглеводному насиченні (поряд з прийомом продуктів з високим глікемічним індексом) має час споживання вуглеводів. Чим раніше після фізичного навантаження розпочата прийом, тим ефективніше процес глікогеноутворення (як при прийомі фосфатагенів). Під час ранкового або вечірнього тренування енергетичні напої рекомендується приймати, якщо тренування триває більше 90 хв. Також необхідно приймати енергетики в обов'язковому порядку під час ранкового або вечірнього тренування в підлітковому віці, бо коли у віці інтенсивного росту організму і при значних енерговитратах можливо надмірне витрачання пластичного матеріалу (білки, амінокислоти) на забезпечення організму енергією.

Так, як ресинтез внутрішньом'язових запасів глікогену становить від 12 до 48 год, то при багатоденних змаганнях (великих витратах енергії) можливо внутрішньовенне введення глікози або фруктози (табл. 8). При внутрішньовенному застосуванні фруктози велика небезпека підвищення рівня La крові за рахунок її швидкого розпаду.
Таблиця 7 - Енергетичне забезпечення тренувального процесу протягом дня

<table>
<thead>
<tr>
<th>Мета прийому</th>
<th>Найменування</th>
<th>Дозування</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вранці</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Підтримування вуглеводного і амінокислотного балансу</td>
<td>Вуглеводи плюс білки (можливо замість сніданка)</td>
<td>1 доза (враховуючи вагу спортсмена)</td>
</tr>
<tr>
<td>Протягом дня між основними троїдами або замість їжі</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Підвищення витривалості і працездатність організму</td>
<td>Разом з вуглеводами полівітаміни, мінерали, антиоксиданти в рідкому вигляді</td>
<td>1 доза</td>
</tr>
<tr>
<td>Відновлення енергетики. Створення запасу вуглеводів</td>
<td>Вуглеводи: прості і полісахариди</td>
<td>За потребою</td>
</tr>
<tr>
<td>Вуглеводне насичення, вгамування спраги</td>
<td>Ізотонік</td>
<td>За потребою</td>
</tr>
<tr>
<td>Ізостар</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Період тренування за 1-1,5 год</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Енергетична загрузка (в представлальному періоді доза зменшується)</td>
<td>Перед ранковим тренуванням свіжо вижатий сік або вуглеводи (10-25% розчин) Амінокислоти з розгалуженим ланцюгом</td>
<td>200-300 мл</td>
</tr>
<tr>
<td>Швидке забезпечення організму відсутньою енергією</td>
<td>Прості вуглеводи – 10% розчин Адаптогені (тільки при тренуванні ранку)</td>
<td>200-300 мл</td>
</tr>
<tr>
<td>Після тренування</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Відновлення внутріклітинних запасів енергії</td>
<td>Вуглеводне насичення 10% розчином протягом 15-30 зв після тренування</td>
<td>200-400 мл</td>
</tr>
</tbody>
</table>

Примітка. Вказівка «доза» означає рекомендовану дозу фірмового напою, позначену на упаковці.

Таблиця 8 - Вуглеводне насичення і збереження водо-солевого балансу в видах спорту, що тренують витривалість

<table>
<thead>
<tr>
<th>Вуглеводно-мінеральний напій</th>
<th>Тренування</th>
<th>Змагання</th>
<th>Марафон (на дистанції)</th>
<th>Після</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ву 8-10% розчин, 100-250 мл</td>
<td>За 30-40 хв</td>
<td>Кожні 10-15 хв</td>
<td>На 12-15 хв</td>
<td></td>
</tr>
<tr>
<td>Під час</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-10% розчин, 200-400 мл</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10-25% розчин, 100-150 мл</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>>25% розчин, 100-250 мл</td>
<td>Або за 1 год</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Примітка. Вказівка «доза» означає рекомендовану дозу фірмового напою, позначену на упаковці.
Глюкозу вводять у вигляді 5% розчину в кількості, необхідній для термінового відновлення. Спільно з введенням глюкози застосовують калій і інсулін. На 1 г введеної внутрішньовенно глюкози потрібно 4-5 ЕД інсуліну і 11,7 мг калію.

У регуляції вуглеводного обміну центральне місце займає контроль за вмістом в крові глюкози – джерела вуглеводного харчування всіх клітин організму.

Енергетатори

Яблучна кислота – проміжний продукт циклу трикарбонових кислот (цикл Кребса), джерело енергії, беруть участь у тканевому диханні.

Лимонна кислота – проміжний продукт циклу трикарбонових кислот (цикл лимонної кислоти, цикл Кребса), джерело енергії.

Янтарна кислота (мітомін, Енерлів, янтовіт). Заостреною при екстремальних фізичних, психоемоційних, тренувальних і змагальних навантажень, а також у відновлювальному періоді. Фармакологічний вплив бурштинової кислоти зумовлений її участию в реакціях циклу Кребса.

Феномен швидкого окиснення сукцинату, що супроводжується АТФ-залежним відновленням пулі піримідинових дінуклеотидів, дістав назву «монополізація дихального ланцюга». Біологічне значення його полягає в швидкому ресинтезі АТФ клітинами та підвищенні їхньої АОА (Attali V. et al., 2006).

Завдяки участі в реакціях циклу Кребса бурштинова кислота знижує в крові концентрацію лактату, пірувату та цитрату, які накопичуються в організмі на ранніх стадіях гіпоксії. Антигіпоксичний ефект сукцинату може бути пов'язаний з активізацією сукцинатдегідрогенази, активність якої залежить від концентрації окисленої та відновленої форм НАД(Ф)Н2, що дозволяє забезпечити енергоспоживання функції мітохондрій при умовах стресу та гіпоксії. Бурштинова кислота є антиоксидантом спрямованим на мітохондріальний вплив, активізує захист організму від агресивних форм кисню. Сполука знижує накопичення напіввідновленої форми коензиму Q – генератора супероксиданіону, прискорює дезактивацію ксантиноксидази – джерела вільних радикалів; знижує концентрацію первинних та вторинних продуктів ВРО ліпідів; підвищує утилізацію заліза за рахунок утворення комплексів, які швидко всмоктуються у тонкому кишківнику. Відмічається...
позитивний вплив на регуляцію активності супероксиддисмугази, каталази, глутатіонпероксидази (Розенфельд А. С., 2007).

Гіпоксія й пошкодження мітохондрій є ключовою ланкою патогенезу при критичних станах будь-якої етіології. На початковому етапі гіпоксії в мітохондріях зменшується швидкість аеробного окиснення і окисного фосфорилювання, що призводить до втрати функціональних можливостей клітини за рахунок значного зниження запасів аденозинтрифосфорної кислоти й збільшення концентрації АДФ. Антигіпоксичний ефект сполуки базується на низькій чутливості системи окиснення бурштинової кислоти до дефіциту кисню, її впливом на вміст медіаторних амінокислот, а також за рахунок збільшення вмісту ГАМК у клітинах мозку, зменшення агрегації тромбоцитів, що в свою чергу підвищує реологічні властивості крові та мікроциркуляцію органів та тканин.

При дослідженні радіопротекторної дії бурштинової кислоти встановлено, що підвищення радіорезистентності організму після введення сукцинату супроводжується підвищеннями інтенсивності клітинного дихання в селезінці й кістковому мозку, а також резистентності мітохондрій до перекисної деградації. Порушення енергетичної функції мітохондрій відіграє важливу роль у патогенезі атеросклерозу, цукрового діабету, нейродегенеративних захворювань (хвороба Альцгеймера, хвороба Паркінсона) і раку (Лабенська І., 2016).

Дослідження останніх років показали наявність у бурштинової кислоти біологічної активності з унікальним сполученням проявів: відносно здорового організму сукцинати виступають у ролі адаптагенів, а при наявності патологічних проявів проявлюють терапевтичний ефект. Енергетична підтримка активності систем забезпечення адаптації за рахунок ГАМКшунта нервової тканини забезпечує антистресорну дію, збільшення вмісту ГАМК у клітинах мозку, зменшення агрегації тромбоцитів, що в свою чергу підвищує реологічні властивості крові та мікроциркуляцію органів та тканин.

За сукціїнату натрію після інтенсивних фізичних навантажень у спортсменів знижує метаболічний ацидоз, проявляє антистресовий ефект. Але введення екзогенної бурштинової кислоти в організм не завжди досить ефективне в зв’язку з низькою проникністю крізь біологічні мембрани, тому широке застосування в клінічній практиці знаходять препарати, що містять в своєму складі різноманітні деривати. Поєднання emokсишу, похідного 3-гідроксипіридину та сукцинату призвело до створення препарату мексидол. Здатність 3-гідроксипіридинів змінювати фізико-хімічні властивості клітинних мембран та активність мембранозв’язаних ферментів підвищує функціональні можливості організму при старінні, позитивно впливає на процеси імунного захисту при вірусних інфекціях (герпес, краснуха) (Ariza A. C., 2012).

Фармакологічніластовистивості сукцинату посилюються введенням піридоксальфосфату за рахунок регулювання метаболічних реакцій, що призводить до створення ендогенної бурштинової кислоти (Смирнов А. В. та спів., 2014).

Дослідження сучасних біорегуляторів, до складу яких входить бурштинова кислота, показали посилення певних видів біологічної активності та появи нових ефектів. Вивчення біологічної дії даних сполук вказує на те, що їхня активність значною мірою визначається природою та властивостями замісників у азагетероциклі (Бражко О.А. та спів., 2013, Омельянчик Л.О. та спів., 2016). Так, визначено, що поєднання похідних хіноліну та тіокарбонових кислот впливає на транспортну та метаболічну функцію мембран, підвищує їхню проникність для сукцинату й полегшує його доступність до ферментів дихального ланцюга. Бурштинова кислота в комплексному застосуванні з силімарином відновлює порушення метаболічних процесів у головному мозку при печінковій недостатності; з аскорбінової кислоти сприяє засвоєнню заліза в організмі; з мілдронатом підвищує антиатерогенною дією.

Дослідження сучасних біорегуляторів, до складу яких входить бурштинова кислота, показало посилення певних видів біологічної активності та появи нових ефектів. Вивчення біологічної дії даних сполук вказує на те, що їхня активність значною мірою визначається природою та властивостями замісників у азагетероциклі (Бражко О.А. та спів., 2013, Омельянчик Л.О. та спів., 2016). Так, визначено, що поєднання похідних хіноліну та тіокарбонових кислот призводить до здатності знижувати вміст продуктів ВРО, проявляти антигіпоксичний й цитопротекторні властивості. Курсове введення динатрієвої солі N-суцінил-S-(6-етокси-2-метилхінолін-4-іл)-L-цистеїну на моделі токсичного гепатиту...
стабілізувало структуру гепатоцитів, прискорювало відновлення ушкодженої паренхіми печінки. Встановлено, що активність значною мірою залежить від природи та замісників у положенні хіноліну та в ациламінному залишку L-цистеїну. Цитопротекторні властивості підтверджено дослідженнями перекисного, кислотного та осмотичного гемолізу еритроцитів. На підставі змін вольтамперних кривих процесу відновлення кисню встановлено, що механізм гепатопротекторної дії динатрієвої солі N-sукциноїл-S-(6-етоксі-2-метилхінолін-4-іл)-L-цистеїну реалізується за рахунок антирадикальних та антиоксидантних властивостей (Лабенська І., 2016).

Сфера використання препаратів бурштинової кислоти різноманітна. Вона включає кардіологію, неврологію, ендокрінологію, токсикологію та наркологію, реабілітаційну та спортивну медицину. Важливими напрямами сучасних досліджень похідних бурштинової кислоти залишаються фармакологічна корекція змін метаболізму при гіпоксичних, ішемічних, ішюемічних, токсичних ушкодженнях та впливі негативних факторів навколишнього середовища, а також підвищення біодоступності сукцинату еритроцитів, що сприяє його кращому проникненню в клітину. Бурштинова кислота характеризується широким спектром фармакологічних ефектів та має унікальну різnobічність проявів біологічної активності.

Постійні курси, які м'яко підтримують регуляторні механізми, необхідно проводити на основі доз 50-100 мг в день, при цьому проводити переривчасті курси – кілька днів прийом, кілька днів перерва. Можлива наступна схема: 5 днів прийом – 2 дні перерва, 7 днів прийом – 3 дні перерва. Необхідно прагнути підібрати індивідуальну порогову дозу для врівноваження процесів активізації і відновлення (табл. 9).

Слід мати на увазі «сигнальну» дію янтарної кислоти, тому слід підбирати дозу, орієнтуючись на суб'єктивні критерії оцінки стану – настрій, ступінь втоми, повноцінність сну, бадьоре пробудження, легку переносимість обмеження прийому їжі. У випадках застосування янтарної кислоти в гострих ситуаціях разова доза повинна бути збільшена до 1-2 г. Не рекомендується прийом препаратів у вечірній час.

Примітка. Аналогічною дією володіє кетоглутарова кислота. Свіжі та заморожені ягоди малини містять лимонну і яблучну кислоти.

Таблиця 9 - Застосування енергізаторів

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Добова доза</th>
<th>Курс</th>
</tr>
</thead>
<tbody>
<tr>
<td>Бурштинова кислота</td>
<td>50-100 мг</td>
<td>30-50 мг</td>
</tr>
<tr>
<td>50 мг</td>
<td>30-50 мг</td>
<td>3-4 тижні</td>
</tr>
<tr>
<td>1-2 г</td>
<td>-</td>
<td>Одноразово</td>
</tr>
<tr>
<td>Лимонна кислота</td>
<td>0,5 г 3 рази</td>
<td>0,25 – 0,5 г 3 рази</td>
</tr>
<tr>
<td>Яблучна кислота</td>
<td>0,5 г 3 рази</td>
<td>0,25 – 0,5 г 3 рази</td>
</tr>
<tr>
<td>Родіола рожева (екстракт)</td>
<td>10-40 кап. 2 рази</td>
<td>10-40 кап.</td>
</tr>
</tbody>
</table>

Регулятори ліпідного обміну

У циклічних видах спорту, спрямованих переважно на розвиток витривалості, регуляція ліпідного обміну має особливе значення (табл. 10, 11).

Ліпіди вельми важливі для організму і є одним з основних джерел енергії при тривалій роботі, оскільки на одиницю об'єму вони містять вдвічі більшу кількість енергії, ніж вуглеводи. У процесі засвоєння харчові жири повинні бути модифіковані в своїй структурі і транспортувані в місця їх використання. Для прискорення перетворення харчових жирів в транспортабельну і придатну для засвоєння організмом форму необхідні ліпотропні чинники.
деякі діють безпосередньо, інші – опосередковано, шляхом стимуляції обмінних процесів.

Карнітин, L-форма активує жировий обмін, стимулює регенерацію.

Відноситься до групи вітамінів B (Вт – «вітамін росту»). Підвищує поріг стійкості до фізичного навантаження, призводить до ліквідації післянавантажуючого ацидозу і, як наслідок, відновлення працездатності після тривалих виснажуючих навантажень.

Таблиця 10 - Застосування регуляторів ліпідного обміну

<table>
<thead>
<tr>
<th>Види спорту</th>
<th>Підготовчий</th>
<th>Базовий</th>
<th>Специфічної підготовки</th>
<th>Предмаштальний</th>
<th>Змагальний</th>
<th>Відновлювальний</th>
</tr>
</thead>
<tbody>
<tr>
<td>Циклічні</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Швидкісно-силові</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Єдиноборства</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Координаційні</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Спортивні ігри</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примітка. Застосовується один з представленних у таблиці ліпотропних препаратів, який надає максимальну дію з мінімальними ускладненнями і побічними ефектами. Під наглядом лікаря можливе поєднання окремих препаратів.

Таблиця 11 - Регулятори ліпідного обміну

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Добові дози</th>
<th>Курс</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Дорослі</td>
<td>Підлітки</td>
</tr>
<tr>
<td>Капнітин, L-форма</td>
<td>3-5 г</td>
<td>1-3 г</td>
</tr>
<tr>
<td>Лецитин</td>
<td>10-15 г</td>
<td>5-10 г</td>
</tr>
<tr>
<td>Ліпамід</td>
<td>0,25 г</td>
<td>-</td>
</tr>
<tr>
<td>Ліпоєва кислота</td>
<td>0,25 г</td>
<td>-</td>
</tr>
<tr>
<td>Метіонін</td>
<td>0,5 г 3 рази</td>
<td>0,25 г 2-3 рази</td>
</tr>
<tr>
<td>Холін хлорид 20% розчин</td>
<td>1 ч.л. 2-3 рази</td>
<td>-</td>
</tr>
<tr>
<td>Апілак</td>
<td>1 табл. вранці</td>
<td>-</td>
</tr>
</tbody>
</table>

Збільшує запаси глікогену в печінці і м'язах, сприяє більш економному його використанню, а також проникненням через мембрани мітохондрій і розщеплення довголанцюгових жирних кислот з утворенням акетил-КоА (необхідного для забезпечення активності піруваткарбоксилази в процесі глуконеогенезу, окисного фосфорилювання і
утворення АТФ).

Надає жиромобільну дію, конкурентно витісняє глюкозу, включаючи жирнокислотний метаболічний шунт, активність якого не лімітована киснем (на відміну від аеробного глюколізу), тому ефективний при гострій гіпоксії мозку і інших критичних станах.

Знижує надмірну масу тіла і зменшує вміст жиру в м'язах. У плазмі крові дорослих і дітей старшого віку ендогенний карнітин виявляється в концентрації 50 мкмоль/л. Чинить анаболічну дію, уповільнює основний обмін і розпад білкових і вуглеводних молекул.

При прийомі всередину добре всмоктується, рівень в плазмі досягає максимуму через 3 год і зберігається в терапевтичній концентрації протягом 9 год. При в/м введення виявляється в плазмі протягом 4 ч. Легко проникає в печінку і міокард, повільніше – в м'язи. Виводиться нирками. Викликає незначне пригнічення ЦНС.

Ліпоєва кислота. Активує окисне декарбоксилювання, регулює ліпідний і вуглеводний обмін, в тому числі метаболізм холестерину, піровиноградної кислоти і альфа-кетокислот. Покращує функції печінки (в тому числі детоксикаційну), захищає її від дії екзогенних факторів.

Ліпамід (амід ліпоєвої кислоти) близький за дією до ліпоєвої кислоти. Препарат переноситься краще, ніж ліпоєва кислота.

Метіонін (незамінна амінокислота) сприяє синтезу холіну, за рахунок чого нормалізує синтез фосфоліпідів з жирів і зменшує відкладення в печінці нейтрального жиру. Метіонін бере участь в синтезі адреналіну, креатину, активує дію ряду гормонів, ферментів, ціанокобаламіну, аскорбінової кислоти. Знешкоджує деякі токсичні речовини шляхом метилювання.

3.2 Клітинне дихання працюючих м'язів

Гіпоксія

Гіпоксія тканин (киснева недостатність) – широко поширене явище, що зустрічається в результаті ненормальних змін у навколишньому середовищі, при різних патологічних станах, а також при тренувальному процесі.

Причини появи гіпоксії можуть бути різними, але відповідна реакція організму носить неспецифічний характер і в своєму розвитку проходить кілька стандартних фаз. На кожній з них відбувається послідовне урізання енергетичних можливостей. Поетапне вимикання фрагментів дихального ланцюга у міру зниження вмісту кисню в тканинах є пристосувальною реакцією організму на швидке зниження концентрації в крові кисню. Зниження енергопродукційної функції клітин до певної межі має оборотний характер, але при інтенсивному втраті гіпоксії або значної її тривалості зміни набувають незворотного характеру. Знання механізмів ушкодження тканин при гіпоксії необхідно для найбільш ефективної корекції цього патологічного стану.

Мітохондрії – субклітинні елементи, в яких відбуваються основні енергоперетворювальні процеси. В останні роки активно розробляється нова галузь медицини – мітохондріальна. Встановлено, що на 100 захворювань викликані різними порушеннями функціонування мітохондрій.

Сьогодні пристрій мітохондріального дихального ланцюга і механізм її роботи обговорюються з єдиних позицій у всіх авторитетних виданнях, а чверть століття тому на наукових конференціях йшли запеклі суперечки між представниками різних шкіл біоенергетиків.
Английским биохимиком Питером Митчеллом (Mitchell P., 1961) запропонована хемиосмотична гіпотеза.

Відомо, що окислення дихальних субстратів киснем каталізується дихальними ферментами, розташованими у внутрішній мембрани мітохондрій. За цією гіпотезою окислення субстрату ферментом – акцептором електронів – відбувається на одній зі сторін мембрани. В результаті цієї реакції електрон приєднується до ферменту і утворюється протон, що вивільняється з мембрани і йде в воду. Потім електрон переноситься ферментом на іншу сторону мембрани, і там він відновлює кисень або інший фермент, що виявляє акцепторні властивості до електрону. При відновленні кисню або ферменту відбувається зв'язування протонів по іншій стороні мембрани.

За хеміосмотичною гіпотезою в процесі дихання відбувається спрямоване перенесення протонів з одного відсіку в інший, а розділова мембрана перешкоджає відновленню рівноваги між відсіками. Концентрування протонів по одній стороні мембрани в процесі дихання являє собою осмотичну роботу по перенесенню іонів в просторі проти градієнта їх концентрації. В процесі окислення субстрату і відновлення кисню відбувається також хімічна робота.

Головна відмінна риса мембрани окислювальних процесів, помічена Мітчеллом, полягає в одночасному виконанні двох видів робот – хімічної та осмотичної. Ця особливість і визначила назву висунутої гіпотези. За цією гіпотезою освітлення АТФ в процесі окисного розщеплення субстрату відбувається наступним чином: осмотична енергія, накопичена у вигляді різниці концентрації протонів між двома відсіками, розділеними мембраною, витрачається на хімічну роботу, тобто на синтез АТФ.

Геніальний винахід природи – система мітохондріального окиснення субстрату – виконує не тільки осмотичну та хімічну, а й електричну роботу. Викликаючи з одного резервуара однозарядні іони і переносячи їх через мембрану в інший резервуар, така система здійснює зарядку біологічної мембрани як електричного конденсатора, коли по різні боки мембрани концентруються іони з протилежними зарядами.

Отримав незаперечне підтвердження фундаментальний факт (Скулачов В.П.), що випливає з хеміосмотичної гіпотези, що поєднує процеси дихання і фосфорилювання можливо тільки при наявності цілісної мембрани, надійно розділяє різнозаряджені іони в своїх відсіках. При пошкодженні мембран різними речовинами (в тому числі оксидантами) синтез АТФ припиняється.

Основні енергетичноперетворюючі процеси відбуваються у мітохондріях. Поломка окремих елементів у цій структурі веде до порушення енергетичного гомеостазу з серйозними наслідками для клітини, органу або організму в цілому. Група ферментів, локалізована по внутрішній мембрани мітохондрій і бере участь в процесах біотрансформації енергії, отримала назву дихального ланцюга (рис. 3).

Рис. 3. Спрощена схема работы дихального ланцюга

Прийнято вважати, що мітохондріальний ланцюг складається з чотирьох груп
ферментів і білків, компактно локалізованих у внутрішній мембрані мітохондрій (Рубін А., Шинкарьов В.П.). Подібні групи ферментів прийнято називати комплексами. Перенесення відновлювальних еквівалентів від комплексу до комплексу може бути реалізоване тільки з використанням низькомолекулярних переносників, здатних брати участь в окисно-відновних реакціях. Подібних переносників в організмі відомо два: убіхінон, цитохром С.

Важливо відзначити, що хоча обидва переносники виконують подібні функції в загальній мембрані мітохондрій, їх робота організована таким чином, що вони не заважають один одному. Убіхінон функціонує в товщі мембрани, а цитохром С мігрує по зовнішній її поверхні. Просторове розділення обох потоків дозволяє виключити випадки транспортного хаосу.

Як енергетичний субстрат комплекс I використовує НАД (нікотинамідаденіндинуклеотид), що утворюється в процесах як аеробного, так і анаеробного окиснення субстратів. Комплекс II каталізує реакції окиснення сукцинату, що утворюється у циклі трикарбонових кислот (цикл Кребса).

Кисень є субстратом мітохондріального дихального ланцюга. Дефіцит кисню веде до обмеження, а при повному припиненні його надходження в організм до швидкої дезорганізації роботи дихального ланцюга, її мультиферментної системи. Головним результатом у цьому випадку стає виснаження клітинних запасів макроергів і пошкодження енергоперетворювальних механізмів. Таку гіпоксію в даний час прийнято називати біоенергетичною. При порушенні енергетичних потоків настає стан гіпоксії тканин.

Гіпоксія можна розглядати як одну з різновидів стресових станів і відповідно до закону Сельє слід очікувати три фази відповіді організму на стрес.

Перша фаза (збудження). Спостерігається посилення активності окислення первинного субстрату і збільшення продукції АТФ. Цій фазі відповідає посилення функціональної активності клітин, зокрема інтенсифікація обмінних процесів, в тому числі іонного обміну. Відбувається мобілізація функцій життєво важливих органів. Підвищується скоротлива активність міокарда, частота серцевих скорочень, артеріальний тиск. Підсилюється гіпоксія тканин серце намагається компенсувати збільшення швидкості доставки свіжих порцій крові по периферії. Підвищується відповідальність за управлінням всіма функціями організму з боку мозку, тому зростає імпульсна активність нейронів, збільшується частота дихання. Відбувається екстрений викид гормонів для мобілізації організму до стресу, в першу чергу для посилення доставки тканинам енергетичного субстрату. Мобілізуються функції
печінки для переробки зростаючих потоків недоокислених метаболітів. Тривалість фази збуження визначається тривалістю гіпоксичного впливу та інтенсивністю його прояві. Ці процеси визначають суть тренувального впливу.

Фаза збуження змінюється фазою адаптації. Через обмеженість надходження кисню до тканин відбувається поступове збільшення частки відновлених форм дихальних ферментів і пригнічення комплексу І дихального ланцюг. При цьому зростає частка відновленої форми убіхінова – убіхінола. Останній є активатором сукиннатдегідрогеназного комплексу. В результаті відбувається перемикання субстратної ділянки дихального ланцюга з комплексу І на комплекс ІІ, а в клітині починають накопичуватися НАД-залежні субстрати. У цей період, не дивлячись на порушення роботи комплексу І за рахунок скомпенсованої роботи комплексу ІІ, внутрішньоклітинна концентрація АТФ зберігається незмінною або майже незмінною. При збереженні енергетичного гомеостазу функціональна активність клітин також не змінюється. Початковий період гіпоксії, протягом якого зберігається стан енергетичного гомеостазу в клітинах, відноситься до скомпенсованої стадії біоенергетичної гіпоксії.

У міру розвитку гіпоксії і зниження запасів кисню в тканинах спостерігається перехід до завершальної фази реакції організму на стрес – фазі виснаження. На цій фазі можна виділити два послідовно проходячих етапи деградації електронтранспортних функцій мітохондрій. На першому етапі спостерігається придунення біоенергетичних функцій дихального ланцюга у відношенні до комплексу ІІІ. Цей період відповідає початку початку некомпенсованих змін і супроводжується зниженням вмісту макроергів в клітинах. Збереження енергетичного гомеостазу – подія з далекоїшими наслідками для клітин. З цієї причини в екстремному порядку мобілізуються внутрішні резерви для ліквідації енергетичного дефіциту. Здійснюється запуск запасної біоенергетичної системи – системи анаеробного окислення субстрату. Відбувається централізація кровообігу, при якій не "відключаються" від перфузії лише серце, головний мозок і нирки – основні життєво важливі системи.

Включення процесів гліколізу відбувається в той момент, коли в клітині знижується вміст АТФ і збільшується концентрація АДФ і АМФ. Клітка переходить в новий нестабільний стан і виникає реальна загроза для її існування. Подальша доля клітини залежить від енергетичних і субстратних потоків, а також від ряду біохімічних і біофізичних процесів, які в екстремному порядку запускаються в міру дізенергізації клітини. У міру розвитку гіпоксії спостерігається постепене пошкодження елементів дихального ланцюга. Після послідовного придушення перенесення електронів через комплекси І, ІІ і ІІІ в дихальному ланцюгі зберігається остання можливість утворення АТФ за рахунок роботи цитохромоксидази (комплексу ІV). Але в умовах зростаючої гіпоксії та дезорганізації багатьох ферментних систем зберігається остання можливість утворення АТФ за рахунок роботи мітохондрій. У цих умовах запасалої біоенергетичної системи – системи анаеробного окислення субстрату. Відбувається централізація кровообігу, при якій не "відключаються" від перфузії лише серце, головний мозок і нирки – основні життєво важливі системи.

Включення процесів гліколізу відбувається в той момент, коли в клітці знижується вміст АТФ і збільшується концентрація АДФ і АМФ. Клітка переходить в новий нестабільний стан і виникає реальна загроза для її існування. Подальша доля клітини залежить від енергетичних і субстратних потоків, а також від ряду біохімічних і біофізичних процесів, які в екстремному порядку запускаються в міру дізенергізації клітини. У міру розвитку гіпоксії спостерігається постепенне пошкодження елементів дихального ланцюга. Після послідовного придушення перенесення електронів через комплекси І, ІІ і ІІІ в дихальному ланцюгі зберігається остання можливість утворення АТФ за рахунок роботи цитохромоксидази (комплексу ІV). Але в умовах зростаючої гіпоксії та дезорганізації багатьох ферментних систем зберігається остання можливість утворення АТФ за рахунок роботи мітохондрій. У цих умовах клітка переходить в новий нестабільний стан і виникає реальна загроза для її існування. Подальша доля клітини залежить від енергетичних і субстратних потоків, а також від ряду біохімічних і біофізичних процесів, які в екстремному порядку запускаються в міру дізенергізації клітини. У міру розвитку гіпоксії спостерігається постійне зниження елементів дихального ланцюга. Після послідовного придушення перенесення електронів через комплекси І, ІІ і ІІІ в дихальному ланцюгу зберігається остання можливість утворення АТФ за рахунок роботи цитохромоксидази (комплексу ІV). Але в умовах зростаючої гіпоксії та дезорганізації багатьох ферментних систем зберігаються остання можливість утворення АТФ за рахунок роботи мітохондрій. У цих умовах клітка переходить в новий нестабільний стан і виникає реальна загроза для її існування. Подальша доля клітини залежить від енергетичних і субстратних потоків, а також від ряду біохімічних і біофізичних процесів, які в екстремному порядку запускаються в міру дізенергізації клітини.
подальшого збільшення розміру пор з матриксу в цитоплазму клітини переміщаються різні субстрати і низькомолекулярні білки, включаючи цитохром C. Втрата останнього сприяє зниженню мембранного потенціалу на мітохондриальної мембрани. Як відомо, молекула ферменту має надлишковий позитивний заряд і утримується на внутрішній стороні мітохондриальної мембрани переважно за рахунок електростатичних сил тяжіння. У міру зниження величини мембранного потенціалу молекули цитохрома C починають залишати поверхню мембрани і комплекс IV позбавляється свого субстрatu. Дихальна активність в цьому випадку повністю пригнічується, і клітина гине.

Антигіпоксанти
Антигіпоксантами називають засоби, що поліпшують засвоєння організмом кисню і знижують потребу органів і тканин у кисні, тим самим сприяють підвищенню стійкості організму до кисневої недостатності.
Дослідження переконливо свідчать, що найбільш перспективні в боротьбі з гіпоксією в спорти фармакологічні засоби, що впливають на мітохондриальні комплекси (табл. 12-14).

<table>
<thead>
<tr>
<th>Препарат</th>
<th>Комплекси дихального ланцюга</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Нікотинамід</td>
<td></td>
</tr>
<tr>
<td>Бурштинова кислота</td>
<td>*</td>
</tr>
<tr>
<td>Вітамин С, Е</td>
<td></td>
</tr>
<tr>
<td>Актовегін (солкосеріл)</td>
<td>*</td>
</tr>
<tr>
<td>Коензим Q10 (убіхінон)</td>
<td></td>
</tr>
<tr>
<td>Цитохром С (цито Мак)</td>
<td></td>
</tr>
<tr>
<td>Оліfen (гіпоксен)</td>
<td>*</td>
</tr>
</tbody>
</table>

| Таблиця 12 - Біоенергетичний вплив окремих препаратів на комплекси мітохондриального дихального ланцюга |

<table>
<thead>
<tr>
<th>Види спорту</th>
<th>Підготовчий</th>
<th>Базовий</th>
<th>Спеціальної підготовки</th>
<th>Предміський</th>
<th>Змагальний</th>
</tr>
</thead>
<tbody>
<tr>
<td>Циклічні</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Швидкісно-силові</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Єдиноборства</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Координаційні</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Спортивні ігри</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Умовно антигіпоксанти можуть бути розділені на групи:
– препарати безпосередньо антигіпоксичної дії;
– коригуючі метаболізм в клітині:
• мембранопротекторну дії,
• прямого енергізуючої дії (впливають на окислювально-відновний потенціал клітини, цикл Кребса і комплекси дихального ланцюга мітохондрій);
– діючі на транспортну функцію крові:
• підвищують кисневу ємність крові,
• підвищують спорідненість гемоглобіну до кисню,
• вазоактивні речовини ендогенної і екзогенної природи.

Таблиця 14 - Антигіпоксанти

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Добові дози</th>
<th>Підлітки</th>
<th>Курс</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Дорослі</td>
<td>Підлітки</td>
<td></td>
</tr>
<tr>
<td>Актовегін</td>
<td>1-2 драже 2-3 рази</td>
<td>1-2 драже 2 рази</td>
<td>2-6 тижні</td>
</tr>
<tr>
<td>Солкосерил</td>
<td>1-2 драже 2-3 рази</td>
<td>1-2 драже 2 рази</td>
<td>2-6 тижні</td>
</tr>
<tr>
<td>Бемітіл</td>
<td>0,25 г 2 рази</td>
<td>-</td>
<td>3-5 днів</td>
</tr>
<tr>
<td>Глютамінова кислота</td>
<td>0,5 г 3 рази</td>
<td>0,25 г 1-2 рази</td>
<td>3-4 тижні</td>
</tr>
<tr>
<td>Дімесфосфон 15% р-н</td>
<td>30 мг/кг</td>
<td>30 мг/кг</td>
<td>3-4 тижні</td>
</tr>
<tr>
<td>Ізафосфін</td>
<td>1 г на 20 кг ваги</td>
<td>-</td>
<td>Одноразово</td>
</tr>
<tr>
<td>Кавінтон (винпогет)</td>
<td>1 табл. 2-3 рази</td>
<td>-</td>
<td>2-3 тижні</td>
</tr>
<tr>
<td>Кофермент Q10 (убіхійниз)</td>
<td>30-40 мг 3 рази</td>
<td>30 мг</td>
<td>1-3 тижні</td>
</tr>
<tr>
<td>Нейробутал</td>
<td>0,25 г 1-3 рази</td>
<td>-</td>
<td>2-3 тижні</td>
</tr>
<tr>
<td>Неотон (фосфоркетін)</td>
<td>1 г на 15 кг ваги</td>
<td>-</td>
<td>Одноразово</td>
</tr>
<tr>
<td>Оліфен (гіпоксен)</td>
<td>0,5 г 3 рази</td>
<td>0,25 г 1-2 рази</td>
<td>10 днів</td>
</tr>
<tr>
<td>Реамберін</td>
<td>15-20 мг/кг, в/в кап.</td>
<td>10-15 мг/кг, в/в кап.</td>
<td>5 ін'єкцій через день</td>
</tr>
<tr>
<td>Рібоксин (піозін)</td>
<td>0,2 г 2-3 рази</td>
<td>0,2 г 1-2 рази</td>
<td>2-3 тижні</td>
</tr>
<tr>
<td>Цитохром (цито Мак)</td>
<td>1,0 мл, в/в 1-2 рази</td>
<td>-</td>
<td>10 днів</td>
</tr>
<tr>
<td>Цитохром С</td>
<td>3 драже 3 рази</td>
<td>1 драже 2-3 рази</td>
<td>10 днів</td>
</tr>
<tr>
<td>Бурштинова кислота</td>
<td>0,5 г 3 рази</td>
<td>0,25 г 1-2 рази</td>
<td>3-4 тижні</td>
</tr>
</tbody>
</table>

Приготівка. Застосовується один з представлених в таблиці препаратів, який надає максимальне дію з мінімальними ускладненнями і побічними ефектами.

Оліфен (гіпоксен). Антигіпоксан. Механізм дії оліфінів на клітини полягає в зниженні споживання тканинами кисню, його більш економне витрачання в умовах гіпоксії.

Оліфен – фермент дихального ланцюга синтетичної природи. Маючи високу електроно-обмінну ефективність за рахунок поліфенольної структури молекули, оліфен надає шунтуючу дію на стадії утворення молочної кислоти з піровінородної кислоти, утворюючи ацетил КоA, який потім втягується в цикл трикарбонових кислот. Оліфен на молекулярному рівні полегшує тканинне дихання в умовах гіпоксії за рахунок здатності безпосередньо переносити відновлені еквіваленти до ферментних систем. Препарат багаторазово компенсує недолік убіхійнола в умовах гіпоксії, тому що містить велику кількість функціональних центрів. Таким чином, оліфен компенсує діяльність мітохондріального дихального ланцюга при наявності пошкоджень на її ділянках.

Антиоксидантну дію оліфен пов’язано з його поліфенольною структурою, яка захищає мембрани клітин і мітохондрій від руйнівного впливу вільних радикалів, що утворюються в процесі перекисного окислення ліпідів. Цей патологічний процес запускається при екстремальних фізичних і психоемоційних впливах на організм.

Оліфен покращує переносимість гіпоксії за рахунок збільшення щільності споживання кисню мітохондріями і підвищення спряженості окисного фосфорилювання.

Економне витрачання енергетичних запасів відбувається за рахунок переведення з гліколітичного на аеробне окислення енергетичних субстратів, тобто на більш вигідний механізм обміну. При цьому вихід енергії збільшується в 19 разів, так як при анаеробному гліколізі однієї молекули виходять 2 молекули АТФ, а при аеробному – 38 молекул АТФ.
Водорозчинний антиоксидант, володіючи високою енергетичною ємністю, ставить велику кількість електронних пасток. Оксислюально-відновний потенціал оліфи – 680, коензиму Q10 – 122.

Показання до застосування в споріт: підвищення працездатності при виконанні м’якої роботи в екстремальних умовах змагань; економне витрачання кисню тканинами в умовах гіпоксії; профілактика і подолання стану хронічної втоми; прискорення відновлення організму після перенесених навантажень; поліпшення периферичного кровотоку.

Виводиться з організму через 6-8 годин.

Побічна дія практично не зустрічається. У рідкісних випадках можлива нудота, сухість у роті.

Оліфен покращує засвоєння інших речовин (ліків, вітамінів) на 25%.

Убіхінон (кофермент Q-10, коензим Q10) – речовина, яка виробляється організмом і надходить з їжею. Воно виявлено в яловичині (особливо у внутрішніх органах – серці, печінці, нирках), жирній рибі, шпинаті, арахісі і цільних зернах. Незважаючи на те що коензим Q10 (CoQ-10) можна знайти в багатьох свіжих продуктах, він нестійкий і легко руйнується окисленим при переробці та приготуванні продуктів.

CoQ-10 бере участь в роботі електронтранспортні дихального ланцюга мітохондрій. Зменшує пошкодження тканини, викликане гіпоксією, генерує енергію і підвищує толерантність до фізичних навантажень. Як антиоксидант уповільнює процес старіння.

Не має токсичних доз і побічних ефектів.

Цитохром С (цито Мак). Гемопротеїд, каталізатор клітинного дихання. Стимулює окисні реакції і активізує тим самим обмінні процеси в тканинах, зменшує гіпоксію тканин при різних патологічних станах. Ефект настає через кілька хвилин після в/в введення і триває кілька годин.

При застосуванні можливі алергічні реакції. Схильним до алергічних реакцій рекомендується проводити пробу з введенням 0,5-1 мл цитохрому С, розведеного 1:10; або 0,1 мл під шкіру.

Реамберін. Розчин (1,5%) для інфузій є добре збалансований полііонний розчин з додаванням бурштинової кислоти, що містить: натрію хлориду 6,0 г, калію хлориду 0,3 г, магнію хлориду 0,12 г, натрієвої солі бурштинової кислоти 15 г, води для ін'єкції до 1 літра.

Збалансований препарат з осмолярністю, наближеною до нормальної осмолярності плазми крові людини.

Основний фармакологічний ефект препарату обумовлений здатністю підсилювати компенсаторну активацію аеробного гілокілозу, знижувати ступінь пригнічення окисних процесів у циклі Кребса, в дихальному ланцюгу мітохондрій зі збільшенням внутрішньоклітинного фонду макроергічних з’єднань (АТФ і креатин-фосфату). Сукцинат натрію (бурштинова кислота) по клінічній класифікації відноситься до субстратного антигіпоксанта. Включаючись в енергетичний обмін як субстрат, солі бурштинової кислоти направляють процеси окислення по найбільш економічному шляху.

Реамберін надає гепатозахисну дію, зменшуючи тривалість процесів перекисного...
окислення ліпідів і перешкоджаючи виснаженню запасів глікогену в клітинах печінки.

Максимальний рівень концентрації препарату в крові при внутрішньовененному введенні спостерігається на першій хвилини після введення. Через 40 хв його концентрація повертається до значень, близьких до фонових.

Інозін (рібоксін). Дія інозіна антигіпоксична, антиаритмічна, анаболічна. Підвищує активність ряду ферментів циклу Кребса та енергетичний баланс. Робить позитивний вплив на обмінні процеси в міокарді — збільшує силу скорочень і сприяє більш повному розслабленню міокарда в діастолі (пов’язує іони кальцію, що потрапили в цитоплазму в момент порушення клітини), в результаті чого зростає ударний об’єм; поліпшується кровопостачання тканин, в тому числі коронарний кровообіг.

Використовується для профілактики метаболічних порушень в міокарді при екстремальних фізичних навантаженнях, при дистрофії міокарда на тлі важких фізичних навантажень, порушеннях серцевого ритму, для профілактики захворювань печінки.

При застосування можливі такі сторонні ефекти, інші алергічні реакції.

Актовегін (солкосерил). Препарат біологічного походження. Активує клітинний метаболізм шляхом збільшення транспорту глюкози і кисню, посилення внутрішньоклітинної утилізації. Покращує трофіку і стимулює процес регенерації.

Кавінтон (вінпоцетин). Препарат, що поліпшує мозковий кровообіг і процеси метаболізму в мозковій тканині; сприяє транспортуванню кисню до тканин внаслідок зменшення спорідненості до нього еритроцитів, посилюючи поглинання і метаболізм глюкози; зменшує підвищену в’язкість крові, покращує мікроциркуляцію. Метаболізм глюкози перемикається на енергетично більш вигідний аеробний напрям. Стимулює також і анаеробний метаболізм глюкози.

Призначається в разі гострої і хронічної недостатності мозкового кровообігу (транзиторна ішемія в видах спорту на витривалість; посттравматичної і гіпертензивної енцефалопатії; трагмонебезпечні види спорту); для зменшення порушення пам’яті; при запамороченні; головному болю; рухових розладах.

Гіпоксична гіпоксія виникає при зниженні р02 в легеневих альвеолах, крові, клітинах тканин, що найчастіше спостерігається при розладі системи зовнішнього дихання (захворювання легенів, бронхів; слабкість дихальних м’язів, діафрагми і т. д.) Або при підйомі на висоту, в горах.

Тренування дихальних м’язів і стійкості до підвищеного кількості вуглексидного газу

| Таблиця 15 - Можливі комбінації антигіпоксичних препаратів |
|------------------|-------|-------|-------|-------|-------|
| Препарати | Комбінації | I | II | III | IV | V |
| Оліфен | | * | * | * | * |
| Актовегін | | * | | | |
| Коензим Q10 | | | * | * | |
| Нікотинамід | | | | * | |
| Цитохром С | | | * | | |
| Бурштинова кислота | | * | | * | |

| Гіпоксична гіпоксія виникає при зниженні р02 в легеневих альвеолах, крові, клітинах тканин, що найчастіше спостерігається при розладі системи зовнішнього дихання (захворювання легенів, бронхів; слабкість дихальних м’язів, діафрагми і т. д.) Або при підйомі на висоту, в горах.

Тренування дихальних м’язів і стійкості до підвищеного кількості вуглексидного газу
(C0₂) в організм можлива за допомогою дихальних тренажерів. Гіпоксичне тренування проводиться як самостійно (на тренажері) і як доповнення до основного тренування у вигляді серії затримок дихання з інтервалом 1-3 хв (після основного тренування). Те ж відноситься до спеціальної підготовки при плануванні тренувань в горах.

Пошук шляхів вдосконалення системи підготовки спортсменів високої кваліфікації до змагань привів до методики тренування в гірських умовах як додаткового засобу підвищення спортивної працездатності. Підготовка спортсмена в горах на увазі певне зрушення фізіологічних констант організму.

За ступенем впливу виділяють:
- низькогір'я – 1000-1400 м над рівнем моря;
- середньогір'я – до 2500 м;
- високогір'я – до 4500 м;
- сніжне високогір'я – вище 4500 м над рівнем моря.

Зазвичай гірські умови використовують з метою:
- виступу на змаганнях на аналогічній висоті;
- виступу в серії змагань, що проводяться на різних висотах;
- підвищення спортивних досягнень при спуску на рівнину.

Найчастіше гірську підготовку застосовують з останньою метою. Низькогір'я (передгір'я) ефективно після повернення на рівнину, головним чином, не за рахунок адаптації до гіпоксичного фактору, а в зв'язку з впливом комплексу кліматичних модифікаторів, характерних для цих висот.

Високогір'я, крім значно зниженого атмосферного тиску і парціального тиску кисню, впливає на стан спортсмена перепадом температур, знижує вологість.

Для отримання ефекту гірської підготовки використовують в основному середньогір'я. Середньогір'я висуває підвищені вимоги до функціонування організму внаслідок зміни парціальних тисків газів атмосфери. Атмосферний тиск знижується в міру зростання висоти, але процентне співвідношення газів в повітрі залишається постійним. Повітря завжди містить 20,94% кисню, 0,03% вуглекислого газу, 78,08% азоту, 0,94% аргону і 0,01% інших газів. Тиск, який виробляють молекули кисню, безпосередньо пов'язаний з щільністю атмосфери. Зміна тиску кисню безпосередньо впливає на циркуляцію кисню між легенями і кров'ю і між кров'ю і клітинами ткань.

За визначенням максимальне споживання кисню відповідає можливості організму його отримати, переробити і використовувати. Дифузія кисню в крові залежить від P02 в альвеолах леген, яке знижується в міру набору висоти, приводячи до зменшення насичення крові оксигемоглобіном. На рівні моря оксигемоглобін становить 98%, але кожні 400 м він падає на 1%.

На рівні моря перепад P02 в крові і клітинах ткань – 74 мм рт. ст. (94 мм рт. ст. – P02 в артеріальній крові, 20 мм рт. ст. – в клітинах ткань). Цей перепад – основний фактор, який відповідає за насичення тканин киснем. На висоті близько 7000 м перепад дуже незначний і, отже, тканини майже перестають «дихати». Але, наприклад, на рівні 2400 м P02 в крові (артеріальній) становить близько 60 мм рт. ст., в той час як в клітинах воно залежить на рівні 20 мм рт. ст. Різниця становить лише 40 мм рт. ст., тобто спад в насиченні тканин киснем на цій висоті становить близько 50%.

У міру того як P02 падає, стимулюється вентиляція леген, Це викликає підвищене виділення C02 i респіраторний алкалоз. Виділяється і залишається на низькому рівні бікарбонат, знижується буферна схильність, підвищується pH крові.

Поглинання кисню клітинами м'язів на висоті знижується, але після тривалого перебування в цих умовах трохи збільшується. В організмі виникає ряд захисних компенсаторно-приспособлених реакцій. У першу чергу не допускає до порушення хеморецепторів. Їх збудження служить сигналом для поглиблення і почастішання дихання. Збільшується альвеолярна поверхня, що сприяє більш швидкому насиченню гемоглобіну киснем. До того ж гіпоксія, яка посилюється під час напруженії роботи на висоті, заважає
тренуватися з адекватною інтенсивністю і в потрібному обсязі (табл. 16).

Так як кисневі можливості на висоті обмежені, то при будь-якому заданому робочому навантаженні вироблення молочної кислоти вище, ніж на рівні моря. Серцева діяльність на висоті посилюється, намагаючись компенсувати скорочення харчування тканин киснем. Таким чином створюються умови для перенапруги серцево-судинної і центральної нервової систем. Вдруге страждають насичені судинами органи.

| Таблиця 16 - Тренувальний режим у горах |
|-----------------|-----------------|
| Умови | Навантаження |
| Гостра акліматизація, 1-й тиждень | Аеробна адаптація, Навантаження – 60-80% від запланованого на "рівнині" |
| І істап адаптації, 2-й тиждень | Чергувати аеробні та анаеробні вправи. Інтенсивність повинна зростати |
| ІІ істап адаптації, 3-й тиждень | Основний акцент роблять на збереження швидкості при аеробній роботі на самому високому рівні. Інтенсивність вправ повинна бути збережена шляхом збільшення часу для відпочинку між вправами |
| Повна адаптація | Зниження інтенсивності тренувань. Відпочинок перед змаганням |

Фармакологічну корекцію необхідно починати за 10-12 днів до дня переїзду. Препарати заліза, магнію в профілактичних дозах. Адаптогени. Імунокоректори. Для профілактики серцево-судинних ускладнень призначають препарати, що покращують реологічніластивості крові, обмінні процеси в серцевому м'язі. Анаболічні засоби – оротат калію, магнерот, трібулус, левзея, флавостен. Поліпшують засвоєння глюкози і кисню: бурштинова кислота, глютамінова кислота, коензим Q-10. Вітаміни – добова потреба в білках з них в горах зростає в 1,5-2 рази. Вуглеводи (переважно у вигляді напоїв) – спортивні напої, напої з фруктози, меду (насичення під час тренувань).

Таблиця 17 - Фармакологія при тренуванні в горах і змаганнях на рівнині

<table>
<thead>
<tr>
<th>Препарати</th>
<th>До гір, днів 10-12</th>
<th>До гір, днів 3-5</th>
<th>Весь час</th>
<th>Після гір, днів 1-7</th>
<th>Після гір, днів 7-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Полівітаміни</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Препарати заліза</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Адаптогени</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Імунокоректори</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ноотропи</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Вуґлеводи</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Вітамін Е</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Магнерот | | | | | *
| Інозін | | * | | | |
| Лецитин | * | * | * | | |
| Стимол | | | | * | |
| Судинні препарати* | * | | | | |

* Препарати, що поліпшують мікроциркуляцію.

Фармакотерапія після спуску на «рівнину» повинна бути спрямована на підвищення
функціональних можливостей спортсмена і попередження зруву процесів реадаптації. Необхідно продовжити застосування препаратів, що поліпшують мікроциркуляцію і реологічні властивості крові. Адаптогени призначаються в половинній дозі від тієї, що застосовувалася в горах. Слід посилити вітамінізацію, звертаючи особливу увагу на вітамін Е, що володіє антиоксидантними властивостями, запобігає швидкому руйнуванню еритроцитів. Необхідно також підтримати функцію серця, печінки, нирок.

Таблиця 18 - Фармакологія при тренуванні у горах і змаганнях у горах

<table>
<thead>
<tr>
<th>Препарати</th>
<th>До гір, днів</th>
<th>Гори, тренування</th>
<th>Гори, змагання</th>
</tr>
</thead>
<tbody>
<tr>
<td>Полівітаміни</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Підтримуючі дози заліза</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Адаптогени</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Імунокоректори</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Ноотропи</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Судинні препарати</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Вуглеводи</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Вітамін Е</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Магнерот</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Інозин</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Лецитин</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Стимол</td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

При поверненні на рівнину перші 7 днів («гострий період») йде процес реадаптації з погіршенням спортивних результатів і ризиком виникнення захворювань (особливо 3-4-й день); далі йде підйом працездатності. Пік результативності (індивідуальний за термінами) можливий на 18-30-й день (табл. 19).

Молоді спортсмени без гірського стажу в процесі адаптації більш сильно реагують на тренувальні навантаження, що подовжує терміни «гострої» акліматизації. Сприятливо впливають на адаптацію гірський стаж і ступінь підготовленості спортсмена.

Таблиця 19 - Реабілітація після гір

<table>
<thead>
<tr>
<th>Адаптація</th>
<th>Режим тренувань</th>
<th>Змагання</th>
</tr>
</thead>
<tbody>
<tr>
<td>Реадаптація</td>
<td>Щадний режим</td>
<td>Включаються</td>
</tr>
<tr>
<td>Гострий період (7-10 днів)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>З суперкомпенсацією (18-45 днів)</td>
<td>В повному об’ємі</td>
<td>Реалізація на змаганні</td>
</tr>
</tbody>
</table>

Гемічна гіпоксія.

Гемоглобін (hb) в еритроцитах – засіб доставки кисню і видалення вуглексидного газу з тканин. Підвищення кисневої ємності крові за рахунок збільшення рівня Hb – один із способів корекції гіпоксії. Hb, що складається з гема і глобіну, для свого утворення в якості пластичного матеріалу вимагає залізо, амінокислоти, вітаміни (цианкобаламін, фолієва кислота та ін.).

Крім Hb залізо присутнє в міоглобіні міофібрил м’язів, бере участь у безлічі біохімічних реакцій як каталізатор.

Дефіцит заліза в організмі можливий при: нестачі заліза в харчовому раціоні; порушенні засвоєння заліза; при підвищених втратах заліза з потом, сечею; перерозподілі білка, заліза на користь робочої гіпертрофії м’язів; фізіологічних втратах Hb у спортсмен. Крім того, можливо відносне зниження концентрації Hb в крові за рахунок збільшення об’єму циркулюючої плазми, тобто розведення його в більшому обсязі.
Виснаження запасів заліза в організмі спортсмена призводить:
a) до зниження рівня фізичної працездатності за рахунок:
- ергометричних показників,
- зміни газових градієнтів організму (кисню і вуглекислоти),
- накопичення молочної кислоти;
b) до перетринованості.

Контроль Hb в циклічних видах спорту необхідно здійснювати щомісяця. Для виявлення прихованого дефіциту заліза використовуються поглиблені методи дослідження.

Корекція повинна починатися відразу після виявлення дефіциту заліза:
1) відшкодування дефіциту заліза в крові і тканинах препаратами;
2) відновлення метаболізму в еритроцитах та інших клітинах;
3) корекція причин, що лежать в основі дефіциту заліза.

Заходи проводяться до нормалізації стану спортсмена, повного відновлення як Hb (мінімум 140 г/л), так і «запасів заліза» (рівень ферритину) за допомогою вітамінізації і прийому анаболічних препаратів рослинного походження, антиоксидантів.

Перевагу слід віддавати тим препаратам, які поряд з залізом містять мінерали, що сприяють кращому його засвоєнню.

Доброю антианемічною активністю володіють: актіферін, конферон, сорбіфер дурулес, тотема, фенюльс, ферроплекс, феррофольгамма; препарати з пролонгованою дією: ферроградумет, тардиферон, ферроград 500.

Тотема. Комбінований препарат, що містить велику кількість витамінів: залізо у вигляді глюконату, марганець, мідь.

Залізо, що входить до складу препарату, швидко заповнює брак цього елементу в організмі, стимулює еритропоез. Після курсу препарату відбувається постуровна реполіпізації клітин продуктів, кількість еритроцитів. Після курсу препарату відбувається постуровна реполіпізації клітин продуктів, кількість еритроцитів.
дефіцитом заліза, вважаються комплексне використання есенціальних фосфоліпідів, киснезберігаючих метаболічних засобів (мілдронат, предуктал), мембраностабілізатор на тлі базисної терапії феропрепаратами і антиоксидантами. Термін лікування залежить від початкового рівня гемоглобіну і відповідає 1-2 місяців.

При зберігаючому дефіциті заліза проведення курсами підтримуючої терапії триває. Збереження параметрів червоної крові на меті гарантувати оптимальне функціонування всієї системи кисневого транспорту.

При існуючому дефіциті заліза орієнтується на рівень гемоглобіну, кількість еритроцитів, ретикулоцитів, гематокрит, залізо сироватки, а також вік еритроцитів.

Еритроцити – неоднорідна маса клітин. Вони утворюють популяційну систему, в якій закономірно поєднуються клітини різного стану. Еритроцити характеризують розмір (обсяг), кількість в них гемоглобіну, стійкість мембрани. Руйнування і подальша «утілізація» еритроцита відбувається після вичерпання ним своїх функціональних можливостей або в результаті ушкоджують патогенних факторів.

Тривалість життя еритроцитів в середньому становить 110-120 днів і найчастіше залежить від кількості контактів гемоглобіну з киснем і стійкості еритроцитарної оболонки.

Під впливом фізичного навантаження вік еритроцитів може змінюватися як у бік старіння, так і в бік омолодження.

За стандартною методикою прийнято розділяти еритроцити на три групи за функціональним станом і стійкістю по відношенню до зовнішніх факторів, що ускладжують, що в нормі відповідає (в міру дозрівання) трьом віковим групам еритроцитів.

Еритрограм дає уявлення про фізіологічний вік еритроцитів. Молоді еритроцити (юні) – вік до 28-30 днів. Зміст в нормі 20-25%. Група особливо стійких еритроцитів.

Зрілі еритроцити – вік 30-90 днів. Зміст в нормі 45-55% всіх клітин. У цьому статусі еритроцит проводить більшу частину життя. Зрілі еритроцити найбільш повно беруть участь в транспорти і обміні кисню. Еритроцити, вік яких більше 90 днів (20-25%), – група нізкостойких еритроцитів.

Під впливом фізичних навантажень можуть відбуватися зміни в характері ерітрограм у вигляді зсуву максимуму.

Зрушення максимуму еритроцитів в сторону фізіологічного старіння може бути пов'язаний з фізичною перевтомою, сповільнюючи процеси еритропоезу.

Зрушення максимуму еритрограм в сторону омолодження еритроцитарного складу крові (пов'язаний з стимуляцією процесу еритропоезу) вказує на адекватність запропонованих тренувальних навантажень.

Різке зниження кількості зрілих еритроцитів зумовлено зниженням резистентності еритроцитарних мембрани, що зустрічається при невідповідності фізичного навантаження функціональним станом організму спортсмена.

Наявність в кров'яном руслі еритроцитів декількох груп з різко різними властивостями (на ерітрограм виразно проявляються кілька максимумів) свідчить про глибоку порушення рівноваги системи крові (характерно для перетренированості).

Найбільш адекватна реакція на пропоноване фізичне навантаження – нормальне (без зсуву) поєднання кількості еритроцитів різного віку або деяке омолодження еритроцитарного складу крові.

Є індивідуальна схильність до явищ старіння або омоложення еритроцитів протягом тренувального «сезону». Кількість еритроцитів в крові і вміст гемоглобіну в них залежать від виду спорту, розряду (спортивних досягнень), рівня тренованості, місця проживання і статі спортсмена (Макарова Г.А., 1990).

Облік резервів системи червоної крові дозволяє адаптувати організм спортсмена до тривалих, інтенсивних навантажень, підтримувати оптимальне функціонування всієї системи кисневого транспорту.

3.3 Кислотно-лужний стан та йонна рівновага
У практиці спортивної медицини контроль за ефективністю тренувального процесу здійснюється на основі оцінки комплексу параметрів, серед яких певна роль відводиться показниками кислотно-лужного стану (КЛС). Ці показники – об’єктивні критерії підготовленості спортсменів, вони можуть бути використані для виявлення рівня енергозабезпечення м’язової діяльності, функціонального стану серцево-судинної і дихальної систем, адаптації до спортивного навантаження.

Причинами порушень КЛС та іонної рівноваги в організмі при фізичному навантаженні можуть бути тривала робота в гліколітичному режимі, анемія, нестача бікарбонатів. Як наслідок змінюється буферна ємність крові, відбувається накопичення молочної кислоти (La), зрушения pH крові в кислу сторону (ацидоз). Вирішальну роль відіграє швидкість збільшення концентрації молочної кислоти. Підсумком запізнювання утилізації La стає різке зниження фізичної працездатності спортсмена.

Для виявлення і контролю можуть бути використані: La, pH, Hb в крові. Ці показники – об’єктивні критерії підготовленості спортсмена і його адаптації до спортивного навантаження.

Необхідна корекція повинна бути спрямована на збільшення буферної емності крові, залуження, зниження рівня молочної кислоти, збереження водно-солевого балансу.

Динаміка кислотно-основного стану

Зміни КЛС в більшій мірі пов’язані зі змінами водно-електролітної рівноваги. Відомо, що в живому організмі всі рідини є електронейтральними і підкоряються фізико-хімічним законам, тобто сума позитивно заряджених частинок (катіонів) дорівнює сумі негативно заряджених частинок (аніонів). Динамічне порушення електронейтральності, постійно виникає в організмі, негайно відбувається на КЛС і швидко ліквідується.

КЛС – це стан, який визначається співвідношенням між водневими і гідроксилними іонами. Справжня кислотність залежить від активності і концентрації іонів водню (Н+), а лужна реакція (реакція підстави) – від концентрації іонів гідроксиду (ОН). Концентрацію іонів водню називають водневим показником pH (рН нейтрального розчину дорівнює 7, рН кислотного розчину < 7, рН лужного розчину > 7).

У здоровому організмі рН коливається у вузьких межах – 7,35-7,45 за рахунок постійного утворення в процесі обміну речовин лужних і кислотно-реагуючих сполук.

Регуляторними системами, що забезпечують цю сталість, є буферні системи: бікарбонатна, гемоглобінова, фосфатна, а також білки сироватки крові. Велике значення в цих процесах має виділення вуглекислого газу (СO2) легкими. Парціальний тиск вуглекислого газу крові (РСО2) – фактично єдиний показник дихальної частини КЛС.

Внутрішнє середовище організму як єдиної цілі характеризують фізичні і біохімічні константи:

– реакція pH, що відображає КЛС;
– стандартний бікарбонат (SB) – обмінний фактор, який служить для нейтралізації надходять в кров кислот (мекв/л);
– залишок кислот (BE)4 – показник, за яким оцінюється ступінь метаболічного ацидозу (мекв/л);
– рСО2 – дихальний фактор, служить критерієм оцінки первинних порушень і вторинних компенсаторних реакцій.

4 Також – залишок буферних основ.
Прийнято вважати:
рН 7,40-7,35 – компенсований ацидоз (закислення);
рН 7,34-7,28 – субкомпенсований ацидоз;
рН 7,27 і нижче – декомпенсований ацидоз.
За норму прийнято такі величини показників КЛС:
рН 7,36-7,42;
SB 21,3-25,7;
BE –2,4 … +2,4;
рС02 35,0-45,0.
Зростання цих величин – алкалоз; зменшення – ацидоз.
Зрушення показників рН, BE, рС02 за нижню межу свідчить про виникнення метаболічного ацидозу. Наростання метаболічного ацидозу відображає неадекватну доставку кисню тканинам при значному збільшенні споживання кисню.
При зміні КЛС захисні механізми починають діяти негайно. Першими включаються буферні системи, що нейтралізують дію надлишку кислот або лугів. Другою системою захисту служать легені і нирки, причому легеневий механізм більш мобільний.
Однією з умов діагностики та корекції змін КЛС має бути визначення первинності порушень. Будь-яка зміна КЛС супроводжується компенсацією, тобто метаболічний ацидоз може компенсуватися дихальним алкалозом або метаболічним алкалозом – дихальним ацидозом.

Парціальний тиск вуглецілого газу (рС02). Наростання рС02 крові викликає негайну стимуляцію дихання і збільшення альвеолярної вентиляції, що нормалізує рС02. Зниження рН при метаболічному ацидозі дратує C02 – рецептори. Завдяки гіпервентиляції виникає дихальний ацидоз і рН повертається до норми. рС02 в артеріальній крові при дуже великих навантаженнях дещо знижується, причому у спортсменів трохи менше, ніж у неспортсменів, що пов'язано з більш досконалим регулюванням дихання у спортсмена.

Стандартний бікарбонат (SB). Буферні основи крові – найважливіші механізми в регуляції КЛС. В умовах спокою зміст SB в крові у спортсменів в середньому такий, як у нетренованих – відповідно 24,3 і 24,4 мекв/л. Однак зниження вмісту SB у спортсменів відбувається при більш значних навантаженнях, ніж у неспортсменів. Це пояснюється відмінностями в зміні концентрації La в крові: у спортсменів вона нижче, ніж у неспортсменів.

Залишок кислот (надлишок буферних підстав – BE). Найбільші зрушення в кислу сторону відзначені при анаеробних реакціях. При цьому найбільш точну інформацію дає величина ВЕ, що дозволяє використовувати цей показник для визначення граней анаеробно-анаеробного переходу. Правомірне зіставлення показника ВЕ з показником концентрації Лактату, що дає можливість оцінити працездатність спортсмена в даній момент. Для визначення активації анаеробної енергопродукції в працюючих м'язах необхідно визначати BE до і після фізичного навантаження і аналізувати результати. При використанні тільки одних абсолютних показників ВЕ неможливо точно дати оцінку виконаної роботи, так як зрушена КЛС крові залежать не тільки від ступеня тренованості і виконаного навантаження, але і від вихідного стану цих показників.

Концентрація водородних іонів (рН) відображає рівень кислотно-лужного стану організму.
При виконанні однакової по мощності навантаження:
– у тренованого спортсмена рН крові може змінюватися до 7,15, а у нетренованих до 7,01;
– у жінок явища ацидозу при однаково виконаному навантаженні виражені більше, ніж у чоловіків;
– у юних спортсменів ступінь ацидозу більше, ніж у спортсменів старшого віку.
Однак при виконанні навантаження максимальної потужності зрушения КЛС дещо зменшуються з віком. Це пов'язано з тим, що виконання такої роботи лімітується
функціональними можливостями біологічних систем життєзабезпечення організму.

При використанні показників КЛС необхідно мати на увазі, що найбільша інформативність цих показників характерна для представників тих видів спорту, де спортивний результат в значній мірі визначається рівнем активності механізмів енергетичного забезпечення роботи і значною ролью гліколітичного процесу.

При фізичному навантаженні збільшується вміст кислих продуктів обміну, які викликають зрушения КЛС крові. Ступінь змін КЛС залежить від тривалості та інтенсивності фізичного навантаження, а також від функціонального стану організму в цілому.

pH крові в найбільшій мірі залежить від вмісту в ній La, а також від рСO₂ і буферних можливостей крові. У стані спокою pH артеріальної крові у спортсменів практично така ж, як і у неспортсменів. Оскільки під час м'язової роботи pH майже виключно визначається концентрацією молочної кислоти, все що можна сказати про ефекти тренування за рівнем La крові, справедливо і для pH.

У спортсменів, що тренують витривалість, зниження pH відбувається при більш значних навантаженнях, однак його значення менше, ніж у нетренованих. Разом з тим при максимальних аеробних навантаженнях зниження pH у спортсменів більше, ніж у неспортсменів. В окремих випадках pH артеріальної крові у висококваліфікованих спортсменів може падати до 7,0 і навіть трохи нижче.

Слід мати на увазі, що зниження внутрішньоклітинного pH, викликане збільшенням концентрацією La, впливає на її скорочення, знижуючи здатність м'язів до підтримки сили. Накопичення кислих продуктів обміну речовин у процесі напруженої фізичної роботи обумовлено перш за все невідповідністю між кисневим запитом і його споживанням, що призводить до збільшення вмісту La в крові і зниження pH.

Зрушення показників pH, BE залежать від типу енергозабезпечення м'язової роботи. Елубіна і напруженість порушень КЛС залежать від рівня тренованості спортсмена. Чим більш тренований спортсмен, тим більш досконалий механізм компенсації метаболічних порушень.

Корекція лактатного метаболізму

Утилізація лактату – досить серйозна проблема спорту.

Накопичення La в організмі під час тренувань і загальної діяльності – один з основних факторів, що лімітують підвищення працездатності та результативності спортивних досягнень (особливо в циклічних видах спорту).

Накопичення La, перевищення можливостей організму в його утилізації і, отже, зрушения pH внутрішнього середовища («закислення») відбувається при гліколітичному механізмі енергозабезпечення, пов’язаному з розщепленням вуглеводів до La.

Основний шлях отримання енергії в гліколітичному режимі – це цикл Кребса (цикл трикарбонових кислот – ЦТК, цикл лимонної кислоти), тобто цикл послідовного перетворення глюкози в піровиноградну, лимонну, глутамінову, бурштинну, яблучну, молочну (La) кислоти з подальшим окисленням до С0₂ і Н₂0. La – кінцевий продукт, який накопичуючись, «закислює» організм, тобто зрушує КЛС внутрішнього середовища в кислу сторону.

Безпосереднім джерелом енергії при м'язовому скороченні є розщеплення АТФ, багатого енергією з'єднання. Витрачені запаси АТФ повинні бути негайно поповнені, інакше м'язи втрачають здатність скорочуватися. Відновлення (ресинтез) АТФ здійснюється за рахунок анаеробних і аеробних процесів (див. «Енергозабезпечення м'язів»).

Гліколітичний механізм енергозабезпечення пов’язаний з проявом так званої лактатної витривалості. Найбільшою мірою цей анаеробний механізм зреалізується у видах, у яких перебуває в подальшим окисленням до С0₂ і Н₂0. La – кінцевий продукт, який накопичуючись, «закислює» організм, тобто зрушує КЛС внутрішнього середовища в кислу сторону.

Визначається гліколітична ємність за формулою:
Е = ALa х 0,0624 М, де Е – ємність гліколізу, ALa – максимальна концентрація молочної кислоти в крові після граничної роботи до 2 хв (за вирахуванням вихідного рівня), 0,0624 – коефіцієнт пропорційності для перерахунку концентрації La крові до одиниць маси (М) спортсмена.

Крім того, і це особливо важливо для спортсмена, гліколітичні можливості залежать від здатності організму протидіяти несприятливим змінам в ньому в зв'язку з накопиченням значної кількості La.

Реакція внутрішнього середовища організму зсувається при цьому в кислу сторону. Нейтралізація La здійснюється буферними системами і залежить від їх ємності. Буферна ємність крові складається з бікарбонатною – 13%, фосфатною – 1%, білковою – 86% (з них 76% припадає на частку гемоглобінового буфера). Буферні системи крові мало змінюються під впливом тренувань; тренированою вважається «здатність терпіти», тобто виконувати роботу в умовах несприятливих зрушень в організмі, пов'язаних з накопиченням продуктів анаеробного обміну.

Резинтез (відновлення) La в глікоген відбувається в печінці. Цей шлях усунення La особливо важливий при тривалій роботі.

Результатом м'язової активності є також накопичення продуктів дезамінування. Аміак, який з'являється в крові при м'язовій роботі, утворюється в результаті відщеплення іона амонію від АМФ.

Цей процес необхідний для повноцінного процесу резинтезу АТФ з двох молекул АДФ за допомогою ферменту аденилат-кінази. Накопичення аміаку призводить до посилення утворення La. Таким чином, утворюється порочне коло, що викликає зниження скорочувальної здатності м'язів, пошкодження структурного білка – руйнування міофібрил і, наслідком, дистрофічні прояви в системах і органах, що лімітують тривалу (на витривалість) працездатність: печінці, нирки, серцево-судинної, дихальної, гематологічної системах.

Можна посилити виділення аміаку шляхом прискорення використання його в синтезі сечовини. Тут доступні два варіанти:

а) введення бікарбонату (наприклад, Na₂CO₃ 4% розчин) для використання С0₂ в синтезі амінокислот (аргініну, орнітину, цитруліна).

б) прискорення обороту циклу синтезу сечовини додаванням проміжних продуктів циклу – амінокислот. Препарати амінокислот з розгалуженими ланцюгами (аргінін, глютамін, орнітин, цитрулін) зменшують поріг аміачного блоку, нормалізують амінокислотний склад крові.

Заходи, спрямовані на корекцію лактатного метаболізму (табл. 20, 21):

• Зменшення накопичення La допомагає утримувати її при тривалій роботі.

• Застосування бурштинової кислоти, бікарбонатів допомагає знищити аміачний блок, нормалізувати амінокислотний склад крові.

• Поліпшення роботи печінки препаратами відповідної спрямованості (лебединий, гептрал і т.д.). Забезпечує коректну резинтез La в глюкоген.

• Фармакологічні форми фосфору, магнію, заліза сприяють збільшенню буферної ємності крові і, отже, більш тривалому збереженню максимальної працездатності в
гліколітичному режимі, а також більш швидкому періоду відновлення. За рахунок збільшення рівня Hb крові підвищується буферна ємність – гемоглобінова.

- Посиленню протікання метаболічних процесів сприяють мікроелементи, зокрема залізо, фосфор, магній, кобальт (складові частини ензимів – каталізаторів).
- Препарати цинку (цинкі) знижують рівень активності ПОЛ. Цинк бере участь у метаболізмі як кофактор багатьох ферментів, у тому числі ферментів синтезу сечовини.
- Вплив на піруватдегідрогеназний комплекс (дихлорацетат, димефосфон) дозволяє збільшити кількість АТФ.
- Забезпечення достатньою кількістю калорій (глюкоза, фруктоза, мед) призводить до зниження процесів катаболізму і рівня гіперамоніемії (сечовини) і закислення.
- Ензими опосередковано збільшують буферну ємність крові, зменшують рівень сечовини.
- Тривале застосування гомеопатичних засобів (акідум лактікум, акідум фосфорікум і т. д.) також дозволяє коригувати лактатну завантаженість.
- Масаж, масаж з яблучним оцтом, водні процедури прискорюють процес виведення La з організму.

Нижче дані короткі характеристики препаратів, що сприяють корекції змісту La.

Таблиця 20 - Застосування коректорів лактат-ацидозу

<table>
<thead>
<tr>
<th>Види спорту</th>
<th>Підготовчий</th>
<th>Базовий</th>
<th>Спеціальної підготовки</th>
<th>Предпідготовчий</th>
<th>Змагальний</th>
<th>Відновлювальний</th>
</tr>
</thead>
<tbody>
<tr>
<td>Циклічні</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Швидкісно- силові</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Єдиноборства</td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Координаційні</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Спортівні ігри</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 21 - Препарати коректори лактат-ацидозу

<table>
<thead>
<tr>
<th>Препарат</th>
<th>Дорослі</th>
<th>Добові дози</th>
<th>Підлітки</th>
<th>Курс, тижні</th>
</tr>
</thead>
<tbody>
<tr>
<td>Стимол</td>
<td>1 пак.</td>
<td>1-3 рази</td>
<td>1 пак.</td>
<td>3-4</td>
</tr>
<tr>
<td>Аргінін</td>
<td>3 г 2 рази</td>
<td>1,5 г</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td>Бенфогамма</td>
<td>1 драже</td>
<td></td>
<td>1 драже</td>
<td>2-3</td>
</tr>
<tr>
<td>Глютамінова кислота</td>
<td>0,5 г 3 рази</td>
<td>0,25 г 3 рази</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>Димефосфон</td>
<td>1 с.л.</td>
<td>30 мг/кг</td>
<td>2-4</td>
<td></td>
</tr>
<tr>
<td>15% р-н</td>
<td>3-4 рази</td>
<td>2-3 рази</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>Кокарбоксилаза</td>
<td>100 мг, в/в</td>
<td>50 мг, в/в</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>Цитруліна малат</td>
<td>200 мг</td>
<td>2-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примітка. Застосовується один із представлених у таблиці препаратів, який надає максимальне дію.

Дихлорацетат має здатність стимулювати активність піруватдегідрогеназного комплексу, що зумовлює зменшення утворення молочної кислоти і зниження її змісту в тканинах і біологічних рідинах. Нормалізується КОС. Препарат призначається в дозі 35-50
мг/кг/доб. Тривалість курсу не вказана. Можлива побічна дія дихлороацетату – периферична нейропатія після тривалого застосування.

Дімефосфон – fosфорорганічна сполука, що володіє здатністю посилювати тканинне дихання і стабілізувати стан клітинних мембран. У кlinikінній практиці і в експерименті показано, що нормалізує, дімефосфон на рівновагу кислот і лугів, рівень молочної і піровиноградної кислот в крові, ПОЛ. В результаті активує вплив дімефосфону на піруваткарбоксилази рівновагу між La і піруватом зміщується в бік останнього, посилюється утілізація пірувату в циклі Кребса, збільшується фракція АТФ і підвищується відношення АТФ/АМФ. Добова доза препарату становить 30 мг/кг.

Кокарбоксилаза. Кофермент, що утворюється в організмі з тіаміну (вітаміну ВF).

Надає регулюючу дію на окремі функції організму, головним чином на обмінні процеси. Бере участь в обмінні речовин в якості коензиму; особливо важливу роль відіграє у вуглеводному обміні. Знижує в організмі рівень молочної і піровиноградної кислот, покращує засвоєння глюкози. Нормалізує трофіку нервої тканини, сприяє відновленню функцій серцево-судинної системи.

Показання:

при різних патологічних станах, що вимагають поліпшення вуглеводного обміні, ліквідації дихальній ацидозу при легенево-серцевій недостатності; печінковій і нирковій недостатності; недостатності кровообігу, периферичних невритах.

Бенфогамма. Діюча речовина препарату кокарбоксилаза.

Аргінін (незамінна амінокислота). Бережне зниження та виведенная з організму амоніаку. Знижує артеріальний тиск. Режим дозування індивідуальний, залежно від показань та віку. У спорти застосовують всередину. З обережністю застосовують при захворюваннях нирок, порушення обміну електролітів.

Глютамінова кислота (замінна амінокислота). Нормалізує обмінні процеси, стимулює окислювальні процеси, сприяє нейтралізації і виведення з організму амоніаку, підвищує стійкість організму до гіпоксії. Сприяє синтезу ацетилхоліну і АТФ, перенесенню іонів калію. Глютамінова кислота відноситься до нейромедіаторних амінокислот, стимулюючи передачу збудження в синапсах ЦНС.

Застосовується при тренуванні в гліколічному режимі (знижує рівень лактату завантаженості шляхом розриву аміачного блоку); перетренированості (підтримка ЦНС), депресії. Глютамінову кислоту застосовують також для зняття нейротоксичних явищ, пов’язаних з прийомом інших препаратів. При тривалому застосуванні можливе зниження вмісту Нb, лейкопенія.

У період застосування необхідно проводити дослідження сечі і крові. При виникненні побічних ефектів рекомендується зменшення дози препарату.

Стимол (цитрулін + малат) – сприяє утілізації La. Ла Препарат розширює можливості організму спортсмена в тренуваннях на витривалість, дозволяє відсунути кордон несприятливих відчуттів і «терпіти» їх більш тривалий час, отже, збільшити обсяг і інтенсивність навантажень.

Застосовуються також лимонна кислота, натрію гідрокарбонат, трометамол, цитрулін.

Збереження водно-сольового балансу

Тривалій тренувальний витривалість може привести до порушень електролітного балансу, зміни КОС з усіма негативними наслідками.

При втраті рідини у спортсмена тренуванням з витривалість, дозволяє відсунути кордон несприятливих відчуттів і «терпіти» їх більш тривалий час, отже, збільшити обсяг і інтенсивність навантажень.

Застосовуються також лимонна кислота, натрію гідрокарбонат, трометамол, цитрулін.

47
обмеження рідини) спортсмен може знизити вагу на 3-4 кг за 1-2 дня (в кілька прийомів), що не виключає потовиділення під час змагань. Це призводить до стану зневоднення організму так само, як при тренуванні в горах, в умовах жаркого клімату і навіть в не вентилюваних залах влітку. Як наслідок, відбувається значне зниження аеробної потужності роботи.

Зневоднення викликає електролітний дисбаланс у всіх рідинних системах організму. Відбувається значна втрата мінералів. Значна втрата електролітів особливо позначається на порушеннях нервової діяльності, її реакції у відповідь. При цьому підвищується рівень глюкози в крові при незмінному плазмовому гідрогені, концентрації вільних жирних кислот. Надлишковий вміст глюкози в крові можливо за рахунок збільшення інтенсивності угіддій організму. Це призводить до зневоднення так само, як при тренуванні в горах, в умовах жаркого клімату і навіть в не вентилюваних залах влітку. Як наслідок, відбувається значне зниження аеробного потенціалу відповідної реакції на зневоднення і виснаження його запасів.

Саме тому необхідно використовувати напої під час виконання тривалих фізичних навантажень. Останнім часом в спортивній справі, як правило використовуються напої, які містять комплекси легкоуважуваних вуглеводів, органічних кислот, вітамінів, мінералів, незамінних амінокислот і ненасичених жирних кислот. При складанні спортивних напоїв широко використовуються і полімери глюкози.

Таблиця 22 - Збереження водно-сольового балансу

<table>
<thead>
<tr>
<th>Мета прийому</th>
<th>Найменування</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вранці</td>
<td>Рідина: соки, топіки (чай, кава, адаптогени)</td>
</tr>
<tr>
<td>Протягом дня між основними прийомами або разом з їжею</td>
<td>Полівітаміни, мінерали, вітаміни (антиоксиданти А, С, Е) в рідкому вигляді</td>
</tr>
<tr>
<td>Втім, імуноглобулін, вітаміни (антиоксиданти А, С, Е) в рідкому вигляді</td>
<td>Мінеральна вода, ізотопік, ізостар</td>
</tr>
</tbody>
</table>

Період тренування за 1-1,5 год

<table>
<thead>
<tr>
<th>Під час тренування</th>
<th>Перед ранковим тренуванням свіжо вижатий сік (150-200 мл)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Втім, імуноглобулін, вітаміни (антиоксиданти А, С, Е) в рідкому вигляді</td>
<td>Розчин мінералами, ізотопік, ізостар (100-150 мл)</td>
</tr>
</tbody>
</table>

Після тренування

| Втім, імуноглобулін, вітаміни (антиоксиданти А, С, Е) в рідкому вигляді | Насичення комплексним 10% розчином, 200-400 мл (протягом 15-30 зв після тренування) |

Велике значення має процентний вміст глюкозо-електролітних розчинів. 8-10% розчин практично відразу ж всмоктується, що значно підвищує функціональні можливості організму. Температура напоїв, що відшкодовують втрату рідини, повинна бути 8-13 °С, так як охолодження порожнини рота сприяє оптимізації терморегуляції і збільшення швидкості всмоктування рідини. Кількість рідини, прийнятої для поповнення втрат, лімітується швидкістю всмоктування з шлунково-кишкового тракту – не більше 800 мл/год, хоча втрати може становити значно більшу кількість.

Використання напоїв на дистанції (де можливо) або на тренуванні під час виконання тривалих фізичних навантажень абсолютно необхідно. Варіант прийому: 200-400 мл перед навантаженням, далі – 100-250 мл кожні 10-15 хвилин.

Проконтролювати втрату рідини можна зважуванням до і після навантаження: загальна втрата ваги мінус 1 кг становить величину дефіциту рідини в організмі.

3.4 Вільнорадикальні процеси при великих фізичних навантаженнях

Оксиданти
Одна з головних причин інтенсифікації реакцій вільно-радикального пошкодження елементів клітин при гіпоксії – це природа первинних радикалів, що утворюються в клітці, і особливість їх взаємодії з елементами клітинних структур.

Клітинні органели, а також сама клітина мають надлишковий негативний заряд. Первинні радикали, що з'являються в клітці в результаті окислювальних реакцій, є супероксидний іон-радикалами і також негативно заряджені. Будучи високо рухливими, вони спрямовуються з мітохондрій спочатку в цитоплазму, а потім в міжмембранний простір. Рушійна сила, яка спрямовує потік кисню з клітки в міжклітинний простір, характеризується величиною мембранного потенціалу. Іони кисню виводяться з клітини за принципом електрофорезу. При гіпоксії у міру зниження величини мембранного потенціалу іон-радикали заздрість в клітці, що веде до прискорення процесів окисної деструкції клітинних елементів і сприяє початку термінальної фази гіпоксії.

Перше повідомлення про вільні радикали (оксиданти), виявлених в живих тканинах, з'явилося в 1931 р. Згодом було зафіксовано ціле сімейство вільних радикалів, що з'являються і грають різноманітні ролі в біологічних тканинах.

Основні групи оксидантів: супероксидні радикали, перекис водню, гідроксильні радикали, жирні пероксирадикалами і атомарний кисень. Виявлені продукти являють строкату групу різноманітних за своєю природою речовин, що характеризуються єдиною спільною ознакою – наявністю на одному з атомів неспареного електрона. Як правило, такий стан речовини нестійкий, і вільні радикали прагнуть перетворитися в стабільні продукти шляхом спаровування вільного електрона. Це досягається або шляхом відриву атома водню (найчастіше атома водню) від іншого з'єднання і приєднання його до радикалу, або за рахунок реакції рекомбінації, пов'язаної з'єднанням двох радикалів в одну молекулу. Вибрані спосіб самознищення залежить від активності вільного радикала, тобто від його здатності брати участь в відщепленні атома (водню) від сусідніх молекул.

За цією ознакою вільні радикали умовно діляться на активні і стабільні.

Активні радикали відрізняються агресивною поведінкою по відношенню до своїх сусідів. Час їх життя невеликий, і вони швидко зникають, взаємодіючи з одним із сусідніх молекул. Результатом такої взаємодії стає відрив атома водню від більшості молекул, що входять до складу клітини. Але вони можуть здійснювати подібну операцію з особливими молекулами, що мають слабопов'язані атоми водню. Останній клас хімічних сполук отримав назву антиоксидантів, оскільки механізм їх дії полягає в гальмуванні вільнорадикальних процесів в біологічних тканинах. Час життя стабільних радикалів досить довгий.

Принципова відмінність в хімічній поведінці обох класів радикалів визначає настільки принципову впливу активних і стабільних радикалів на багаті фізіологічні та біохімічні процеси в клітинці. Якщо активні вільні радикали сприяють зростанню ентропії (нестабільності) в біологічних тканинах, то стабільні радикали гальмують розвиток деструктивних процесів, уповільнюють старіння і загибель клітин.

Поява активних кисневмісних радикалів пов'язана з окисними процесами. Оскільки інтенсивність їх протікання в біологічних тканинах неоднорідна, то і зони локальної появи вільних радикалів дуже гетерогенні. На рівні клітини до 60% всіх виявлених радикалів утворюються в мітохондріях. Це пов'язано з тим, що дані органелі – головні енергоперетворюючі системи клітини. Саме через них проходять основні потоки метаболізованого кисню. До 20% генеруються в клітці радикалів утворюються у мікросомах, де здійснюється хімічна переробка багатьох чужорідних для організму продуктів, включаючи лікарські препарати. Решта 20% радикалів припадають на інші структури клітини.
У спорті в результаті позамежних навантажень, несприятливих факторів зовнішнього середовища і дії «зовнішніх» оксидантів відбувається ініціація вільнорадикальних процесів, їх різка активізація. Вільні радикали сприяють утворенню токсичних продуктів, які порушують функцію клітинних мембран і біоенергетичних механізмів.

Інтенсивне фізичне навантаження призводить до збоїв природних механізмів контролю, порушень в антиоксидантній системі. Кількість вільних радикалів різко зростає, руйнуючи клітинні структури і організм в цілому.

Антиоксиданти

В даний час система антиоксидантного захисту клітин від токсичних форм кисню і продуктів неповного його відновлення вивчена і нагадує лінію оборони, де кожен рубіж представленний певним антиоксидантом, при цьому в роботі окремих антиоксидантів простежується не закон випадку, а злагоджена робота всього ансамблю антиоксидантів. Незважаючи на численні дослідження в дані області, зараз немає впевненості, що сучасна наука досягла повної ясності в розумінні цієї складної проблеми. Однак основні принципи роботи системи антиоксидантного захисту відомі і все ширше застосовуються на практиці.

Наявність в клітці двох змішуються фаз – водної та ліпідної – визначило принциповий поділ антиоксидантів на водо- і ліпіднорозчинні. Перші призначені для захисту вмісту цитоплазми і внутрішньоклітинних органел, крові, лімфі та інших біологічних рідин від реакцій мимовільного окислення. Другі виконують функції антиоксидантів в біологічних мембранах і ліпіднісних частинках, наприклад в ліпопротеїнах. Можливість одночасної присутності в кожній з фаз декількох типів радикалів, що розрізняються за активністю, передбачає наявність групи антиоксидантів, що забезпечують ефективне зв'язування будь-якого з з'являються радикалів в будь-якій з наявних фаз.

В даний час з'ясовано, що роль антиоксидантів не зводиться тільки до взаємодії з органічними радикалами і переривання ПОЛ. До числа антиоксидантів тепер відносять і речовини, що перешкоджають розвитку окислювальних процесів.

Такі речовини (на відміну від антиоксидантів прямої дії, безпосередньо взаємодіючих з вільними радикалами) відносяться до превентивних антиоксидантів, що перешкоджають самій появлі вільних радикалів і розвитку ланцюгових реакцій. Основні напрямки їх дії пов'язані зі структуруванням мембран, що створює додаткові труднощі у розвитку процесів ПОЛ, або з обмеженням можливості розпаду перекисів кумулятивного характеру. Основними превентивними антиоксидантами є глутатіон, аскорбінова кислота, омега-3 жирні кислоти, поліфеноли, білки, гліцин, аміак та інші речовини. Основними напрямками їх дії є структуруванням мембран, що створює додаткові труднощі у розвитку процесів ПОЛ, або з обмеженням можливості розпаду перекисів кумулятивного характеру. Основними превентивними антиоксидантами є глутатіон, аскорбінова кислота, омега-3 жирні кислоти, поліфеноли, білки, гліцин, аміак та інші речовини.
Аскорбінова кислота – ефективна пастка для більшості активних кисневмісних радикалів. Вона настільки ефективна, що здатна регенерувати a-токоферол (вітамін Е) з токоферільного радикала, що утворюється на першій стадії окислення вітаміну Е. Таким чином, аскорбінова кислота може брати участь в антиоксидантному захисту тканин від шкідливої дії радикалів як безпосередньо, виконуючи роль пастки таких радикалів, так і опосередковано шляхом відновлення токоферільних радикалів до вітаміну Е. Даний приклад ілюструє тісний контакт водо- і ліпорозчинних антиоксидантів.

При активації викиду катехоламінів в кров останній рядок зі своїм прямими гормональними функціями виконують роль антиоксидантів. Утворені в результаті взаємодії катехоламінів з вільними радикалами продукти токсичні (особливо для клітин нервової системи). Звідси стає зрозумілою фізіологічна потреба людини в русі при емоційному стресі. Тільки в цьому випадку стимулюється кровообіг і забезпечується швидке виведення нейротоксинів з тканин і їх інактивація в печінці. Люди, які не виконують цього простого вимоги природи, згодом розплачаються своїм здоров'ям.

Відміта особливість захисту внутрішньоклітинних антиоксидантів полягає в широкому використанні ферментів, що інактивують радикали і перекису. Вважається, що ферменти антиоксидантного захисту всередині клітин виконують основне навантаження по нейтралізації цих продуктів і є першою лінією оборони від радикалів.

На відміну від низькомолекулярних антиоксидантів ферментна система антиоксидантного захисту виявилася не настільки універсальною. З усіх можливих кисневмісних радикалів остання виявилась здатною пов'язувати тільки найменш активні супероксидні іон-радикали. Завдання зі знищення найбільш активних і в біологічному відношенні найбільш небезпечних радикалів можна вирішити тільки за участю низькомолекулярних антиоксидантів.

З ліпорозчинних ловців вільних радикалів найбільшу увагу в науковій літературі придається a-токоферолу, або вітаміну Е. Його антиоксидантні функції в першу чергу пов'язані зі здатністю утворювати відновлюваний a-токоферил. Вітамін Е є одна пастка для всіх активних кисневмісних радикалів. Особлива структура молекули забезпечує вітаміну Е можливість вбудовуватися в фосфоліпідні мембрани і переривати протікають в них процеси перекисного окислення ліпідів.

Зазвичай концентрація a-токоферолу в тканинах досягає 10-50 мкм. При таких концентраціях вітамін Е проявляє властивості антиоксиданту. Однак при концентраціях вище фізіологічних він вистільки презентований здатність відновлювати здатну відновлювати t-токоферолу за рахунок взаємодії з аскорбіновою кислотою або іншим сильним відновником. Але при високих концентраціях вітаміну E утворюються радикали, які не відновлюються і утворюють комплекси з продуктами перекисної дії.

Важливу роль у захисті биомембран від окисної деградації грає інший жирорастворюваний вітамін – вітамін А і його замінник з рослинної сировини – (3-каротин. Обидва продукти – чергова лінія оборони для захисту синглетного кисню.
за активністю а-токоферолу. З цієї причини при протіканні окислювальних процесів в мембранах спочатку витрачається а-токоферол і лише після вичерпання його запасів починає використовуватися більш дефіцитний убіхіон.

Підтримка високої активності ферментів дихального ланцюга – основна умова ефективного захисту мітохондріальної мембрани від вільнорадикального шкідливого впливу активних форм кисню. При зниженні активності таких ферментів, наприклад, в умовах гіпоксії, створюються сприятливі умови для пошкодження мітохондріальних мембран.

Прийом антиоксидантів сприяють припиненню негативних явищ озокерозення в організмі і підвищенню працездатності (табл. 23).

У практиці спорту в якості антиоксидантів і речовин, підвищений вміст яких сприяє більш ефективному дії антиоксидантів, застосовуються такі препарати:
• вітаміни А, С, Е, В5, (B-каротин)
• адаптогени;
• мед, пильца;
• гінкго-білоба, плюща кучерявого листя;
• оліфен, кофермент Q-10 (убіхіон), селен, нейробутал, три-овіт, оксилик, ензими.

Таблиця 23 - Застосування антиоксидантів

<table>
<thead>
<tr>
<th>Види спорту</th>
<th>Тренувальні етапи</th>
<th>Підготовчий</th>
<th>Базовий</th>
<th>Спеціальної підготовки</th>
<th>Предзмагальний</th>
<th>Змагальний</th>
<th>Відновлювальний</th>
</tr>
</thead>
<tbody>
<tr>
<td>Циклічні</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Швидкісно-силові</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Єдиноборства</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Координаційні</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Спортивні ігри</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Вітамін А (ретинол). Жиророзчинний вітамін. Відіграє важливу роль в окисно-відновних процесах (внаслідок великої кількості ненасичених зв'язків). Бере участь в синтезі мукополісахаридів, білків, ліпідів. Ретинолу належить важлива роль в підтримці нормального стану шкіри і епітелію слизових оболонок, забезпеченні нормальної диференціації епітеліальних тканин, в процесах фоторецепції (сприяє адаптації людини до темряви). Ретинол бере участь у мінеральному обміні, процесах утворення холестерину, підсилює вироблення ліпази і трипсину, підсилює мієлопоез, процеси клітинного поділу. Місцева дія обумовлена наявністю на поверхні клітин епітелію специфічних ретинолзв’язуючих рецепторів. Препарат омолоджує клітинні популяції і зменшує кількість клітин, що йдуть по шляху термінального диференціювання.

Показання. Профілактика перетренування в видах спорту на витривалість, швидкісно-силових видах. Гіповітаміноз і авітаміноз А. Захворювання очей. Захворювання і ураження шкіри (відморозок, ожоги, рані, гіперкератоз, псоріаз, деякі форми екземи, запальні і дегенеративні патологічні процеси). Комплексна терапія ГРЗ, хронічних бронхолегеневих захворювань, ерозивно-виразкових і запальні ураження шлунково-кишкового тракту.

Застосування. Призначають всередину, в/м, зовнішньо. Лікувальні дози при авітамінозах легкого та середнього ступеня: дорослим – до 33 000 ME в добу; дітям – 1000-5000 ME в добу в залежності від віку.
Масляні розчини можна також застосовувати зовнішньо – при опіках, виразках, відмороженням, змащуючи уражені ділянки 5-6 разів на добу, прикриваючи марлею; одночасно призначають ретинол всередину або в / м.

Примітка. Гіперавітаміноз А: у дорослих – сонливість, млявість, головний біль, гіперемія обличчя, нудота, блювота, розлади ходи, хворобливість в кістках нижніх кінцівок. У дітей можливі підвищення температури, сонливість, пітливість, блювота, шкірні висипання.

Протипоказання. Жовчнокам'яна хвороба, хронічний панкреатит, аномалії обличчя, нудота, блювота, розлади ходи, хворобливість в кістках нижніх кінцівок.

Вітамін Е (а-токоферол). Має антиоксидантну дію. Бере участь в біосинтезі гема і білків, проліферації клітин, тканинному диханні, інших найважливіших процесах тканинного метаболізму, попереджає гемоліз еритроцитів, перешкоджає підвищенню проникності і ламкості капілярів.

Показання в спорті. Великий обсяг і інтенсивність фізичних навантажень. Перетренированість. Несприятливі метеоумови. Захворювання зв'язкового апарату і м'язів. Посттравматична, постінфекційна вторинна міопатія. Дегенеративні та проліферативні зміни суглобів і зв'язкового апарату хребта і великих суглобів. Стали після перенесених захворювань, що протикали з гарячковим синдромом. Вегетативні порушення. Астено-невротичний синдром при перевтомі.

Застосування. Зазвичай призначають по 100-300 мг на добу.

Побічна дія: алергічні реакції; при прийомі великих доз – діарея, болі в епігастрії.

Селен. Мікроелемент. Антиоксидант. Є суттєвою частиною ферментної системи глутатіонпероксидази, впливає на активність ферменту. Глутатіон пероксидаза захищає внутрішньоклітинні структури від шкідливих вільних кисневих радикалів, які утворюються як при обміні речовин, так і під впливом зовнішніх чинників, в тому числі іонізуючого випромінювання. Недолік селену в організмі може привести до розвитку кардіоміопатії та інших серцево-судинних захворювань. В даний час селен розглядають як перспективний антиканцерогенний фактор.

Показання. Відновлюючий засіб при несприятливому впливі фізичного навантаження, несприятливому впливу навколишнього середовища на спортсмена (при дефіциті селену в організмі).

Застосування. Дорослим і дітям старше 7 років призначають по 100 мкг на добу.

Побічна дія. В окремих випадках можливі алергічні реакції. Протипоказаний при підвищенні чутливості до препаратів селену.

Не слід перевищувати рекомендовані дози препарату. При появі запаху часнику в повітрі, що видихається (симптом передозування селену) препарат слід відмінити.

3.5 Мікроциркуляція, реологія, згортання крові

Причинами порушення мікроциркуляції і змін плинності крові при заняттях в спортиві можуть бути: позамежне фізичне навантаження при несприятливих зовнішніх чинниках, яка призводить до пошкодження ендотелію судин; травма.

Наслідком може стати порушення згортання крові (розвиток синдрому дисемінованого внутрішньосудинного згортання – ДВЗ-синдрому; тканинна гіпоксія, порушення функцій внутрішніх органів: серця, печінки, нирок і т. д.).

Виявлення і контроль проходять шляхом дослідження коагулограми, рН крові, гематокриту, в'язкості крові. Досліджується осад сечі на наявність патологічних продуктів обміну. Аналізується ЕКГ з метою виявлення метаболічних зрушень і вогнищевих поразок в міокарді.

Для корекції застосовуються препарати, що покращують мікроциркуляцію і реологічні властивості крові, що впливають на згортання крові.
Мікроциркуляція

Кров є особливою системою в людському організмі, забезпечуючи доставку кисню, пластичних, енергетичних, інформаційних речовин до кожної клітини. Від реологічних властивостей крові (плинність), можливості її проходження по мікросудинах, капілярах залежить життя клітин і всього організму в цілому.

Система гемостазу, як і інші біологічні системи організму, що забезпечують гомеостаз (постійність внутрішнього середовища організму), має високу пластичність і надійність, в силу чого вона не тільки успішно адаптується до багатьох фізіологічних та патогенних впливів, а й в широких межах корегує порушення життєдіяльності організму – підтримує цілісність і замкненість судинної системи, обсяг, рідкий стан і деяки інші властивості циркулюючої крові.

У загальнопатологічних закономірностях процесів ушкодження внутрішньосудинне згортання крові і агрегація тромбоцитів займають значне місце, будучи неспецифічними і/або специфічним компонентом і в развити патології, і во впливу на восстановлення нарушенних функцій.

ДВС-синдром

Крайнім вираженням порушень мікроциркуляції і реології крові під час напруженії фізичної роботи виявляється ДВС-синдром.

В даній час все більшого поширення набувають змагання в видах спорту, що вимагають не просто витривалості, а сверхвітривалості, - марафони в різних видах спорту (триатлон, добовий біг, екстремальні види спорту т.д.), що вимагає від спортсменів ідеального здоров’я. При цьому лімітуючим ланкою стає нездатність системи мікроциркуляції забезпечувати нормальний обмін в клітинах і тканинах.

У спорті можуть виникнути і інші провокуючі стани, при яких відбувається внутрішньосудинне згортання крові: шок травматичний; гостра крововтрата; тепловий удар; ушкодження судинної стінки фізичним навантаженням в екстремальних умовах; гіпоксія з дезорганізацією стінок мікросудин; блокада мікроциркуляції в життєво важливих органах – легких, печінці, нирках, надниркових залозах; прийом контрацептивів, гемопрепарати (еритропоетин – ЕПО), глюкокортикоїдів; поява в плазмі грубих продуктів розпаду і пошкоджених клітин крові.

При ДВС-синдромі спостерігаються фазові зміни в системі згортання крові:

І фаза – гіперкоагуляція (тромбоутворення);
ІІ фаза – гіпокоагуляція (кровоточивість).
Різка активізація системи згортання крові, значне надходження в кров тканинного тромбопластину або інших активаторів гемокоагуляції можуть викликати ДВС-синдром, який, в свою чергу, може привести до тромбогеморагічного синдрому.

При ДВС-синдромі утворюються тромби по всьому організму, в першу чергу в системі мікроциркуляції. Процес може протікати хронічно, клінічно стерто. В них умовах кровотечі рідко стають провідним проявом порушення гемостазу, а попередня і фонова гіперкоагуляції залишаються замаскованими і погано виявляються.

Аналіз досліджень, присвячених вивченню даного питання, дозволяє зробити висновок, що ДВС-синдром зустрічається значно частіше, ніж про це прийнято думати. Тому застосування препаратів, що нормалізують мікроциркуляцію і умови протікання крові по судинах при тривалих, екстремальних навантаженнях, є нагальню проблемою (табл. 24, 25).

Таблиця 24 - Застосування регуляторів мікроциркуляції і реології крові
Циклічні	*	*	*	*
Швидкісно-силові	*	*	*	*
Єдиноборства				
Координаційні				
Спортивні ігри	*			

Таблиця 25 - Препарати, що регулюють мікроциркуляцію і реологію крові

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Добові дози</th>
<th>Підлітки</th>
<th>Курс, тижні</th>
</tr>
</thead>
<tbody>
<tr>
<td>Актовегін</td>
<td>1 драже 3 рази</td>
<td>1 драже 3 рази</td>
<td>1-3</td>
</tr>
<tr>
<td>Білобіл</td>
<td>1 драже 3 рази</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Вессел дує ф (сулодексід)</td>
<td>600 ОД в/м 1 таб. 1-2 рази</td>
<td>-</td>
<td>2 4</td>
</tr>
<tr>
<td>Гінкго-білоба (танакан)</td>
<td>1-2 таб. 2-3 рази 1 табл. 3 рази</td>
<td>-</td>
<td>2-3</td>
</tr>
<tr>
<td>Дипірадамол</td>
<td>1 таб. 3-4 рази</td>
<td>1 табл. 2 рази</td>
<td>2</td>
</tr>
<tr>
<td>Доксіум</td>
<td>1 табл. 2-3 рази</td>
<td>-</td>
<td>2-3</td>
</tr>
<tr>
<td>Кавінтон</td>
<td>1 табл. 3-4 рази</td>
<td>-</td>
<td>1-2</td>
</tr>
<tr>
<td>Курантіл</td>
<td>1 табл. 3 рази</td>
<td>-</td>
<td>1-3</td>
</tr>
<tr>
<td>Пентоксіфілін (трептал, агапурін)</td>
<td>1 табл. 3 рази</td>
<td>-</td>
<td>1-3</td>
</tr>
<tr>
<td>Солкосеріл</td>
<td>1-2 табл. 3 рази</td>
<td>1 табл. 3 рази</td>
<td>1-3</td>
</tr>
<tr>
<td>Флексітал</td>
<td>100 мг 2-3 рази</td>
<td>-</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Примітка. Застосовується один з представлених в таблиці препаратів, вже випробуваний і надає максимальну дію з мінімальними ускладненнями і побічними ефектами.

Вессел дує ф (сулодексід). Природна суміш двох глюкоза-міногліканов, що складається з гепаріноподібних фракцій (80%) і дерматан сульфату (20%). Ці негативно заряджені сульфатовані мукополісахариди мають широкий спектр біологічної активності.

Комплексний механізм дії даного препарату обумовлений його двокомпонентним складом:
1) швидкісна гепаріноподібна фракція має спорідненість до антитромбіну III – фізіологічного антикоагулянту, який бере участь в гальмуванні процесу згортання крові;
2) дерматинова фракція має спорідненість до кофакторів гепарину II – другого інгібітору тромбіну.
Фармакологічні властивості. Вессел дуе ф виявляє антитромботичну, профібринолітичну, антикоагулянтну і вазопротективну види дії на рівні макро- і мікросудин.
Спряює зменшення в'язкості крові внаслідок зниження вмісту фібриногену в плазмі і антиагрегаційної дії.
Має виражену антитромботичну дію як в артеріальних, так і в венозних судинах. У зв'язку з низькою антикоагулянтною активністю сулодексид відмінює відомо утворення тромбів, не збільшує ризик кровотечі.
Волюється точною профібринолітичною активністю, яка обумовлена збільшенням продукції простагландинів, посиленням виділення тканинного активатора плазміногену в просвіт судин і зменшенням вмісту в крові інгібітору тканинного активатора плазміногену.
Пригінча профілакрація клітин гладких м'язів судинної стінки, сприяє відновленню структури і функції клітин ендотелію судин, нормалізує реологічні властивості крові.
Перешкоджає прогресуванню атеросклерозу кровоносних судин за рахунок зменшення вмісту ліпідів (головним чином тригліцеридів) в крові, придушення проліферативної активності клітин ендотелію судин, нормалізує реологічні властивості крові.

Спряює збереження функціональних властивостей і морфологічної цілісності ендотелію капілярів і базальної мембрани ниркових клубочків.
Препарат підвищує вміст і активність ліпопротеїнліпази в крові, в результаті чого знижується рівень холестерину, ЛПНП, тригліцеридів при помірному підвищенні рівня холестерину ЛПВП.
90% сулодексид абсорбується в ендотелі судин і нормалізує реологічні властивості крові.

Показання в спорті і з метою підвищення працездатності при максимальному навантаженні, особливо в підготовці спортсменів в умовах середньогір'я (при підвищенні гематокриту, підвищених показниках фібриногену); для профілактики тромбоцитозу при підвищенні рівня холестерину ЛПВП.

Побічна дія. З боку шлунково-кишкового тракту можливі нудота, блювота, болі в епігастрії. Алергічні реакції: шкірний висип різної локалізації. Місцеві реакції: біль, печіння, гематома в місці ін'єкції (0,5-1% від загального числа пацієнтів).

Гінкго -білоба (танакан). Засіб рослинного походження. Впливає на обмін речовин у клітинах, реологічні властивості крові і мікроциркуляцію, а також на вазомоторні реакції великих кровоносних судин. Покращує мозковий кровообіг і постачання мозку киснем і глюкозою. Має судинорозширювальну дію, перешкоджає агрегації тромбоцитів. Нормалізує метаболічні процеси, надає антиген-покидачу дію на тканини. Генералізує ПОЛ і утворення вільних радикалів клітинних мембрани.

Застосування. При порушеннях периферичної кровообігу і мікроциркуляції важкого фізичного навантаження; з метою зниження ризику тромбозу в зв'язку з утворенням тромбів, порушень мозкового кровообігу, флебопатій, тромбозів глибоких вен, мікроангиопатій, антифосфоліпідним синдромі.

Показання в спорті. При порушеннях периферичної кровообігу при важкому фізичному навантаженні, астеничному стані (в тому числі травматичних ураженнях), для профілактики ДВС-синдрому при марафонах. При дисциркуляторній енцефалопатії різного
генезу, що проявляється розладами уваги та/або пам'яті, зниженням інтелектуальних здібностей, відчуттям страху, порушенням сну. При нейросенсорних порушеннях (запамороченні, звукові гучності, шумові розлади у вухах).

Побічна дія: розлади травлення, головні болі, алергічні реакції.

Трентал (пентоксифілін, агапурин, вазоніт). Покращує мікроциркуляцію і реологічні властивості крові, має судинорозширювальну дію, блокує фосфодіестеразу і сприяє накопиченню цАМФ в клітинах. Підвищує еластичність еритроцитів, зменшує їх адгезію, зменшує агрегацію тромбоцитів і в'язкість крові. Блокує аденаозинові рецептори.

Застосування: в напружений період тренувань, при «гірській» підготовці, тренуваннях в умовах жаркого клімату; порушеннях периферичного кровообігу (марафони); в разі трофічних порушень в тканинах (в тому числі при відмороженнях).

Побічні дії: диспепсичні явища, нудота, блювота, серцебіття, тахікардія, гіперемія шкірних покривів, запаморочення, головний біль, нервозність, сонливість або безсоння, розлади алергічні реакції, здійснює підвищене ламкість нігтів, зміна маси тіла, набряки, кровотечі.

При призначенні препарату слід контролювати рівень артеріального тиску. Сумісність розчину пентоксифіліну з інфузійним розчином слід перевіряти в кожному конкретному випадку до початку введення. Потенційне дію гіпотензивних засобів, інсуліну, пероральних препаратів. Дозу пентоксифіліна в цих випадках слід дещо зменшити. При призначені одночасно з антикоагулянтами необхідно тільки ретельно стежити за показниками згортання крові.

Кавінтон (вінпоцетин). Препарат, що поліпшує мікроциркуляцію, переносимість гіпоксії, поліпшує мозковий кровообіг і мозковий метаболізм. Сприяє транспортуванні кисню до тканин внаслідок зменшення спорідненості до нього еритроцитів, посилює поглинання і метаболізм глюкози; зменшує підвищену в'язкість крові. Метаболізм глюкози перемикається на енергетично більш вигідний аеробний напрям. Стимулює також і анаеробний метаболізм глюкози.

Показання: гостра і хронічна недостатність мозкового кровообігу (транзиторна ішемія в видах спорту на витривалість); посттравматична і гіпертензивна енцефалопатія (травоопасні види спорту); для зменшення порушень пам'яті; при запамороченні, головному біль, рухових розладах.

Курантил (персантин, дипіридамол, тромбоніл). Знімає спазм гладкої мускулатури. Судинорозширювальний засіб.

Застосовуються також: глоду плоди, вобензим, дезагреганти (папаверін, еуфілін) тощо.

3.6 Імунний статус спортсмена

Основними причинами зниження імунної реактивності організму спортсмена в основному є:
– позамежне фізичне навантаження;
– неприятливі метеокліматичні умови;
– психоемоційне навантаження – стрес.

Наслідком зниження імунного захисту стає хворобливість до зараження будь-яким інфекційним захворюванням в період максимальних навантажень або предзмагальній період, або під час змагань.

Для визначення стану імунної системи проводяться контрольні дослідження.

Корекція проводиться із застосуванням імунокоректорів; адаптогенів; вітамінів; аміноциклот (незамінні).

Імунітет

Імунітет – спосіб захисту внутрішньої сталості організму від генетично чужорідної

5 Циклічна форма АМФ.
інформації (антигени, токсини).

Імунологічна реактивність організму спортсмена залежить від обсягу і інтенсивності фізичних і психоемоційних навантажень. Резервні можливості імунної системи, здійснюючи ефективний захист організму від інфекцій при незначних фізичних навантаженнях, при наростанні м'язово-емоційного стресу, характерного для навантажень сучасного «великого спорту», виснажуються, і у спортсмена з'являється стан імунодефіциту. Вторинним імунодефіцитом може обернутися і нестача харчування (або незбалансоване харчування) за певних дієт. Крім того, імунітет зацікавлений у вітамінах A, C, E, мікроелементи, що грають важливу роль в його нормальному функціонуванні.

Корекція імунного статусу спортсмена

Напруга імунітету залежить від величини і тривалості навантаження і проходить наступні фази: мобілізація, компенсація, декомпенсація, відновлення. Резервні можливості імунної системи в перші дві фази (мобілізації і компенсації) ще забезпечують ефективний захист організму. Перехід в третю фазу (декомпенсації) обумовлений наростанням м'язово-емоційного стресу, характерного для навантажень при сучасних методиках підготовки спортсмена.

Режими навантажень, при яких настає фаза виснаження резервних можливостей імунної системи, індивідуальні для кожного спортсмена, залежать від багатьох факторів, в тому числі і його генотипу. Ця обставина робить безперечною необхідність контролю імунного статусу при професійних заняттях спортом.

Профілактичні заходи, що допомагають уникнути зриву імунітету:
– санacja вогнищ хронічної інфекції, оскільки постійна інтоксикація різко знижує резервні можливості організму;
– виявлення і лікування дисбактеріозу;
– захист від психоемоційного стресу;
– постійна підтримка в вітамінів, мікроелементів, білків, жирів, вуглеводів, амінокислот для повноцінного забезпечення імунної системи енергійними та пластичними субстратами;
– чітке ведення тренувального процесу по фізіологічним можливостям конкретного спортсмена;
– спеціальна імунокорекція при тривалих переїздах (перельотах), тренуванні у горах тощо.

Профілактичні засоби.

Прийом препаратів, що володіють вираженою регулюючою дією на обмінні процеси, в тому числі на імунітет, допомагає його відновленню.

Це продукти бджільництва: апілак, апілактоза, мед з пергою, стільниковий мед багаторічної експозиції; препарати з квіткового пилку: гранульований квітковий пилок, політабс, цернилтон, тенториум плюс. Неспецифічні біогенні стимулятори: адаптогени, масло обліпихи, муміє, бета-каротин. Полівітамінні комплекси з обов'язковим вмістом вітамінів групи В, фолієвої та аскорбінової кислоти.

Лікарські засоби, що стимулюють імунітет

Інтерферони – альфаферон, веллферон, інтерферон, інтрон-А, реальдерон, роферон.

Індуktörи синтезу інтерферонів – аміксин, полудан, ридостин, тілорон, циклоферон.

Інтерлейкіни – інтерлейкін-2, пролейкін, ронколейкін.

Імуностимулюючі – синтетичні: декаріс, дигазол, инозин пранобекс, левамізол, ликопид, метилурацил, полиоксидоний, тимоген.

Пепперари комбінованого складу – вобенизм, синуперт, тонзилгон.

Бактеріальні – бронхомунал, имудон, рибомунил.

Імуностимулятори тваринного походження – тактовно, тималін, тимостімулін, імунофан.

Фітопрепарати – імунал (ехінацея), імунорм, естіфан.
Корекція імунодефіцитних станів
Найчастіше застосовують: імуномодульючі препарати – тималін, тимоген, Т-активін; препарати, що стимулюють вироблення інтерферону – циклоферон, ронколейкін; інші препарати курсами (табл. 26).

Таблиця 26 - Застосування імунокоректорів 6

<table>
<thead>
<tr>
<th>Види спорту</th>
<th>Підготовчий</th>
<th>Базовий</th>
<th>Специфічної</th>
<th>Презамальний</th>
<th>Змагальний</th>
<th>Відновлювальні</th>
</tr>
</thead>
<tbody>
<tr>
<td>Циклоферон</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Швидкіснослідові</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Єдиноборства</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Координаційні</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Спортівні ігри</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Імунокоректори застосовують:
– на початку сезону або з початком ударних тренувань;
– при тривалій змагальної діяльності, особливо з частими переїздами (наприклад, участь в етапах Кубка світу);
– при впливі факторів ризику (при різкій негативній зовнішній температурі в зимових видах спорту, високій вологості і т. д.);
– як індивідуальний захист при епідеміях грипу, ОРЗ та т. д.;
– при наявності вогнищ хронічної інфекції.

Циклоферон. Має протизапальну, противірусну, імуностимулюючу дію. Нормалізує вироблення інтерферону, сприяє корекції імунного статусу організму при імунодефіцитах і аутоімунних станах. Стимулює продукцію лейкоцитами, макрофагами, епітеліальними клітинами, а також тканями селезінки, печінки, легенів, мозку. Проникає в цитоплазму і ядерні структури, активує синтез «ранніх» інтерферонів. Відрізняється низькою токсичністю і відсутністю мутагенних і канцерогенних ефектів. При парентеральному введенні швидко і повністю всмоктується. Незначно зв’язується з білками. Легко проникає в органі, тканини і біологічні рідини (в тому числі ліквор). 99% введеного препарату виводиться нирками в незміненому вигляді протягом 24 годин. Не кумулюється навіть при тривалому застосуванні.

Застосовується при імунодефіцитних станах різного походження (в тому числі обумовлених фізичним перенапруженням), а також: дегенеративно-дистрофічних захворюваннях суглобів (деформуючий остеоартроз та ін.); інфекціях бактеріальних, герпетичних; гострих і хронічних вірусних гепатитах (A, B, C, D); ревматоїдному артриті; виразкові хвороби шлунка і дванадцятипалої кишки; шкірних захворюваннях (нейродерматит, екзема, дерматози).

Застосування. Дорослим: розчин для ін’єкцій, в/м, в/в, разова доза – 0.25-0.5 г; таблетки всередину за 30 хв до їди, не розжовуючи, – 0.3-0.6 г 1 раз на добу. Курс: 1, 2, 4, 6, 8, 11, 14, 17, 20, 23, 26, 29-й день. Профілактика – 1, 2, 4, 6, 8-й день.

Протипоказання: декомпенсований цироз печінки, дитячий вік (до 4-х років), вагітність.

6 Лікарські препарати застосовуються за рекомендацією і під контролем лікаря.
Побічних дій при застосуванні циклоферону не виявлено.
Сумісний з усіма лікарськими засобами (в тому числі антибіотиками, вітамінами, іншими імуномодуляторами).

Ехінацея (іммунал). Засіб рослинного походження. Надає імуномодулюючий, противірусний ефект. Полісаходари, що містяться в ехінацеї, підвищують фагоцитарну активність нейтрофілів і макрофагів, стимулюють продукцію інтерлейкіну-1. Комплекс діючих речовин індукує трансформацію В-лімфоцитів у плазматичні клітини, покращує функції Т-хелперів. Завдяки інуділіну, фруктоза, бетаїн поліпшуються обмінні процеси, особливо в печінці та нирках.

Показання: вторинний імунодефіцит при значному фізичному навантаженні; психічне і фізичне переутомлення; імунодефіцитний стан при хронічних рецидивуючих запальних захворюваннях різної локалізації; стан після антибіотикотерапії.

Препарати ехінацеї приймають всередину. Дозування і тривалість застосування встановлюються індивідуально, залежно від використовуваної лікарської форми. Найчастіше по 20 кап. 2-3 рази на день всередину після їжі, 2 тижні.

Побічна дія: можливі алергічні реакції; при застосуванні в високих дозах можливі нудота, блювота, порушення стільця, безсоння, підвищена збудливість нервової системи. Протипоказання: підвищена чутливість до препаратів ехінацеї; аутоімунні захворювання; з обережністю застосовують при порушенні вуглеводного обміну.

3.7 Ендокринна система

Недостатнє функціонування ендокринної системи може бути викликано широким спектром причин — від генетичних до інфекційних. Причиною дисфункції може стати і введення гормональних препаратів. (Гормональні препарати заборонені до вживання в спортивній практиці, розцінюються як допінг.)

Втручання в ендокринний статус часто обертаються порушенням всіх видів обміну. Виявлення і контроль здійснюється визначенням складових гормонального профілю. Корекція дисбалансу ендокринної системи проводиться специфічними методами, відповідними виявленій причині, побудовою спеціальної дієти.

Гормони

Однією з регуляторних систем організму є система гормональної регуляції. Відмітна її особливість — використання хімічного коду.

Ендокринні залози виділяють спеціальні хімічні речовини, названі гормонами, які містять певну інформацію, передану іншим клітинам (табл. 27). Гормони з кров’ю і лімфою переносяться по всьому організму в пошуках своїх адресатів — клітин-мішеней. Клітини-мішені характеризуються наявністю особливих структур (рецепторів), розташованих на зовнішній поверхні мембран і здатних з потоку різноманітної інформації виділити необхідну, призначену для даного типу клітин. Такий механізм дозволяє строго вибірково впливати на певні органи.

Все що переносяться з біологічними рідинами хімічні сигнали умовно поділяються на дві великі групи: водо- і жиророзчинні. Такий поділ зручно не тільки за формальною ознакою їх розчинності в тій чи іншій рідині, але й за механізмом дії клітини на клітинну-мішень.

Білки-рецептори знаходяться або всередині клітин, або вбудовані в клітинну мембрану. Рецептори для всіх водорозчинних переносників хімічних сигналів локалізовані на зовнішній поверхні клітинні мембран. Механізм, за допомогою якого дійшов до клітини хімічний сигнал викликає всередині клітини каскад біохімічних змін, в загальних рисах стандартний, але може відрізнятися на заключних стадіях.
<table>
<thead>
<tr>
<th>Залози внутрішньої секреції</th>
<th>Гормон</th>
<th>Дія</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гіпоталамус</td>
<td>Ліберини (рилізінг-фактори)</td>
<td>Стимулюють виділення в кров гормонів передньої долі гіпофіза</td>
</tr>
<tr>
<td>Задня доля гіпофіза (нейрогіпофіз)</td>
<td>Статіні (інгібуючі фактори)</td>
<td>Гальмують виділення в кров гормонів передньої долі гіпофіза</td>
</tr>
<tr>
<td>Щитовидна залоза</td>
<td>Окситоцин</td>
<td>Підвищує тонус мускулатури матки, звужує маленькі кровоносні судини і підвищує кров'язний тиск</td>
</tr>
<tr>
<td>Задня доля гіпофіза</td>
<td>Окситоцин</td>
<td>Гальмують виділення в кров гормонів передньої долі гіпофіза</td>
</tr>
<tr>
<td>Щитовидна залоза</td>
<td>Інсулін</td>
<td>Вибірково підвищує проникність клітинних мембран по відношенню до глюкози і сприяє кращому проникненню глюкози з кові в різні органи; сприяє переходу глюкози в глюкозо-6-фосфат і тим самим прискорює люді перетворення глюкози; активує синтез ферментів цикла Кребса. Проявлення гіперпродукції гормону: цукровий діабет</td>
</tr>
<tr>
<td>Підшлункова залоза</td>
<td>Глюкагон</td>
<td>Пришвидшує розклад глюкогену в печінці до глюкози</td>
</tr>
<tr>
<td>Підшлункова залоза</td>
<td>Катехоламіни (головний гормон – адреналін)</td>
<td>Пришвидшують розклад глюкогену в печінці і в м’язах; викликають мобілізацію жира; підвищують частоту дихання і серцевих скорочень</td>
</tr>
<tr>
<td>Кора наднирників</td>
<td>Глюкокортикоїди (головні гормони: гідрокортизон (кортизол), кортикостерол, кортіон)</td>
<td>Гальмують перехід глюкози в глюкозо-6-фосфат і тому перешкоджають будь-яким перетворенням глюкози; активують синтез глюкози із нуклеотидів (глюконеогенезе); гальмують синтез білків</td>
</tr>
<tr>
<td>Мозковий шар наднирників</td>
<td>Мінералокортикоїди (головний гормон – альдостерон)</td>
<td>Пришвидшує зворотнє всмоктування іонів натрію в нирках і затримують ці іони в організмі; гальмують зворотнє всмоктування іонів калію в нирках і сприють їх виведенню з організму</td>
</tr>
<tr>
<td>Чоловічі статеві залози (яєчники)</td>
<td>Андрогени – (головний гормон – тестостерон)</td>
<td>Впливає на формування чоловічих вторинних статевих при знаків, забезпечує репродуктивну функцію (ендогенну дію); пришвидшує синтез білків (анаболітична дія)</td>
</tr>
<tr>
<td>Жіночі статеві залози (тимус)</td>
<td>Естрогени (головний гормон – естрадіол)</td>
<td>Впливає на формування жіночих вторинних статевих признаків, забезпечує репродуктивну функцію (естрогенна дія); пришвидшує синтез білків (в меншій мірі, ніж андрогени)</td>
</tr>
<tr>
<td>Вилочкова залоза</td>
<td>Тимозин, Тимопоетин</td>
<td>Стимулює дозрівання лімфоцитів – клітин крові, відповідальних за імунітет</td>
</tr>
<tr>
<td>Шищковидна залоза</td>
<td>Мелатонін</td>
<td>Гальмує розвиток статевих функцій зростаючого організму; сприяє пігментації</td>
</tr>
</tbody>
</table>
Наприклад, для адреналіну і глукагону рецептором є мембранов'язані, вбудований в клітинну мембрану фермент аденилатциклаза. Приєднання гормону до цього ферменту призводить до підвищення його каталітичної активності. Під дією активованої аденилатциклази наявний всередині клітин АТФ перетворюється в цАМФ. Утворився цАМФ безпосередньо бере участь в регуляції клітинного метаболізму.

Клітини органів-мішеней містять ферменти, що руйнують надходять в них гормони і цАМФ, що обмежує дію гормонів в часі і попереджає їх накопичення.

Чутливість рецепторів і активність ферментів, що розщеплюють гормони, може змінюватися при порушеннях обміну, змін фізико-хімічних властивостей організму (температура, кислотність, осмотичний тиск), концентрації найважливіших субстратів, при виконанні м'язової роботи, захворюваннях, введення лікарських засобів. Наслідком цього є посилення або ослаблення впливу гормонів на відповідні органи.

Механізми дії гормонів різноманітні, серед них можна виділити головні, властиві більшості гормонів:

1) гормони впливають на швидкість синтезу ферментів, прискорюючи або сповільнюючи його: в органах-місцях підвищуються або знижуються концентрації певних ферментів, змінюючи швидкість ферментативних реакцій;

2) гормони впливають на активність ферментів в цих органах, будучи:
 – активаторами ферментів — швидкість ферментативних реакцій підвищується;
 – інгібіторами ферментів — швидкість ферментативних реакцій знижується;

3) гормони впливають на проникність клітинних мембран щодо певних хімічних сполук: в клітини надходить більше або менше субстратів для ферментативних реакцій, що позначається на швидкості хімічних процесів.

Таким чином, основні дії гормонів спрямовані на регуляцію швидкості хімічних реакцій в клітинах і впливають на фізіологічні функції.

За хімічною будовою гормони діляться на групи. Гормони білкової природи (білки і поліпептиди):
– гормони гіпоталамуса,
– гормони гіпофіза,
– кальцитонін щитовидна залоза,
– гормон паращитовидної залози,
– гормони поджелудочна залоза.

Гормони — похідні амінокислоти тирозину:
– йодовмісні гормони щитовидної залози,
– гормони мозкового шару надниркових залоз.

Гормони стероїдної будови:
– гормони кори наднирників,
– гормони статевих залоз.

Синтез і виділення гормонів в кров знаходяться під контролем нервової системи. У простому вигляді взаємозв'язок між ендокринною та нервовою системами можна представити в такий спосіб. При впливі на організм будь-яких зовнішніх факторів або при виникненні змін в крові і в різних органах відповідна інформація передається через паліптиди або гальмують в ньому секрецію гормонів передньої долі гіпофіза. Гормони виділяються з гіпофіза в кров, переносяться в залози внутрішньої секреції і викликають у них синтез і секрецію відповідних гормонів, які далі впливають на органі-мішени. Таким чином в організмі здійснюється єдина нервово-гормональна, або нейрогуморальна, регуляція.

Зокрема, регуляція обміну вуглеводів може бути представлена наступним чином (в основі лежить саморегуляція).

Концентрація глукози в периферичний крові відноситься до біологічних констант, тобто величинам, коливання яких не повинні перевищувати певні гомеостатичні норми. У
здорової людини вміст глюкози в стані відносного спокою знаходитьсь в межах 4,5-5,5 ммоль/л (80-120 мг%). Підвищення рівня глюкози вище 5,5 ммоль/л називається гіперглікемією, падіння нижче 3,3 ммоль/л – гіпоглікемією. Від надлишкових втрат глюкози організм оберігає функції нирок: глюкоза, профільтрування в первинну сечу, реабсорбується з ниркових каналців у кров, якщо тільки її вміст у крові не перевищує 8,5 ммоль/л. Наявність глюкози в сечі називається глюкозурією.

Це означає, що більш-менш значне відхилення концентрації глюкози в крові від нормальних меж збуджує механізми, під впливом яких відбувається її нормалізація. Розглянемо ці механізми саморегуляції на прикладі гіпоглікемії, гіперглікемії.

Провідна роль в контролі вмісту глюкози в крові належить гіпоталамусу. Порушення гіпоталамічних центрів призводить до активування фізіологічних механізмів, що сприяють нормалізації рівня глюкози в крові. До них відносяться порушення симпатичного відділу нервової системи і посилення секреції катехоламінів мозковим шаром надніркових залоз, підвищення продукції глюкагону а-клітинами підшлункової залози, а також активування гіпоталамічних либеринов, під впливом яких виробляються кортикотропин, глюкокортикоїди і соматотропин.

Гіпоглікемія – потужний стимулятор для посилення секреції катехоламінів і глюкагону. Катехоламіни (адреналин, норадреналин і дофамін) потрапляють в периферичну кров, де зв'язуються з білком і циркулюють у зв'язаному вигляді. Вільні катехоламіни швидко руйнуються під впливом ферментів. Катехоламіни впливають на органи мішені через специфічні адренорецептори.

Певний вплив, схоже з адреналіном, надає норадреналина наднірників і симпатичних нервів. Однак інтенсивність його впливу на вуглеводний обмін значно менше.

Секрецію глюкагону стимулює гіпоглікемія, а також зменшення вмісту в крові жирних кислот і амінокислот. Істотне гальмівний вплив на секрецію глюкагону надає соматостатин, що виробляється в ендокрінної частині підшлункової залози. Симпатичний відділ нервової системи активує секрецію глюкагону. Це створює додатковий стимул для виділення його при гіпоглікемії. Відповідна секреція глюкагону при значному зниженні рівня глюкози в крові відбувається швидко і в значних межах (в 4-5 разів).

Глюкагон має виражену гіперглікемічну дію, яка ділиться на дві фази. Перша фаза – гліконеліз, основа якої лежить активвація фосфорилази; тобто аналогічна дії адреналіну. Однак, на відміну від адреналіну, гліконеліз не діє на глікоген м'язів, тому не викликає підвищення вмісту молочної кислоти в крові. Перша фаза нетривала і залежить від кількості глікогену, резервованого в печінці. Друга фаза гіперглікемії – чіткий вплив глікогену обумовлено гліконеогенезом, тобто новоутворенням глюкози з невуглеводних з'єднань. Ця фаза характеризується менш високим, але більш тривалим підвищенням концентрації глюкози в крові.

Кортикотропін – глікокортикоїди. Порушення гіпоталамічних нейросекреторних клітин при гіпоглікемії охоплює центр продукції кортикотропіна. По суті, значне зменшення рівня завжди є гострим стресом. Збільшене утворення і виділення в портальну систему гіпофіза кортикотропіна неминуче призводить до активування секреції кортикотропіну з передньої долі гіпофіза, а під впливом кортикотропіну стимулюється біосинтез глікокортикоїдів в корі надніркових залоз. Основний глікокортикоїд людини – кортизол, який активно підсилює розпад білка (крім печінки) і підсилює новоутворення вуглеводів з невуглеводних компонентів. Головним субстратом гліконеогенезу служать амінокислоти, що звільняються з білків різних органів під впливом тих же глікокортикоїдів.
В результаті в печінці збільшується кількість глікогену, який поставляє глюкозу в кров. Як видно, в відношенні глуконеогенезу глукокортикоїди діють синергічно (однонаправлено) з глукагоном.

Соматотропін. Гіпоглікемія – потужний стимулятор секреції соматотропіну. Його гіперглікемічна дія пояснюється споживання глюкози периферійними тканинами. Слід також пам’ятати, що анаболічний ефект соматотропіну в білковому обміні вимагає участі інсуліну, тому його триває підвищена секреція приводить до виснаження інсуліну.

Саморегулювання чітко виражено і при гіперглікемічних станах. Найбільш потужним фактором, що протидіє підвищенню рівня глюкози в крові, є інсулін. Глюкоза – специфічний стимулятор секреції цього гормону. Синтез інсуліну відбувається в (3-клітинам підшлункової залози. Спочатку на рибосомах утворюється препарат інсулін – одиничний пептид з 104-110 амінокислотних залишків. У міру подальшого проходження по шорсткої ендоплазматичної мережі частина молекули відщеплюється і залишається препроінсулін з 81-86 амінокислотних залишків. У результаті цього розщеплення утворюються інсулін, частково розщеплений препроінсулін і s-пептид (частина молекули препроінсуліну). Всі ці гормональні форми депонуються в секреторних гранулах (3-клітин шляхом полімеризації і подання з цинком. у відповідь на гіперглікемію відбувається двофазне виведення гормону: перша швидка (протягом 1 хв після дії стимулу) і друга - через 20-30 хв. У першій фазі секретується інсулін, розташований поблизу цитоплазматичної мембрани, а в другій фазі відбувається транспорт гранул інсуліну по системі микротрубочок і мікрофіламентів від апарату Гольдджі до цитоплазматичної мембрани. Лише потім гормон виводиться з (3-клітини. опосередковують вплив глукозного стимулу АМФ, метаболіти глюкози і Са2.

Поступив в кров інсулін циркулює в двох формах – вільної і пов’язаної з білками. Вільний інсулін діє на м’язи, жирову тканину, печінку і мозок, а пов’язаний – тільки на жирову тканину. Між пов’язаним і вільним інсуліном є динамічна рівновага: при гіперглікемії збільшується кількість вільної фракції і зменшується кількість пов’язаного гормону, а при нестачі глюкози переважає пов’язаний інсулін.

Посилення секреції інсуліну сприяють також соматотропін, кортикотропін, глукокортикоїди, тобто гормони з гіперглікемічних ефектом.

Інсулін – єдиний цукропонижаючий гормон, вплив його багатоплановий. Він викликає підвищення проникності цитоплазматичних мембран клітин-мішеней до моносахарид, особливо до глюкози. У печінці інсулін активує глукокіназу, в зв’язку з чим зростає кількість глукозо-6-фосфату, відповідно посилюється метаболізм вуглеводів. У печінці найбільш інтенсивно відбувається глуконегенез, тому збільшується вміст глікогену. Інсулін пригнічує також розпад печінкового глікогену (глікогеноліз), а також гальмує глюконеогенез. На протінках, інсулін сприяє перетворенню вуглеводів в жирні кислоти, що відбувається у печінці, а ківсько му підсумок викарживання його анаболічних процесів в організмі.

Всі залози внутрішньої секреції функционують залежно і роблять один на одного взаємний вплив. Введення в організм зовні інсуліну не тільки позначається на функції залози, що вводиться, але і може мати негативний вплив на стан всієї нервово-гормональної регуляції в цілому.

При підозрі на збої в роботі будь-якої залози внутрішньої секреції необхідно детально досліджувати її функції. Контроль за рівнем глюкози (а значить, опосередковано, і за роботою інсулярного апарату) до навантаження і під час навантаження став рядовим фактом. Рівень розвитку сучасного спорту настійно вимагає запровадження, також, в повсякденний роботу.
пратну досліджень рівня гормонів щитовидної залози, статевих гормонів.

Крім того, довгі роки існувало переконання, що виділення кодуємої інформації є специфікою тканин ендокринної системи. В даний час в цій області науки досягнуто значного прогресу, який свідчить про те, що практично всі тканини беруть участь у взаємному обміні інформацією між собою, а число хімічних сигналів, що віділяються тканинами і кодують передану інформацію, набагато перевершує число відомих гормонів.

3.8 Центральна нервова система, периферична нервова система, автономна нервова система

Причини гноблення функцій ЦНС у спортсменів – фізична і психоемоційна навантаження, що виходять за межі фізіологічної норми.

Як наслідок реєструється погіршення координації, втрата технічних навичок і прийомів; втрата здатності до навчання; збільшується ризик травматизації; порушується динаміка психологічного стану спортсмена, що в підсумку може привести до виникнення перетренированості («спортивна хвороба»).

Для виявлення та контролю використовуються психотест, визначається час стартової реакції, швидкість проведення імпульсу, рівень норадреналіну, адреналіну.

При корекції використовуються фармакологічні препарати:
- адаптогени;
- седативні засоби;
- транквілізатори;
- засоби корекції порушення сну;
- засоби, гальмуючи активність вегетативних центрів.

Адаптогени

Адаптогени – це лікарські засоби в основному природного походження, одержувані з натуральної сировини (частини лікарських рослин або з органів тварин), які мають багато можливостей використання (деякі з них використовуються в східній медицині вже тисячоліття).

Адаптогени не змінюють нормальних функцій організму, але значно підвищують фізичну і розумову працездатність.

Механізми дії цих лікарських засобів різноманітні. Загальний ефект для всіх адаптогенів – неспецифічний розвиток функціональних можливостей, підвищення адаптації організму до складних умов існування.

Адаптогени допомагають переносити навантаження, підвищують стійкість до різних небезпечних факторів (спека, холод, спрага, голод, інфекція, психоемоційні стреси і т.п.). Ці їх якості дозволяють успішно вирішувати поставлені тренувальні завдання і домагатися більш високих результатів на змаганнях (табл. 28).

Оскільки вплив адаптогенів на організм по-різному, рекомендується комбінувати і чергувати адаптогенні препарати, посилюючи їх ефект (табл. 29).

Рекомендується прийом в перші половині дня, так як їх збудливу дію може перешкодити засипанню і нічному сну. Оноваційний ранковий прийом гармонійно вписується в біоритм людини і підвищує працездатність.

Женьшень. Засіб рослинного походження.

Комплекс біологічно активних речовин кореня женьшеню (в основному сапонінових глікозидів-гінсенозідів, а також ефірних масел, стирол, пептидів, вітамінів і мінералів) надає стимулюючу дію на центральну нервову систему, підвищує розумову і фізичну працездатність. Женьшень регулює роботу залоз внутрішньої секреції, знижує рівень холестерину і глюкози в сироватці крові.
Таблиця 28 - Застосування адаптогенів

<table>
<thead>
<tr>
<th>Види спорту</th>
<th>Тренувальні етапи</th>
<th>Іногда</th>
<th>Іногда</th>
<th>Іногда</th>
<th>Іногда</th>
<th>Іногда</th>
</tr>
</thead>
<tbody>
<tr>
<td>Циклічні</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Швидкісно-силові</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Єдиноборства</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Координаційні</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Спортивні ігри</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Таблиця 29 - Застосування найбільш поширених адаптогенів

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Добові дози</th>
<th>Підлітки</th>
<th>Курс</th>
</tr>
</thead>
<tbody>
<tr>
<td>Араляя маньчжурна (настоянка)</td>
<td>30-40 кап.</td>
<td>2 рази</td>
<td>10-14 днів</td>
</tr>
<tr>
<td>Герімакс-Женьшень</td>
<td>1 табл.</td>
<td>1 табл.</td>
<td>10-14 днів</td>
</tr>
<tr>
<td>Герімакс-Енерджі</td>
<td>20 мл</td>
<td>20 мл</td>
<td>5-10 днів</td>
</tr>
<tr>
<td>Герімакс-Драйв</td>
<td>1 табл.</td>
<td>1 табл.</td>
<td>10-14 днів</td>
</tr>
<tr>
<td>Гінсана</td>
<td>1-2 капс.</td>
<td>1 капс.</td>
<td>5-10 днів</td>
</tr>
<tr>
<td>Женьшень (екстракт)</td>
<td>30-40 кап.</td>
<td>2 рази</td>
<td>10 днів</td>
</tr>
<tr>
<td>Заманіха висока (настоянка)</td>
<td>2 рази</td>
<td>-</td>
<td>10-14 днів</td>
</tr>
<tr>
<td>Кропалон</td>
<td>1 капс.</td>
<td>1 капс.</td>
<td>10-14 днів</td>
</tr>
<tr>
<td>Левзея сафлоровидна (екстракт)</td>
<td>3 драже</td>
<td>2 драже</td>
<td>2-3 тижні</td>
</tr>
<tr>
<td>Левзея</td>
<td>10-15 кап.</td>
<td>5-10 кап.</td>
<td>10-14 днів</td>
</tr>
<tr>
<td>Лимонник китайський (настоянка)</td>
<td>20-25 кап.</td>
<td>20-25 кап.</td>
<td>10-14 днів</td>
</tr>
<tr>
<td>Лимонник китайський (порошок)</td>
<td>0,5 г 2 рази</td>
<td>0,5 г</td>
<td>10-14 днів</td>
</tr>
<tr>
<td>Мелаксен</td>
<td>1 табл.</td>
<td>-</td>
<td>Одноразово</td>
</tr>
<tr>
<td>Мілайф</td>
<td>100 мг</td>
<td>-</td>
<td>2-3 тижні</td>
</tr>
<tr>
<td>Пантокрін</td>
<td>30-40 кап.</td>
<td>2 рази</td>
<td>2-3 тижні</td>
</tr>
<tr>
<td>Ревайтл гінсенг плюс</td>
<td>1 капс.</td>
<td>1 капс.</td>
<td>5-10 днів</td>
</tr>
<tr>
<td>Радіола рожева (екстракт)</td>
<td>10-40 кап.</td>
<td>10-40 кап.</td>
<td>10-20 днів</td>
</tr>
<tr>
<td>Сапарал</td>
<td>0,05 г</td>
<td>0,05 г</td>
<td>10-14 днів або одноразово</td>
</tr>
<tr>
<td>Сафінор</td>
<td>2-3 табл.</td>
<td>1 таб.</td>
<td>10-14 днів</td>
</tr>
<tr>
<td>Стеркуля платанолистна (настоянка)</td>
<td>10-40 кап.</td>
<td>10-40 кап.</td>
<td>2-3 тижні</td>
</tr>
<tr>
<td>Елеутерококк (екстракт)</td>
<td>20-40 кап.</td>
<td>20 кап.</td>
<td>3-5 днів</td>
</tr>
</tbody>
</table>

Примітка. Виходячи з поставлених завдань, застосовується один з представлених в таблиці препаратів, що надають максимальну дію.
Застосовується для підвищення рівня працездатності і опірності організму при тривалих фізичних, психічних перевантаженнях і відновлення після них. Незамінний при несприятливих метеорологічних умовах під час змагань, гострих інфекційних захворювань, артеріальної гіпертонії.

Протипоказаний у разі підвищеної збудливості, розладах сну, гострих інфекційних захворювань, артеріальної гіпертонії. Показаний при зміні часових поясів і кліматичних зон.

Побічні дії: тахікардія, порушення сну, нудота, блювота, головний біль.

У женьшеню чітко виражаена сезонність дії: застосування восени і взимку найбільш ефективно.

Лимоник найбільшою мірою (в порівнянні з іншими адаптогенами) підсилює процеси збудження в центральній нервовій системі. Його збудлива дія іноді не поступається за силою дії деяких допінгових препаратів з групи психомоторних стимуляторів. Лимонник помітно підвищує розумову і фізичну працездатність. Як сильний стимулятор ЦНС лимонник використовується в змагальний період.

Родіола робить сильний вплив на поперечно-смугасту кісткову м'язову тканину, а також на м'язи серця (підвищує скорочувальну здатність). Навіть після одноразового прийому родіола зростає м'язова сила і витривалість. Родіола розчаровує виразну активізацію біоенергетики клітин. Збільшуються розміри мітохондрій, зростає їх здатність утилізувати вуглеводи, жирні кислоти, молочну кислоту. Зростає вміст глікогену в м'язах і печінці. Одночасно з посиленнями процесу м'язового скорочення стає сильнішим розслаблення м'язів. В результаті м'язова працездатність відновлюється швидше. За силою загальнозміцнюючого і тонізуючого впливу родіола вважається чи не найсильнішим адаптогеном.

Левзея по прояву анаболічної активності відрізняється від інших адаптогенів. Здатність левзеї підсилювати синтез білка сприятливо позначається на стани печінки. При тривалому прийомі поліпшується енергетичний баланс крові: зростає м'язова сила і витривалість. Левзея активізує процеси розкладання м'язів. Родіола розчаровує зміцнююче та тонізуюче впливу родіола вважається чи не найсильнішим адаптогеном.

Елеутерококк володіє здатністю збільшувати проникність клітинних мембран для глюкози. Елеутерококк використовується і для поліпшення терморегуляції, посилення окислення жирних кислот, профілактики простудних захворювань, поліпшення колірного зору і гостроти зору, в комплексному лікуванні перетренированості.

Аралія надає сильну цукрознижувальну дію. Цукрознижувальна дія аралії маньчжурської іноді викликає підвищення апетиту. Малі дози адаптогенів сприяють процесам анаболізму і застосовуються в період набору м'язової маси. Великі дози адаптогенів підсилюють процеси анаболізму, так і катаболізму. При цьому значно підвищується фізична і розумова працездатність. Активізують дози показані в період тренувальних навантажень, змаганнях.

Герімакс. Комбінований полівітамінний препарат з мікро- і макроелементами і біогенним адаптогеном, екстрактом кореня женьшеню. Комплекс біологічно активних речовин в усіх сучасних варіантах іонізахує дію на центральну нервову систему, підвищує розумову і фізичну працездатність.
гіповітамінозів, авітамінозів і дефіциту мінеральних речовин; стані, що супроводжуються підвищеною потребою у вітамінах і макро- і мікроелементи (в тому числі при станах стресу або перевтоми, для поліпшення загальної опірності організму, а також в період одужання після перенесених захворювань).

 Протипоказання. Артеріальна гіпертензія, підвищена збудливість; захворювання, що супроводжуються накопиченням заліза в організмі (для Герімакс-Енерджі); підвищена чутливість до компонентів препарату.

 Побічна дія. При застосуванні у високих дозах – порушення сну.

 Особливі вказівки. Не слід перевищувати рекомендовані дози препарату. Слід мати на увазі, що при застосуванні Герімакс-Енерджі одночасно з препаратами, що містять вітамін А, підвищується ризик розвитку передозування останнього. Не рекомендується застосовувати Герімакс дітям і підліткам у віці до 15 років.

 Форми випуску: Герімакс-Женипень – 200 мг екстракту женьшеню; Герімакс-Енерджі – 85 мг екстракту женьшеню, 37,5 мг екстракту зеленого чаю, 10 вітамінів, 7 мінералів; Герімакс-Драйв – 20 мг екстракту женьшеню, 483 мг екстракту гуарани.

 Адаптогени поєднуються з лікарськими препаратами, вітамінами, іншими рослинними препаратами.

 Адаптогени підсилюють дію кофеїну, гуарани, послаблюють дію заспокійливих і снодійних препаратів.

 Ноотропи
У період інтенсивних тренувальних навантажень або змагальної діяльності відбувається перерозподіл кровотоку на користь працюючих м'язів, що викликає порушення постачання мозку киснем, зниження енергетичного обміну в клітинах мозку і гальмування його функцій. Ноотропи в цьому випадку підвищують рівень енергетичного обміну в клітинах мозкової тканини, розвивають потенційні нейрофізіологічні можливості, що призводить до зняття втоми, підвищення конценстрації уваги (табл. 30).

 Ноотропи – це препарати, які надають прямий активізуючий вплив на інтеграційні механізми мозку, що стимулюють навчання, поліпшують пам'ять і розумову діяльність, підвищують стійкість мозку до стресових впливів, що поліпшують кортико-субкортикальні зв'язки. Ноотропи покращують координацію, прискорюють відновлення втраченних технічних навичок і прийомів в спортивній діяльності.

 Ноотропні препарати діють на обмінні процеси, тому їх розглядають як засоби «метаболічної терапії» (табл. 31,32).

 Таблиця 30 - Застосування ноотропів

<table>
<thead>
<tr>
<th>Види спорту</th>
<th>Тренувальні етапи</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Підготовчий</td>
<td>Базовий</td>
<td>Специфічна підготовка</td>
<td>Предмагащий</td>
</tr>
<tr>
<td>Циклічні</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Швидкісно-силові</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Єдиноборства</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Координаційні</td>
<td>*</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Спортівні ігри</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблиця 31 - Ноотропи

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Добові дози</th>
<th>Курс, тижні</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Дорослі</td>
<td>Підлітки</td>
</tr>
<tr>
<td>Ацефен</td>
<td>0,1 г 3 рази</td>
<td>-</td>
</tr>
<tr>
<td>Аміналон</td>
<td>0,15 г 3 рази</td>
<td>0,25 г 3 рази</td>
</tr>
<tr>
<td>Гліатідін</td>
<td>1 капс. 2-3 рази</td>
<td>-</td>
</tr>
<tr>
<td>Луцетам</td>
<td>2 табл.</td>
<td>1табл.</td>
</tr>
<tr>
<td>Ноотропіл</td>
<td>0,8 г 2 рази</td>
<td>0,4 г 3 рази</td>
</tr>
<tr>
<td>Пірамен</td>
<td>0,8 г 3 рази</td>
<td>0,4 г 2-3 рази</td>
</tr>
<tr>
<td>Пантогам</td>
<td>0,5 г 2-3 рази</td>
<td>0,25 г 3 рази</td>
</tr>
<tr>
<td>Пірілітол</td>
<td>0,1 - 0,3 г 2 рази</td>
<td>0,05-0,1 г 3 рази</td>
</tr>
<tr>
<td>Фенібут</td>
<td>0,25 г 2-3 рази</td>
<td>0,25 г 1-2 рази</td>
</tr>
<tr>
<td>Енцефабол (драже)</td>
<td>-</td>
<td>0,1 г 1-3 рази</td>
</tr>
<tr>
<td>Енцефабол (5% розчин)</td>
<td>-</td>
<td>1 ч.л. 2 рази</td>
</tr>
</tbody>
</table>

Примітка. Заставосується один з представлених у таблиці препаратів, вже випробуваний і надає максимальне дію з мінімальними ускладненнями і побічними ефектами.

Препарати не рекомендують призначати у вечірні години, а також при вираженому психомоторному збудженні.

Таблиця 32 - Церебропротективний ефект різних препаратів

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Підвищення стійкості до гіпоксії</th>
<th>Покращення кровопостачання і енергетики мозгу</th>
<th>Підвищення навченості і координації</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пірацетам</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(ноотропіл)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Аміналон</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Пантогам</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Гліатілін</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Кавінтон</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Луцетам</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Фенібут</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Енцефабол</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Гліатілін. Дія гліатіліну нейропротективна. Холіно-міметик центральної дії. Проникає через гематоенцефалічний бар’єр і служить донором для біосинтезу ацетилхоліну. Попередник фосфоліпідів мембран, бере участь в анатолічних процесах, відповідальних за мембранний, фосфоліпідний і гліцероліпідний синтез.

Показаний до застосування в спорті в разі черепно-мозкової травми (в гострий і відновний періоди); при хронічної цереброваскулярної недостатності (дисциркуляторна енцефалопатія); ішемічному інсульті; деменції різного генезу.

При застосуванні можлива нудота.

Луцетам. Циклічне похідне гаммаамінобутірної кислоти. Чинить позитивний вплив на обмінні процеси і кровообіг головного мозку. Стимулює окислюально-відновні процеси, посилює утилізацію глукози, покращує регіонарний кровотік в ішемізованих ділянках мозку. Збільшує енергетичний потенціал організму за рахунок прискорення метаболізму АТФ, підвищення активності аденилат-циклази і пригнічення нуклеотидфосфатази. Підсилює синтез ядерної РНК в головному мозку. Покращує енергетичні процеси і призводить до підвищення стійкості тканин головного мозку до гіпоксії і токсичного впливу. Препарат покращує інтегративну діяльність головного мозку, сприяє консолідації пам’яті, полегшує процеси навчання, відновлює та стабілізує порушені функції мозку.
Крім того, луцетам пригнічує агрегацію тромбоцитів. Він усуває порушення мікроциркуляції в тканини головного мозку, викликані деформованими еритроцитами. В експерименті встановлено, що луцетам сприяє протекторну дію на головний мозок при гіпоксії, травмі, інтоксикаціях, а також при Електросудомна впливі. Седативну і анксиолітичну дію у Луцетаму® відсутня.

При прийомі всередину швидко і практично повністю абсорбується з шлунково-кишкового тракту. Максимальна концентрація досягається приблизно через 30-60 хв, пік концентрації в спинномозковій рідині – через 2-8 годин. Біодоступність близька до 100%.

Не зв'язується з білками плазми крові. Розподіляється у всіх органах і тканинах, проникає через гематоенцефалічний бар'єр. Вибірково накопичується в тканинах кори головного мозку, переважно в лобних, тім'яних і потиличних долях, в мозочку і базальних гангліях.

Луцетам не метаболізується у організмі людини. Період напіввиведення з плазми крові становить 4-5 годин, період напіввиведення із спинномозкової рідини – 6-8 годин. Виводиться переважно з сечею в незміненому вигляді. У разі появі рідко великих випадків витіснення з мозкової рідини (гігантська рідина) виводиться за 6-8 годин.

Показання в спорти. Для підвищення стійкості мозку до стресових впливів, гіпоксії; поліпшення пам'яті і розумової діяльності. При зниженні концентрації уваги, ємоційної лабільності; порушення здатності до навчання у дітей, які не пов'язані з неадекватним навчанням або особливостями сімейної обставини (в складі комбінованої терапії); порушення мозкового кровообігу внаслідок травм головного мозку. Станах після травм головного мозку, хірургічного втручання, інсульту.

Побічна дія. З боку травної системи: рідко – диспепсичні явища, болі в животі. З боку центральної нервової системи: рідко – нервозність, збудження, неспокій, розлади сну, заморочення, головний біль, тремор, в деяких випадках – слабкість, сонливість. Інші: підвищення сексуальної активності.

Протипоказання. При підвищений чутливості до пірацетаму. З обережностю застосовують при нирковій недостатності. Рекомендується постійний контроль за показниками функції нирок. У разі появи першого симптому сну рекомендується відмити вечірній прийом препарату.

Пантоам. Послугує стимулюючу активність по відношенню до різних проявів церебральної недостатності з протисудомними властивостями, зменшує моторну збудливість, активує розумову діяльність і фізичну працездатність.

Показання в спорти. Перетренуваність. Призначають як коректор при побічних діях нейролептичних засобів. При підкіркових гіперкінезів різної етіології застосовують в комплексній терапії для лікування наслідків нейроінфекції і травм черепа.

Пірацетам (пірамем, ноотроп іл). Робить позитивний вплив на обмінні процеси і кровообіг мозку. Підвищує утилізацію глюкози, покращує перебіг метаболічних процесів, покращує мікроциркуляцію в ішемізованих зонах, інгібує агрегацію активованих тромбоцитів. Надає захисну дію при ушкодженнях мозку, що викликаються гіпоксією, інтоксикацією, електрошоком. Покращує інтегративну діяльність мозку. Не має седативного та психостимулюючої дії.

При прийомі всередину швидко і практично повністю виключається з шлунково-кишкового тракту. Максимальна концентрація в плазмі досягається приблизно через 30 хв, в лікворі – через 2-8 годин. Уявний об'єм розподілу становить 0,6 л/кг. Чи не зв'язується з білками плазми крові.

Розподіляється у всіх органах і тканинах, проникає через гематоенцефалічний бар'єр і плацентарний бар'єр. Вибірково накопичується в тканинах кори головного мозку, переважно в лобних, тім'яних і потиличних долях, в мозочку і базальних гангліях.
Період напіввиведення з плазми становить 4-5 годин, з лик-здії – 6-8 годин. Виводиться нирками в незміненому вигляді. При нирковій недостатності період напіввиведення збільшується.

Показання в спорти. Підвищення стійкості мозку до стресових впливів, гіпоксії.

Порушення пам'яті, запаморочення, зниження концентрації уваги, емоційна лабільність. Порушення мозкового кровообігу внаслідок травм головного мозку. Поліпшення пам'яті і розумової діяльності. Порушення здатності до навчання у дітей, які не пов'язані з неадекватним навчанням або особливостями сімейної обставини (в складі комбінованої терапії).

Побічна дія. З боку травної системи: рідко – диспепсичні явища, болі в животі. З боку центральної нервової системи: рідко – нервозність, збудження, дративливість, неспокої, розлади сну, запаморочення, головний біль, тромб, в деяких випадках – слабкість, сонливість. Інші: підвищення сексуальної активності.

Піредітол (пурітінол, енербол). Позитивно впливає на процеси обміну в центральній нервовій системі, прискорює процеси проникнення глюкози через гематоенцефалічний бар'єр, знижує надмірне утворення молочної кислоти, покращує процеси проникнення вільних жирних кислот, амінокислот і оцтової кислоти в тканини мозку. Підвищує стійкість тканин мозку до гіпоксії.

Показання в спорти: тренування в гліколітичному режимі; підвищення стійкості тканин мозку до гіпоксії при високих фізичних навантаженнях; поліпшення координації при розучуванні нових рухових актів; комплексна терапія депресивних станів. Для зниження рівня лактатазидозу.

Енцефабол. Виявляє елементи психотропної активності. Активує метаболічні процеси в центральній нервовій системі, сприяє прискореному процесу проникнення глюкози через гематоенцефалічний бар'єр, знижує надлишкове утворення молочної кислоти, підвищує стійкість тканин до гіпоксії.

Показання: для підвищення стійкості мозку до стресових впливів, гіпоксії. У разі порушения пам'яті, зниження концентрації уваги, емоційної лабільністі. Для поліпшення пам'яті і розумової діяльності. Малотоксичний. Не рекомендується приймати у вечірні години.

Стимуляція ЦНС ароматичними маслами з метою збільшення фізичної працездатності

Ароматерапія в спорти при кваліфікованому застосуванні розкриває додаткові резерви підвищення працездатності (табл. 33).

Існує прямий зв'язок нюхових рецепторів слизової носа з лімбічною формію мозку, причому функція зіставлення запахів пов'язана виключно з правою півкулею. У людей з домінуючим правоінім переробки інформації нюх грає лише роль в психологічній адаптації.

Для основної ж маси «лівопівкулевих» індивідів нюх втратив свою роль. У них частіше виникає почуття тривоги, що може послужити поштовхом до розвитку психосоматичних захворювань. Нейрофізіологи вважають, що таким людям необхідна своєрідна корекція нюху.

Головним елементом ароматерапії будь-якої спрямованості є чисті ефірні масла рослинного походження.

Ефірні масла – очищені екстракти з ароматичних рослин, квітів, смол, які
використовуються для поліпшення як фізичного, так і емоційного здоров'я, а також для лікувальних цілей.

Оскільки ефірні масла являють собою невеликі молекули, вони здатні проникати через шкіру і надавати свою дію на організм, де вони зв'язуються з жирами, що входять до складу клітин, в той час як звичайні рослинні масла залишаються на поверхні шкіри.

<table>
<thead>
<tr>
<th>Ефірне масло</th>
<th>Використання</th>
<th>Випарник</th>
<th>Ванна</th>
<th>Масаж</th>
</tr>
</thead>
<tbody>
<tr>
<td>Апельсинове</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Базилікове</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Бергамотове</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Гераневе</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Кіпарісове</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Лавандове</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Лимонне</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Можжевелове</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>М'ятне</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Розмаринове</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Рожеве</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Соснове</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Фенхелєве</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Чабрєцове</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Шалфейне</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Евкаліптове</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Крім того, ефірні масла легко розчиняються в спирті, емульгаторах, що робить їх більш доступними в побутовому вживанні. Унікальний хімічний склад кожного масла визначає його аромат, колір, летючість і, звичайно, шляхи впливу на організм.

Застосування ефірних масел залежить від механізму і способу впливу, індивідуального сприйняття запаху, типу шкіри. Ароматичні ефірні масла при застосуванні в спортівній практиці найчастіше використовуються з масажем, в випарнику, з ваннами.

Ефірні масла сильно концентровані, тому їх призначають в краплях.

Масаж. Використання масажу — класичний метод ароматерапії. Спільна дія спортивного масажу і ефірних масел підсилює крово- і лімфообіг. Ароматичні речовини впливають на тіло — і на емоційні центри головного мозку, що керують настроєм. Для масажу використовується 1-3% розчин ефірного масла в олії-основі (базовому, транспортному маслі). Транспортні масла екстрагуються з горіхів, з зерен кісточок фруктів, насіння і т.д. Завжди необхідно змішувати ефірні масла з транспортними при нанесенні їх на шкіру, так як чисті ефірні масла можуть викликати опік або роздратування. Крім того, ефірні масла, змішані з транспортними маслами, більш рівним шаром лягають на шкіру. Користуватися тальком при спортивному масажі не рекомендується, так як він забиває пори, перешкоджає повністю обміну речовин, дихання шкіри, сушить її.

Випарники (ароматичні). В спеціальні посудини з водою капають 3-6 крапель олії (в залежності від об’єму ім’я). Нагрівання чашечки випарника свічкою, гарячою водою, електрострумом створює довготривалий ефект. Випаровувати масло можна зі спеціально просоченої серветки, використовуючи вентилятор.

На рівновагійному спосіб використання ефірних масел: нанести на носовищок 3-4 краплі олії і вдихати його аромат. Цей метод можна застосовувати і для стимуляції під час змагань.

Ванни. Налити у ванну гарячу воду і додати 5-10 крапель ефірного масла на свій вибір. При чутливій шкірі рекомендується попередньо розчинити ефірне масло в маслі-основі — мигдальному, абрикосовому або персиковому. Рекомендована тривалість процедури — 15-20 хв. При більш тривалому часі клітини шкіри переповнюються водою і набухають.
Ароматична ванна допомагає при головному болю, знімає втому і напругу.
Ароматерапія при вмілому застосуванні – потужний засіб в досягненні високого спортивного результату. Наш досвід роботи з ароматичними речовинами дозволяє рекомендувати більш широке застосування ароматерапії в спорті вищих досягнень.
Зазвичай ароматерапію поєднують з іншими засобами з метою комплексного впливу на центральну нервову систему і організм в цілому.

Регулятори психічного стану
Як засоби, що регулюють психічний статус, спортсмени застосовують седативні (заспокійливі, розслаблюючі) препарати. Застосовують ці препарати при важких фізичних навантаженнях для зняття стану збудження, розладах сну, пов’язаних з перепорушеннями; а також у складі комбінованої терапії при легких функціональних порушеннях з боку серцево-судинної і травної системи (табл. 34, 35). Седативні препарати мають здатність ефективно нормалізувати сон і психоемоційні розлади і дозволяють не знижувати на наступний день швидкість і точність рухових реакцій.

Таблиця 34 - Застосування регуляторів психічного стану

<table>
<thead>
<tr>
<th>Види спорту</th>
<th>Тренувальні етапи</th>
<th>Змагальний</th>
<th>Відновлювальний</th>
</tr>
</thead>
<tbody>
<tr>
<td>Підготовчий</td>
<td>Базовий</td>
<td>Спеціальної подготовки</td>
<td>Предзмагальний</td>
</tr>
<tr>
<td>Циклічні</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Швидкісно-силові</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Єдиноборства</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Координаційні</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Спортивні ігри</td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Таблиця 35 - Препарати регулятори психічного стану

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Добові дози</th>
<th>Курс</th>
</tr>
</thead>
<tbody>
<tr>
<td>Валеріана</td>
<td>1-2 драже на ніч</td>
<td>Одноразово</td>
</tr>
<tr>
<td>Гептрал</td>
<td>2 табл.</td>
<td>3 тижні</td>
</tr>
<tr>
<td>Івадал</td>
<td>10 мг на ніч</td>
<td>Одноразово</td>
</tr>
<tr>
<td>Натрію бромід</td>
<td>0,1-1 г на 3-4 рази</td>
<td>2-3 тижні</td>
</tr>
<tr>
<td>Негрустін</td>
<td>1 капс.</td>
<td>1-2 тижні</td>
</tr>
<tr>
<td>Ново-Пассіт</td>
<td>1 табл. (1 ч.л.)</td>
<td>2-3 тижні</td>
</tr>
<tr>
<td>Мелаксен</td>
<td>3 мг</td>
<td>Одноразово</td>
</tr>
<tr>
<td>Мелатонін</td>
<td>3 мг</td>
<td>Одноразово</td>
</tr>
<tr>
<td>Енеріон</td>
<td>2 таб. (400 мг)</td>
<td>4 тижні</td>
</tr>
</tbody>
</table>

Примітка. Застосовується один з представлених в таблиці препаратів, вже випробований і надає максимальне дію з мінімальними ускладненнями і побічними ефектами.

До групи, яка в більшій чи меншій міри регулює психічний статус у спортсменів, відносяться:
1) засоби корекції порушень сну;
2) антигістамінні препарати;
3) засоби корекції надлишкових психічних реакцій:
 а) седативні засоби – звіробій, кора білої верби, валеріана, пустырник, солі брому, пасифлора і т. п.;
 б) транквілізатори;
 в) кошти, які гальмують збудження вегетативних центрів.

Здебільшого перераховані засоби ефективно нормалізують сон і психоемоційні розлади, але знижують (крім п. За) на наступний день швидкість і точність рухових реакцій. Барбітурати, крім того, при регулярному прийомі викликають звикання, порушують функцію печінки, до того ж включені в допінговий реєстр. Транквілізатори заборонені до застосування в складноюкоординаційних і технічних прикладних видах спорту.

Існує і така проблема, як астенія – самий часто зустрічаючий (60%) симптомокомплекс серед спортсменів, які звертаються за лікарською допомогою. Причини астенії: емоційний стрес (45%), перевтома (33%), наслідки вірусних інфекцій (8%), хронічні інтоксикації (4%), соматичні захворювання.

Астенія впливає на:
- психологічний стан – можливі коливання настрою і зниження впевненості в собі;
- фізичний стан – знижується працездатність і підвищується стомлюваність;
- інтелект – порушується пам’ять і концентрація уваги;
- статеву функцію – знижується лібідо і погіршується ерекція. Препарат вибору при астенії у спортсменів – енеріон.

Валеріана. Засіб рослинного походження (використовується корінь і кореневище). Викликає помірно виражений седативний ефект. Седативний ефект проявляється повільно, але досить стабільно. Валеріана полегшує настання природного сну. Володіє слабкою спазмолітичною дією.

Комплекс біологічно активних речовин валеріани лікарської має жовчогінну дію, посилює секреторну активність слизової шлунково-кишкового тракту, уповільнює серцевий ритм і розширює коронарні судини. Регуляція серцевої діяльності опосередковується через нейрорегуляторних механізмів і прямий вплив на автоматизм і провідну систему серця. Лікувальна дія проявляється при систематичному і тривалому курсовому застосуванні.

Показання до застосування в спорти: важкі фізичні навантаження – для зняття стану збудження; розлади сну, пов’язані з перепорушенням; відновний період; легкі функціональні порушення з боку серцево-судинної і травної системи (як правило, в складі комбінованої терапії).

Приймають всередину, частіше на ніч по 1-2-3 таб. (Необхідно враховувати вагу). При застосуванні у високих дозах можливі млявість, пригніченість, слабкість, зниження працездатності. Валеріана потенціює дію снодійних, седативних засобів, спазмолітиків.

Звіробій. Використовується стебло і листя рослини. Як лікарської форми можливе застосування настоянки, відвару або готових лікарських форм (Негрустін, ново-Пасит). Зменшує прояві депресії. Застосовується при порушених сну, стан занепокоєння, симптоматичних і реактивних депресіях; як додатковий засіб при ендогенних депресіях, а також при захворюваннях легенів, шлуника, кишечника, жовчного міхура. Надає стимулюючу дію на органи шлунково-кишкового тракту, кровообіг, володіє загальною тонізуючою дією.

Гліцин (амінооцтова кислота 0,1 г) – регулятор тканинного обміну. Препарат нормалізує процеси збудження і гальмування в центральній нервовій системі, має антистресовий ефект, підвищує розумову працездатність.

Біотредін (троенін 0,1 г, піридоксин гідрохлорид 0,005 г) – регулятор тканинного обміну. Нормалізує роботу клітин головного мозку. Застосовується для підвищення розумової працездатності і концентрації уваги.

Нейробутал (кальцію гамма-гідроксібутірат). Крім снодійного і седативного ефекту
володіє відновлюючою і антигіпоксичною дією; застосування не викликає синдрому відміни на наступний день.

Енеріон (сульбутіамін). Засіб, що регулює метаболічні процеси в ЦНС.

Препарат енеріон – синтетична сполука, близька за будовою до тіаміну. Сульбутіамін: добре розчинний в жирах, швидко всмоктуються з шлунково-кишкового тракту і легко проникає через гематоенцефалічний бар’єр; на відміну від тіаміну, здатний накопичуватися в клітинах ретикулярної формаций; має специфічну фармакологічну дію. Ефективність енеріону вивчали в ході плацебо-контрольованих клінічних досліджень, що включали психометричні тести, оцінюючи шкали та ін. Результати цих досліджень свідчать про високу ефективність препарату при симптоматичному лікуванні хворих з функціональними астенічними станами.

Після прийому всередину сульбутіамін швидко всмоктуються з шлунково-кишкового тракту, максимальна концентрація в плазмі крові досягається через 1-2 год. Період напіввиведення становить близько 5 годин. Виводиться з сечею.

Ефект проявляється з 5-7 дня прийому препарату; максимальні дії – через 3 тижні.

Застосовують при зниженні витривалості, розладі уваги, здатності до концентрації; зниженні мотивації, відсутності впевненості в собі. При тривалих захворюваннях, після оперативних втручань.

Протипоказаний при підвищенні чутливості до сульбутіаміну. Препарат не призначається дітям.

При передозуванні препарату може спостерігатися збуджений стан з явищами ейфорії і тромору кінцівок. Ці симптоми швидко проходять і не вимагають спеціального лікування.

Протипоказаний при підвищенні чутливості до сульбутіаміну. Препарат не призначається дітям.

При передозуванні препарату може спостерігатися збуджений стан з явищами ейфорії і тремору кінцівок. Ці симптоми швидко проходять і не вимагають спеціального лікування.

3.9 Скорочувальна здатність міокарда

Протицино зниження скорочувальної здатності міокарда є перетрениренування, тобто посилене фізичне навантаження протягом тривалого часу, що перевищує фізіологічні можливості спортсмена. Причиною скорочувальної здатності міокарда є перетренирівування, тобто посилене фізичне навантаження протягом тривалого часу, що перевищує фізіологічні можливості спортсмена.

Зниження скорочувальної здатності міокарда відбувається внаслідок порушення метаболічних процесів в серцевому м'язі.

Для виявлення порушень і контролю діяльності серця проводяться такі дослідження: ЕКГ, фрактальний аналіз серцевого ритму, добовий ЕКГ-моніторинг, функціональні проби, Ехо-КГ.

Корекція проводиться введенням енергетичних препаратів і в першу чергу фосфокреатину. Призначаються засоби, що регулюють обмін в серцевому м'язі і поліпшують мікроциркуляцію крові.

Біохімічні процеси в тканинах серцевого м'яза. Клітини м'язової тканини серця (кардіоміоцити) здійснюють найбільш напружений роботу в організмі, тому їх можна вважати абсолютною рекордсменами серед клітин інших тканин як за кількістю вироблюваної АТФ, так і за обсягом споживаного кисню.

Роль серця в життєдіяльності організму вкрай відповідальна. Серце виконує функцію насоса, що забезпечує надходження крові в усі тканини, і цю роль вона повинна виконувати швидко в умовах різко мінливих навантажень, отримуючи лише нетривали перепочинки під час кожної діастоли. Забезпечуючи максимально високий кровоток в будь-якому органі в період систоли (коли артеріальний тиск максимальний), сам серцевий м'яз виявляється в цей
момент у вкрай несприятливих умовах. У цей період кровотік в ній майже відсутній. Кровотік в стінці лівого шлуночка виникає тільки під час діастоли, коли серцевий м'яз розслабляється і більше не здавлює стінки судин. З цієї причини загальна кількість крові в серці невелика порівняно з іншими тканинами. Цьому сприяє і незвичайно високий вміст гліколітичного розщеплення глюкози в кардіоміоцитах. Останні займають до 35% від обсягу цитоплазми.

Як відомо, роль основних субстратів для покриття енергетичних потреб міокарда в нормі виконує жиру. Вони з потоком крові надходять з печінки або жирових депо тканин. У матриксі мітохондрій здійснюється (окислення цих субстратів. Кислоти з коротким вуглецевим ланцюгом (до 12 атомів вуглецю) здатні проникати з цитоплазми чи вийти з нії, але переважна більшість жирних кислот зазвичай надходить через внутрішню мембрану мітохондрій в ацил-КоА (єфір транспортується коферментом А), який в результаті змінюється в ацетил-КоА – субстрат для циклу трикарбонових кислот.

При фізичному навантаженні в умовах гіпоксії знижується приплив кисню, так і енергетичних субстратів. У цьому випадку діяльність серця підтримується за рахунок відключення енергетичних запасів, в першу чергу запасів креатинфосфату. Наявних резервів вистачає приблизно на 5 хвилин праці. За підтримки жирних кислот відбувається активна діяльність серця в умовах гіпоксії на першому етапі, на першому етапі (в перехіді мітохондрій з ініціального стану в активне дихання). Процес стимулюється за рахунок збільшення вмісту АТФ в клітині. Однак активація комплексу I дихального ланцюга нетривала, і через дефіцит кисню збільшується вміст НАДН і убіхінола, що стає пусковим механізмом для заміни субстратної ділянки з комплексу I на комплекс II (див. рис. 3).

У міру зниження вмісту АТФ в клітині спостерігається зменшення АТФ-залежних реакцій, в тому числі синтезу ацилкарнітину, що порушує норму. В клітині відбувається активна діяльність серця в умовах гіпоксії на першому етапі, на першому етапі (в перехіді мітохондрій з ініціального стану в активне дихання). Процес стимулюється за рахунок збільшення вмісту АДФ в клітині. Однак активація комплексу I дихального ланцюга нетривала, і через дефіцит кисню в мітохондріях зростає вміст НАДН і убіхінола, що стає пусковим механізмом для перемикання субстратної ділянки з комплексу I на комплекс II (див. рис. 3).

У міру зниження вмісту АТФ в клітині змінюється енергетичність клітин, на першому етапі спостерігається активна діяльність серця в умовах гіпоксії на першому етапі, на першому етапі (в перехіді мітохондрій з ініціального стану в активне дихання). Процес стимулюється за рахунок збільшення вмісту АДФ в клітині. Однак активація комплексу I дихального ланцюга нетривала, і через дефіцит кисню в мітохондріях зростає вміст НАДН і убіхінола, що стає пусковим механізмом для перемикання субстратної ділянки з комплексу I на комплекс II (див. рис. 3).
цитоплазмі мітохондрій вміст даного іонів в 1000 разів більше, ніж в цитоплазмі, при зниженні активності Ca²⁺-АТФази спостерігається мимовільний зворотній потік іонів Ca²⁺ мітохондрій в цитоплазму. Аналогічний потік іонів Ca²⁺ спостерігається з іншого депо іонів – сар-клітини, які розглядаються у продовженій іонна в 1000 разів більше, ніж в цитоплазмі. При зниженні активності Ca²⁺-АТФази, при зниженні змісту іонів Ca²⁺ до 5-7 мкм спостерігається скорочення міоцитів, а при зниженні змісту іонів до 0,1 мкм в результаті їх аккумуляції в саркоплазматичному ретикулум міокарда, відповідально за зниження енергодефіцитного стану сердечних міоцитів та обмежує АТФ-залежну аккумуляцію надлишку іонів Ca²⁺.

Одночасно з Ca²⁺- АТФази спостерігається зниження активності Na⁺, К⁺- АТФази, що регулює вміст основних іонів в клітинах. Іони Na⁺ спрямовуються всередину клітини, а іони K⁺ випливають з цитоплазми в міжклітинний простір. Внаслідок зміни концентрації іонів Na⁺ і K⁺ у клітинах, що вирівнюють осмотичний тиск, в клітку спрямовуються потоки води, що вирівнюють осмотичний тиск.

Порушення концентрацій іонів Na⁺ і K⁺ веде до зміни біоелектричної активності клітин, зниження потенціалу спокою, швидкості і тривалості потенціалу дії. Порушення мембранного потенціалу призводить до енергетичного дефіциту, а потім при реперфузії тканини, адаптованої до гіпоксії, клітини виявляються в стані окислювального стресу.

Утворення високих концентрацій оксидантів як при ішемії, так і при реперфузії веде до виснаження системи антиоксидантного захисту, що негайно виявляється в інтенсифікації деструктивних процесів. Вільні радикали атакують мембрани або модифікують білки, в першу чергу транспортні. І це робить такі білки менш доступними для активації вільними радикалами. І це робить такі білки менш доступними для інактивації вільними радикалами. В обох випадках використання антиоксидантів зменшує деструктивну дію, пригнічує розвиток аритмій, стабілізує серцевий ритм.

Особливості адаптації серця спортсмена. При фармакологічному захисту серцево-судинної системи особливо контролюється ризик зниження скорочувальної здатності міокарда і втрати еластичності клапанного апарату серця і судин. Спортивна медична (Дембо О.Г., Дібнер Р.Д., Земцівський Е.М.) виділяє особливості ЕКГ у спортсменів:

– синусова брадикардія (помірна – 50-55, виражена – менше 50 скорочень на хвилину);
– синусова аритмія (до 15%);
– ектопічний передсердній ритм в спокої з відновленням синусового ритму після фізичного навантаження;
– неповна блокада правої нижки пучка Гіса постійного характеру;
– синдроми предвозбуждення шлунокв (крім WPW, CLC);
– деформації шлункового комплексу, що проходять на вдиху, які не є наслідками клінічно підтверджених захворювань серцево-судинної системи;
– помірне подовження інтервалу QT (не більше 10%) у спортсменів, що тренують витривалість;
– атріовентрикулярні блокади І ступеня;
– стійкий синдром раниї реполяризації у спортсменів, що тренують витривалість.

Ця умовна норма в будь-який момент при інтоксикації метаболітами (ендогенними або екзогенними) може вийти за рамки своєї умовності.

Метаболічні порушення в міокарді виражаються в зміні положення на ЕКГ сегмента S-T, зміні тривалості інтервалів P-Q, Q-T, зміні комплексу QRS і зниження або інверсії зубця T, зміні ритму серцевих скорочень аж до появи екстрасистол. В якості додаткового дослідження застосовуються ЕхоКГ, функціональні проби, добовий ЕКГ-моніторинг.

Якщо розглядати метаболічні зрушения, як сукупність відмінних від норми станів адаптації, обумовлених змінениою реактивністю, внаслідок тривалого напруження, що перевищує індивідуальну фізіологічну норму функціонування системи, можна говорити про напруження в роботі серця. Якщо процес не зупиняється, він, протягом тривалого часу, приводить до виникнення енергетичної неповної реапаратури. Якщо процес не зупиняється, він, протягом тривалого часу, приводить до виникнення енергетичної неповної реапаратури.

Лікування проводиться після того, як виявлено тип порушення в роботі серця. Найчастіше це змінені процеси реполяризації по дисметаболічному або вегето-дисрегуляторному типу; дисциркуляторні форми за гіпертонічним або гіпотенічним типом; аритмії; змішані форми порушень.

Фармакологічний захист серця спортсмена. Забезпечення достатньої енергії при уповільнені окиснювальних процесів метаболізму – ключовий момент при пошкодженні клітин міокарда. Цей фактор набуває особливого значення в клінічній практиці, так як недостатнє тканинне зміст фосфокреатина призводить до ослаблення силы скорочення серця і здатності його до функціонального відновлення.

Так, при ураженні міокарда існує тісний зв’язок між вмістом в клітці високоенергетичних фосфорилованих з’єднань, здатності до виживання клітини і здатності до відновлення функції скорочення.

Кардіозахисною дією фосфокреатину пов’язано зі стабілізацією сарколеми, з інтенсифікацією клітинного резервуара ензимів, необхідних для підтримки макроергів на достатньому рівні.

Введення високоенергетичних фосфорилованих з’єднань (макроергів) обмежує ураження міокарда і складає основу в метаболічному захисту серця, а також сприяє відновленню функції скорочення. Клітини серця особливо потребують ефективного энергетичного забезпечення, оскільки містять велику кількість мітохондрій. Загибель клітини починяється з пошкодження мембран мітохондрій.

У циклічних видах спорту, спрямованих на переважне розвиток витривалості/наповнення метаболітів (молочна кислота та ін.), що викликають вазодилатацію судин м’язів і шкіри, може привести до постнагрузочного колапсу.

Для кардіозахисної корекції при виражених метаболічних порушеннях внаслідок екстремальних фізичних навантажень застосовуються:
– неотон (фосфокреатин) 2-4 г, в / в, повільно, одноразово або в тому ж дозуванні, 5-7 днів;
– креатин моногідрат, 3-5 г (доза залежить від ваги спортсмена) на добу, 2-4 тижні;

Лікування проводиться після того, як виявлено тип поруш ення в роботі серця. Найчастіше це змінені процеси репол яризації по дисметаболічному або вегето-дисрегуляторному типу; дисциркуляторні форми за гіпертонічним або гіпотенічним типом; аритмії; змішані форми порушень.

Фармакологічний захист серця спортсмена. Забезпечення достатньої енергією при уповільніх окиснювальних процесів метаболізму – ключовий момент при пошкодженні клітин міокарда. Цей фактор набуває особливого значення в клінічній практиці, так як недостатнє тканинне зміст фосфокреатина призводить до ослаблення силы скорочення серця і здатності його до функціонального відновлення.

Так, при ураженні міокарда існує тісний зв’язок між вмістом в клітці високоенергетичних фосфорилованих з’єднань, здатності до виживання клітини і здатності до відновлення функції скорочення.

Кардіозахисною дією фосфокреатину пов’язано зі стабілізацією сарколеми, з інтенсифікацією клітинного резервуара ензимів, необхідних для підтримки макроергів на достатньому рівні.

Введення високоенергетичних фосфорилованих з’єднань (макроергів) обмежує ураження міокарда і складає основу в метаболічному захисту серця, а також сприяє відновленню функції скорочення. Клітини серця особливо потребують ефективного энергетичного забезпечення, оскільки містять велику кількість мітохондрій. Загибель клітини починяється з пошкодження мембран мітохондрій.

У циклічних видах спорту, спрямованих на переважне розвиток витривалості/наповнення метаболітів (молочна кислота та ін.), що викликають вазодилатацію судин м’язів і шкіри, може привести до постнагрузочного колапсу.

Для кардіозахисної корекції при виражених метаболічних порушеннях внаслідок екстремальних фізичних навантажень застосовуються:
– неотон (фосфокреатин) 2-4 г, в / в, повільно, одноразово або в тому ж дозуванні, 5-7 днів;
– креатин моногідрат, 3-5 г (доза залежить від ваги спортсмена) на добу, 2-4 тижні;
– амінокислоти з розгалуженими ланцюгами в достатніх дозах;
– анаболічні препарати, екстраговані з рослинної сировини;
– препарати калия и магния: магнерот, калия оротат, аспаркам (панангин) по 1 таб. 3 раза в день, 3 недели;
– рибоксин (інозин) по 1 таб. 3 рази на день, 3 тижні;
– бенфогамма, по 1 драже щодня, 3-4 тижні;
– бурштинова кислота 0,25-0,5 г 2-3 рази на день після закінчення курсу неотону;
– маточне молочко (апілак), бджолиний пилок (хлібина, бджолине обніжжя).

Призначення препаратів повинно бути направлено на профілактику пошкодження серцевої діяльності, а також відповідати виявлений формі патології.

При незначних функціональних порушеннях з боку серцево-судинної системи в результаті навантаження в якості засобів, що регулюють нервово-психічний статус, спортсменам пропонують седативні (заспокійливі, розслаблюючі) препарати для знятиє стану збудження, при розладах сну, пов'язаних з перепорушеннями; а також у складі комбінованої терапії.

Застосовуються антигіпоксанти, антиоксиданти. При сниженні рівня гемоглобіну застосовують препарати заліза.

Фармакологічний захист серцево-судинної системи передбачає і контроль втрати еластичності клапанного апарату серця і судин.

Майже все різноманіття серцевої патології, що зустрічається в практиці спорту (Н.Д. Граєвська, О.Г. Дембо, О.В. Смоленський, авторські спостереження), пов’язане з помилками відбору на начальнометапе спортивної кар’єри і тільки посилюється з року в рік через «м’якотілості» спортивних лікарів при УМО, ЕКО і рішучості спортсмена і тренера у що б то не стало зійти на Олімп.

3.10 Функції печінки

За різноманітністю хімічних процесів і функцій, які виконуються клітинами печінки, цей орган займає особливе положення серед інших тканин організму.

В першу чергу відмічають біотрансформовані функції. Через печінку проходять два потоки крові. Один з них збагачений поживними речовинами, які надходять у кров'яне русло після їх попереднього перетворення в шлунково-кишковому тракті в придатне для транспортування формі хімістронів. З цим потоком в печінку надходять також лікарські речовини, харчові добавки, барвники, ароматизатори, консерванти, присутні в харчових продуктах пестициди, гербіциди, солі важких металів і безліч інших продуктів. Другий потік крові, що надходить в печінку з інших тканин, доставляє як необхідні для організму продукти (білки, ліпопротеїни, залишки поживних речовин), так і відходи метаболізму клітин, що вводяться в венозну кров. Все це різноманіття продуктів проходить через печінку, де ретельно сортується і переробляється, утилізуючи цінні для організму продукти і трансформуючи та готуючи до видалення ненатрійні або потенційно небезпечні продукти.

Провідну роль печінка займає в синтезі ряду білків, що виробляються тільки в цьому органі і призвічних для всього організму. Серед таких білків альбумін, глобуліни, фібриноген, трансферин, церулоплазмін, білки згортання крові і т.д. Кожен з перелічених білків відіграє важливу роль в організмі людини, тому порушення синтезу навіть одного з них призводить до розвитку патологічних станів. Одночасно з синтезом експортних білків печінка виробляє більші вагові кількості ферментів, які виконують функції інші організму продукти і трансформуючі та готуючи до видалення непотрібні або потенційно небезпечні продукти.
тканин мозку і еритроцити – глюкозу.

З урахуванням значних коливань запитів організму на поставку енергетичних субстратів, задоволення таких запитів здійснюється з використанням двох незалежних систем: 1) комплексу безпреривно функціючих ферментів, що здійснюють постачання глюкози і жирних кислот в обсягах, які відповідають середні енергетичних запитів організму; 2) запасів глюкогену (полімерної форми глюкози), жирів, швидко вивільняються зі своїх депо при підвищенні енергетичного запиту з боку організму.

Запаси глюкогену знаходяться в печінці (від 100 до 380 г) і в скелетних м'язах (не менше 750 г). Глюкоген печінки витрачається для потреб всього організму, а глюкоген м'язів може бути використаний тільки власними тканинами. Печінка – єдиний орган, який постачає глюкозу всіх тканин, в тому числі скелетних м'язів. Основна кількість глюкози (до 70%) споживається тканинами мозку.

Оскільки запаси глюкогену в печінці невеликі і при інтенсивній роботі організму швидко витрачаються, для їх поповнення включається процес, званий глюконеогенез, здійснюваний тільки в тканинах печінки і призначений для екстреного вироблення дуже цінних продуктів – амінокислот.

Там же здійснюється фізіологічно доцільний, але енергетично маловигідні процес переробки La₆, що накопичуються у м'язовій тканині під час важкої фізичної роботи, в глюкозу.

Система вуглеводного обміну відіграє виняткову роль у підтримці енергетичного обміну в організмі, з цієї причини гепатоцити мають дуже гнучку і легко перебудовуватися систему ферментів, що забезпечують безперебійне вироблення вуглеводів з різноманітних субстратів.

У підтримці енергетичного гомеостазу система вуглеводного обміну скоординовано функціонує з системою обміну жирів, регульованою також печінкою. Печенка бере активну участь у всіх реакціях, пов'язаних з метаболізмом жирних кислот, включаючи їх синтез, окислення, перетворення в тригліцериди і фосфоліпіди.

В гепатоцитах активно формується основна маса ліпопротеїнів, що беруть участь в регулюванні рівня холестерину в тканинах організму. У печінці, які здійснюються основні етапи обміну холестерину і його переробки в жовчні кислоти. При збільшенні навантаження на організм спостерігається активізація жирового обміну, що забезпечує більш високу енергетичну віддачу в порівнянні з глюкозою.

Унікальною особливістю печінки, що відрізняє її від інших органів, є наявність в її клітинах повного набору ферментів, які здійснюють обмін всіх амінокислот. Ця особливість зумовлює активну участь гепатоцитів в синтезі широкого спектру білків. Синтетичні функції печінки спрямовані на задоволення потреб усього організму. Порушення роботи печінки по синтезу білків, що виникає при гіпоксії тканин в разі значних і тривалих фізичних навантажень, великих крововтрат, в умовах шокового стану, сприяє розвитку в організмі прогресуючої мультиорганної недостатності, часто не сумісною з життям.

Дуже важлива роль печінки в регулюванні метаболізму азоту в організмі. Тільки в тканинах печінки відбувається синтез сечовини з амінокислот і аміаку дл я подальшого його виведення через нирки.

Масштабність біогенетичних завдань, що вирішуються в тканинах печінки, і значна енергоємність процесів біосинтезу передбачає наявність ефективної системи енергопродукціоніння в гепатоцитах. Основний потік макроергів надходить в гепатоцити в результаті роботи мітохондріального дихального ланцюга. При можливих порушеннях мітохондріального окислення включаються процеси гдіколітичного розщеплення субстрату. Однак їхня низька енергетична ефективність і закислення вмісту цитоплазми визначають запуск гліколізу лише в умовах крайньої необхідності (Білоусова В. В. та ін., 1995).

Слід звернути увагу на одну особливість функціонування мітохондріального дихального ланцюга в гепатоцитах в порівнянні з іншими тканинами. В гепатоцитах більш розвинена система мікросомального окислення. Саме з цієї причини надходження субстратів
в дихальний ланцюг гепатоцитів переважно здійснюється через комплекс ІІ (сукцинатзалежні субстрати), а не через комплекс І.

Мікросомальна система окислення субстрату призначена для окислювальної модифікації жиророзчинних продуктів, що надходять в печінку. Реакція здійснюється за участю ряда поліферментних комплексів, званих монооксигенази. Головну роль в них відіграє фермент цитохром P-450, який за участю кисню здійснює гідрогсирилювання жиророзчинних речовин, в тому числі холестерину.

При цьому утворюються дві групи продуктів, що надають негативний вплив на тканини печінки і весь організм в цілому. В першу групу речовин входять спирти, феноли, альдегіди, епоксиди та інші сполуки, багато з яких інгібують роботу комплексу І дихального ланцюга. Особливо слід відзначити можливість їх взаємодії з білками крові з утворенням алергенів або канцерогенів. Хоча гепатоцити в наступних реакціях модифікації намагаються перевести в сіречеві продукти, зручні для виведення з організму, деяка їх частина встигає потрапити в кров.

До другої групи метаболітів, утворених в мікросомах печінки при переробці жиророзчинних речовин, відносяться АФК. Серед них можуть бути виділені високоактивні радикали, здатні вступати в хімічну реакцію з найближчими сусідами, і малореакційними радикали або іншими кисневмісними продукти, здатними залишити межі мікросом або навіть клітини до їх модифікації.

Зміна співвідношення між прооксидантною системою, що генерує вільні радикали, антиоксидантною системою, що зв'язує дані радикали, і кількістю субстратів окислення веде до зміни складу мембран і впливає на метаболізм клітини. Існують припущення, що всі учасники окислювальних перетворень складають основу регуляторної системи, організованої за принципом замкнутого кола з негативним зворотним зв'язком. Система дозволяє підтримувати ПОЛ на певному рівні.

Тривале відхилення системи від стану рівноваги приводить до розвитку патологічних станів. Екзогенне введення в систему будь-яких входячих до неї компонентів на час зміщує рівновагу, але не порушує зв'язків, існуючих між ланками цієї системи.

Про серйозні наслідки порушення балансу між прооксидантною і антиоксидантною системою, в тому числі на енергетику клітин, свідчать експерименти. При значних порушеннях енергопродукуючої функції настає загибель клітин. Гепатоцити особливо чутливі до пошкодження їх енергетики. Це підтверджується результатами клінічних спостережень, коли у хворих, що знаходяться в шоковому стані, зниження енергопродукуючої функції печінки є одиницею з найбільш частих причин летальних випадків.

Для тканин печінки характерні стани циркуляторної (втрати крові, анемії, порушення мікроциркуляції, лізис еритроцитів) і гемическої (отруєння дихальними отрутями, пошкодження мітохондрій) гіпоксії. Це пов'язано як з особливостями внутрішньоклітинного метаболізму, так і із природою перероблюючих гепатоцитів продуктів.

Збільшення в продуктах харчування різних наповнювачів, барвників, ароматизаторів, консервантів збільшує навантаження на печінку. Особливо серйозна проблема підвищеного вмісту в овочевих культурах нітратів, широко використовуваних в якості добрив для підвищення продуктивності культур. Нітрати та продукти їх модифікації сприяють переход гемоглобіну в неактивний метгемоглобін, інгібують роботу дихального ланцюга, утворюють канцерогенні нітрозосполуки, відповідальні за виникнення раку шлунка і товстої кишки.

Підвищений рівень реакцій ПОЛ в тканинах печінки контролюється системою антиоксидантного захисту. У процесі біотрансформації кисню відбувається послідовне утворення чотирьох типів радикалів і кисневмісних сполук. Для інактивації першів трьох в клітинах існує три рівня захисту, що реалізуються за переважним використанням ферментів антиоксидантного захисту. Інактивація високоактивних радикалів четвертої групи, реалізується зділь з використанням низькомолекулярних антиоксидантів, що функціонують в ліпідах (убіхінон, вітаміни А і Е, (3-коротин) або у водній фазі (глутатіон, вітамін С та ін.).
Для печени особенно важна роль глутатиона как антиоксиданта. Знижение его концентрации в тканях печени на 30% от нормы приводит к резкому усилению токсичности ксенобиотиков, интенсифицируя пошкодления мембран и нарушая гомеостаз ионов Ca.

Повышение внутриклеточного уровня ионов Ca важным механизмом пошкодления гепатоцитов при разных патологиях. Цей процесс запускается путем активации процессов ПОЛ в ЭПР гепатоцитов, где преобладают неферментативные реакции окисления субстрата. Дезорганизация внутриклеточной иерархии ионов Ca, их выход из ретикулума и митохондрий, резко повышает заселенность ионов в цитоплазме, ведет к серйозным пошкодлениям внутриклеточного метаболизма.

В последние годы наблюдается стремительное возрастание числа публикаций, посвященных изучению роли окиси азота (NO) в работе печени. Сейчас не вызывает сомнений, что NO играет важную роль в регуляции функциональной активности гепатоцитов, влияя на синтез белков и углеводов, продукцию макроэргов в процессах митохондриального окисления и глукозы, окисления в микросомах ксенобиотиков. Особливое значение NO обнаружено на стане окремых тканий абсического организма в целом при патологиях. Следует отметить, что определяются эффекты влияния NO-синтазы часто бывают полярными. В данный час обнаружения гемоглобии окиси азота включают в себя важную роль на ткани. Однако при избыточной генерации NO проявляется цитотоксичную дину продукта. В целом вклад участия NO в роботы реконструкции наблюдается застойный эффект на ткани.

Рис. 4. Обмен речь в клетках печени

Повышение пошкодженности ткани печени повязано с особенностями метаболизма, в первую очередь с интенсивной работой микросомальной системы биотрансформации жирорастворимых продуктов. Подобная система не только вовлечена в синтез важного количества активных форм кислорода (АФК), поражающего продукцию продуктов в системе антиоксидантного защиты, но и из-за синтеза токсичных для биологических тканей продуктов, в том числе ингибиторов дихального цикла. Таким образом, в ином виде направлено как на дезорганизацию работы гепатоцитов (АФК преградить заселенные бактерии в системе), так и на снижение потенциальных возможностей клеток с вовлечением пошкоджених деликатных (пошкодженение энергетической функции клеток заменяют их репаративные возможности).
При розвитку патологічних ситуацій клітини печінки особливо потребують як в корекції надлишкової активності процесів вільнорадикального окислення, так і в підтримці енергетичного гомеостазу гепатоцитів (рис. 4).

Зниження функціональних можливостей печінки відбувається в результаті тренувального навантаження, що виходить за межі фізіологічних можливостей організму.

Як наслідок неадекватного навантаження відбувається пригнічення функцій печінки, дренажної функції жовчних проток, накопичувальної і скорочувальної функції жовчного міхура. Далі за принципом ланцюгової реакції страждають інші внутрішні органі, а також знижується імунітет, починається втрата ваги.

Виявлення втрати функціональних можливостей печінки і контроль за її діяльністю передбачає аналіз біохімічних факторів, УЗД печінки і жовчного міхура, реографію печінки.

Фармакологічна допомогу передбачає призначення гепато-протекторів, енергізатор, антиоксидантів, антигіпоксантів, жовчогінних засобів, препаратів, що поліпшують мікроциркуляцію в судинах печінки.

Гепатопротектори

Для корекції діяльності печінки застосовують в першу чергу гепатопротектори. Основна функція гепатопротекторів – запобігання печінкових клітин від шкідливого впливу збільшеної кількості продуктів розпаду при інтенсивних фізичних навантаженнях спорту вищих досягнень (табл. 36).

Таблиця 36 - Застосування гепатопротекторів

<table>
<thead>
<tr>
<th>Види спорту</th>
<th>Підготовчий</th>
<th>Тренувальні етапи</th>
<th>Змагальний</th>
<th>Відновлювальні</th>
</tr>
</thead>
<tbody>
<tr>
<td>Циклічні</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Швидкісно-силові</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Єдиноборства</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Координаційні</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Спортивні ігри</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

У спортивній практиці найбільш поширені такі гепатопротектори: гептрал, лецитин, еспілівер форте, есенціале, мегіонін, карсил. Застосовуються також галстена, лохєїн, розторопші плямистої плоди, розторопші плямистої трава, фосфоглів (табл. 37).

Умовно до них можна віднести препарати, що сприяють синтезу печінкових клітин і відновленню порушених функцій печінки: аміналон, бетаїн, вітамін Е, зиксорин, інозин, рибоксин, коферменти, коензими, тиквеол, ЛИВ-52.
Таблиця 37 - Гепатопротектори і препарати гепатопротекторної дії

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Добові дози</th>
<th>Підлітки</th>
<th>Курс, тижні</th>
</tr>
</thead>
<tbody>
<tr>
<td>Галстена</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Гепабене</td>
<td>1 капс. 3 рази</td>
<td>-</td>
<td>3-4</td>
</tr>
<tr>
<td>Гепа-мерц</td>
<td>3-6 г 2 рази</td>
<td>3 г</td>
<td>3-4</td>
</tr>
<tr>
<td>Гептрал</td>
<td>2 тбл. 2 рази</td>
<td>-</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td>800 мг, в/м</td>
<td>-</td>
<td>2-3</td>
</tr>
<tr>
<td>Карсіл</td>
<td>1 тбл. 3 рази</td>
<td>-</td>
<td>2-3</td>
</tr>
<tr>
<td>Легалон</td>
<td>1 тбл. 3 рази</td>
<td>-</td>
<td>2-3</td>
</tr>
<tr>
<td>Лецитин</td>
<td>1 ст.л. в день</td>
<td>1 ст.л. в день</td>
<td>3-4</td>
</tr>
<tr>
<td>Ліпосвіт</td>
<td>0,25 г 3 рази</td>
<td>-</td>
<td>2-3</td>
</tr>
<tr>
<td>Метіонін</td>
<td>0,5 г 3 рази</td>
<td>0,25 г 3 рази</td>
<td>3</td>
</tr>
<tr>
<td>Орнітин</td>
<td>3 г 3 рази</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Сілімарин</td>
<td>1 тбл. 3 рази</td>
<td>-</td>
<td>2-3</td>
</tr>
<tr>
<td>Фосфоглів</td>
<td>1-2 табл. 3 рази</td>
<td>1 табл. 2-3 рази</td>
<td>3-4</td>
</tr>
<tr>
<td>Холін хлорид 20%</td>
<td>1 чл. 3-5 раз</td>
<td>-</td>
<td>1-3</td>
</tr>
<tr>
<td>Есслівер форте</td>
<td>2 капс. 2-3 рази</td>
<td>1 капс. 2-3 рази</td>
<td>3-4</td>
</tr>
<tr>
<td>Есенціале форте</td>
<td>2 капс. 2 рази</td>
<td>1 капс. 2-3 рази</td>
<td>3-4</td>
</tr>
</tbody>
</table>

Примітка. Застосовується один з представлених в таблиці препаратів, виходячи з індивідуальної чутливості, з уже випробуваних і надає максимальну дію з мінімальними ускладненнями і побічними ефектами.

Гептрал. Гепатопротектор, що володіє антидепресивними властивостями. Активна речовина препарату – адеметіонін – біологічна речовина, що входить до складу всіх тканин і рідкій середовищ організму. У досліджених встановлено, що препарат має також антиоксидантну, детоксикаційну дію, покращує регенерацію тканин, уповільнює фіброз. При тривалому застосуванні препарату відзначається поліпшення показників функції печінки. Таблетки вкриті спеціальною оболонкою, що розчиняється із інвагінаційною дію, покращує ретенцію тканин, уповільнює фіброз. При тривалому застосуванні препарату відзначається поліпшення показників функції печінки. Таблетки вкриті спеціальною оболонкою, що розчиняється із інвагінаційною дію, покращує ретенцію тканин, уповільнює фіброз. При тривалому застосуванні препарату відзначається поліпшення показників функції печінки. Таблетки вкриті спеціальною оболонкою, що розчиняється із інвагінаційною дію, покращує ретенцію тканин, уповільнює фіброз. При тривалому застосуванні препарату відзначається поліпшення показників функції печінки. Таблетки вкриті спеціальною оболонкою, що розчиняється із інвагінаційною дію, покращує ретенцію тканин, уповільнює фіброз. При тривалому застосуванні препарату відзначається поліпшення показників функції печінки. Таблетки вкриті спеціальною оболонкою, що розчиняється із інвагінаційною дію, покращує ретенцію тканин, уповільнює фіброз. При тривалому застосуванні препарату відзначається поліпшення показників функції печінки. Таблетки вкриті спеціальною оболонкою, що розчиняється із інвагінаційною дію, покращує ретенцію тканин, уповільнює фіброз. При тривалому застосуванні препарату відзначається поліпшення показників функції печінки. Таблетки вкриті спеціальною оболонкою, що розчиняється із інвагінаційною дію, покращує ретенцію тканин, уповільнює фіброз. При тривалому застосуванні препарату відзначається поліпшення показників функції печінки. Таблетки вкриті спеціальною оболонкою, що розчиняється із інвагінаційною дію, покращує ретенцію тканин, уповільнює фіброз. При тривалому застосуванні препарату відзначається поліпшення показників функції печінки. Таблетки вкриті спеціальною оболонкою, що розчиняється із інвагінаційною дію, покращує ретенцію тканин, уповільнює фіброз. При тривалому застосуванні препарату відзначається поліпшення показників функції печінки. Таблетки вкриті спеціальною оболонкою, що розчиняється із інвагінаційною дію, покращує ретенцію тканин, уповільнює фіброз. При тривалому застосуванні препарату відзначається поліпшення показників функції печінки. Таблетки вкриті спеціальною оболонкою, що розчиняється із інвагінаційною дію, покращує ретенцію тканин, уповільнює фіброз. При тривалому застосуванні препарату відзначається поліпшення показників функції печінки. Таблетки вкриті спеціальною оболонкою, що розчиняється із інвагінаційною дію, покращує ретенцію тканин, уповільнює фіброз. При тривалому застосувані
тканинне дихання, біологічне окислення; сприяють поліпшенню діяльності дихальних ферментів в мітохондріях, енергетичного обміну клітин і нормалюють порушенний обмін ліпідів. Нормалізує білковий і жировий обмін, має ліпотропні дією, захищає клітинну структуру печінки, відновлює імунні функції лімфоцитів і макрофагів.

Показання. Додатковий засіб в поєднанні з іншими препаратами для захисту печінки при дії значних фізичних навантажень як загальноміціюча терапія. При харчових і лікарських отруєннях.

Побічна дія. Вкрай рідко можливі підвищення слиновиділення, нудота і диспепсія. Лецитин не токсичний, не надає онкогенної дії.

Ессенціале (есслівер форте). Гепатопротектор. Активні речовини – «есенціальні» fosфоліпіди (субстанція EPL) – основні елементи в структурі клітинної оболонки і клітинних органел клітини. Надає нормалізуючи дію на метаболізм ліпідів, білків і на дезінтоксикаційну функцію печінки; відновлює і збірює клітинну структуру печінки і fosфоліпідозалежні ферментні системи; гальмує формування сполучної тканини в печінці.

Метіонін (незамінна амінокислота). Необхідна для підтримки зростання і азотистої рівноваги організму. Містить метильну групу, яка бере участь в процесі переметилювання. Сприяє синтезу холіну, за рахунок чого нормалізує синтез fosфоліпідів з жирів і зменшує відкладення в печінці нейтрального жиру. Метіонін бере участь в синтезі адреналіну, креатину, активує дію ряду гормонів, ферментів, ціанокобаламіну, фолієвої кислоти. Знешкоджує деякі токсичні речовини шляхом метилювання.

Показання. Лікування і профілактика захворювань і токсичних уражень печінки. При тренуванні на м'ясоїв об'єм і екстремальних тренуваннях як за обсягом, так і за інтенсивністю.

Побічна дія. Рідко підвищення слиновиділення. Клінічно значущої взаємодії препарату з лікарськими засобами не встановлено. В даний час про передозування препарату не повідомлялося.

Лікарські форми: краплі, таблетки під'язикові гомеопатичні.

Галстена. Гомеопатичний комплексний гепатопротекторний препарат. Послаблює синдрому цитолізу і внутрішньопечінкового холестазу, нормалізує моторну та евакуаторну функцію жовчовивідних шляхів, усуває симптоми диспепсії. Галстена має жовчогінну, спазмолітичну, протизапальну дію, попереджає утворення каменів жовчного міхура.

Протипоказання. Гіперчувствливість.

Побічна дія. Рідко підвищене слиновиділення.

Аллохол. Склад: жовчі тваринної сухий – 0,08 г, екстракту часнику сухого – 0,04 г, екстракту кропиви сухий – 0,005 г, наповнювачів достатню кількість.

Показання: печінковий больовий синдром; холангії, холецистити, хронічні гепатити, звичний запор.

Приймається всередину по 2 таб. 3 рази на день після їди.
Протипоказання: виразкова хвороба шлунка; гостра і підгостра дистрофія печінки; обтураційна жовтяниця.

Фламін (Безсмертника піщаного квітки). Препарати цмину піскового виявляють жовчогінну дію (посилення секреції жовчі), прискорюють потік жовчі, посилюють секреторну і рухову функції шлунково-кишкового тракту.

Коріандр. Засіб рослинного походження. Комплекс біологічно активних речовин (ефірне масло) плодів коріанду надає стимулюючу дію на травлення, збуджує апетит, має спазмолітичну, кармінативну (вітрогонну), жовчогінну дію, виявляє помірну протимікробну дію.

Показання: захворювання шлунково-кишкового тракту, що супроводжується спазмами, порушеннями жовчовиділення (дискінезія жовчовивідних шляхів, хронічний холецистит, спастичний коліт і т.д.), Анорексією, метеоризмом.

Приймають всередину у вигляді приготовленого настою (3 г плодів на 200 мл води) по 1 ст. л. 3-4 рази на добу.

Енергізатори
Відновленню печінкових клітин сприяють енергізатори: бурштинова кислота 0,5 г 3 рази на день; лимонна кислота (лимони), яблучна кислота, малина (основні кислоти – лимонна і яблучна), фруктоза.

Профілактика і лікування печінково-больового синдрому
Біль у правому підребер’ї під час фізичного навантаження при заняттях спортом іноді змушує припинити тренування, зриває тренерські плани з підготовки до змагань. У цьому випадку доводиться переглядати методику підготовки і займатися профілактикою або лікуванням печінково-больового синдрому (табл. 38). Особливо часто страждають спортсмени в тих видах спорту, де необхідно витримувати фіксовану позу (постійно підвищений внутрішньочеревний тиск, що перешкоджає відтоку жовчі). Найчастіше це зустрічається в циклічних видах спорту.

Таблиця 38 - Орієнтова схема профілактики та лікування печінково-больового синдрому

<table>
<thead>
<tr>
<th>Засоби</th>
<th>Профілактика</th>
<th>Лікування</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тюбаж</td>
<td>1 раз в 2-4 тижні</td>
<td>1 раз в тиждень</td>
</tr>
<tr>
<td>Вуглеводне насичення</td>
<td>10% вуглеводний напій, 200-300 мл після тренування</td>
<td>10% вуглеводний напій, 200-300 мл, під час і після тренування</td>
</tr>
<tr>
<td>Лецитин</td>
<td>1-2 ст.л. в день</td>
<td>-</td>
</tr>
<tr>
<td>Гептрал</td>
<td>1 капс. 2-3 рази в день</td>
<td>2 капс. 3 рази в день</td>
</tr>
<tr>
<td>Ессенціале</td>
<td>1 капс. 3 рази в день</td>
<td>5 мл в/в кожного дня</td>
</tr>
<tr>
<td>Рібоксин</td>
<td>0,5 г 2 рази в день</td>
<td>0,5 г 3 рази в день</td>
</tr>
<tr>
<td>Жовчогінн засоби</td>
<td>-</td>
<td>Аллохол по 2 таб. 2 рази в день після їжі</td>
</tr>
<tr>
<td>Но-шпа</td>
<td>-</td>
<td>0,2 г 2-3 рази в день</td>
</tr>
<tr>
<td>Гінкго-білоба</td>
<td>1 табл. 3 рази в день</td>
<td>2 таб. 3 рази в день</td>
</tr>
<tr>
<td>Антибіотики</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Примітка. Як спазмолітик використовується одне з наступних судинних засобів: но-шпа, трентал, курантил, гінкго-білоба. Антибіотики застосовуються після виявлення чутливості до них мікробної флори.
Пусковим моментом патологічного стану стає дискинетичним порушення жовчовивідної системи, що розвиваються в результаті змін нейрогуморальної регуляції при повторних фізичних і нервово-психічних перевантаженнях. Через цих порушень, в силу анатомічних особливостей органу, викликається застій жовчі, що розвивається в результаті зміни нейрогуморальної регуляції при повторних фізичних і нервово-психічних перевантаженнях.

Причкивому-болючому синдромі відбувається зростання температури тканин печінки. Запальні зміни в жовчному міхура і жовчних шляхах призводять до подальшого прогресування циркуляторних порушень і посилення застійних явищ в печінці. Причиною зміни кровообігу в печінці, що виникають вдруге на тлі дискинезії, мають велике значення при печінково-болючому синдромі. Ця особливість визначається перш за все вираженою ішемізацією печінки в результаті системного перерозподілу крові в процесі м'язової роботи. Застосування анаболічних стероїдів в надмірних дозах часто спричиняє печінково-болючий синдром.

При печінково-болючому синдромі необхідні зниження фізичного навантаження, захист від стресу. Сліпий тюбажів проводиться як лікувальний, так і профілактичний. Мета — спорожнення жовчного міхура, жовчних проток і запобігання таким чином застійних і запальних процесів в жовчовивідної системі. Тюбаж — м'яка, фізіологічна процедура з видалення вмісту жовчного міхура, що не завдає шкоди гепатобіліарної системі.

З профілактичною метою тюбаж проводити найкраще вранці (наперед). Попередньо необхідно випити склянку мінеральної води («Есентуки-17», «Боржом») без газу, кімнатної температури. Далі — лягти на правий бік («положення плода в трусах матері»), підкладши під печінку гарячу грілку, обгорнути в рушник. Лежати 1,5 години. Рухатися вдруге на тлі дискинезії, мають велике значення при печінково-болючому синдромі. Ця особливість визначається перш за все вираженою ішемізацією печінки в результаті системного перерозподілу крові в процесі м'язової роботи. Застосування анаболічних стероїдів в надмірних дозах часто спричиняє печінково-болючий синдром.

При печінково-болючому синдромі необхідні зниження фізичного навантаження, захист від стресу. Сліпий тюбажів проводиться як лікувальний, так і профілактичний. Мета — спорожнення жовчного міхура, жовчних проток і запобігання таким чином застійних і запальних процесів в жовчовивідної системі. Тюбаж — м'яка, фізіологічна процедура з видалення вмісту жовчного міхура, що не завдає шкоди гепатобіліарної системі.

3.11 Функції нирок

Причинною порушення функції нирок у спортсменів може бути позамежне тренувальне навантаження, перетренивання, неповне відновлення.

Як наслідок відбувається уповільнення екскреції продуктів обміну (зниження детоксикаційної функції нирок), порушення фосфорно-кальцієвого обміну, кисневої кислоти, сечової кислоти, рідше амінокислот; зміна КОС; «зашлаковані», утворення сечових каменів.

Виявлення і контролю: УЗД нирок і сечовивідних шляхів; реографія нирок; біохімічні дослідження (креатинін, сечова кислота, сечовина, залишковий азот і т. п.); загальний аналіз і спеціальне дослідження сечі.

Корекція і профілактика: дієта; енергетики; антиоксиданти; антигіпоксанти; препарати, що покращують мікроциркуляцію; рослинні сечогінні засоби; корекція рН і відносної щільності сечі.

Детоксикаційна функція нирок

Детоксикація, заснована на максимально швидкому видаленні токсичних речовин з організму, — найбільш реальний спосіб, що забезпечує можливість відновлення працездатності спортсмена.

Природним способом детоксикації служить сама функція виділення нирок, тому швидка нормалізація функції нирок в умовах відносної ішемізації при напруженому тренувальному режимі і змаганні — найефективніший спосіб детоксикації.

Поліпшити функцію виділення можна відновивши мікроциркуляцію в судинах нирок. З

7 При наявності каменів або дрібних конкрементів в жовчному міхури процедура не проводиться. Обережно призначатися при перегині шийки або тіла жовчного міхура.
цією метою застосовуються препарати відповідної групи. Найбільш перспективний, з огляду на вимоги допінг-контролю, препарат рослинного походження гінкго-білоба.

Є дані, що курс актовегина за 3-5 днів до початку ударних мікроциклів (або змагань) і на всьому їхньому протязі в видах спорту, спрямованих на переважний розвиток витривалості, може істотно прискорити пістнавантажене відновлення і, як наслідок, здатність до виконання високих тренувальних і змагальних навантажень.

Профілактика сечокам'яної хвороби у спортсменів

Загальновідомо, що хімічний склад солей, що утворюють камені в нирках, залежить від характеру обмінних порушень і кислотності сечі.

Врати утворюються в кислому середовищі (при розпаді власних білків). Фосфати – в лужному середовищі. Оксалати утворюються в будь-якому (частіше кислому) середовищі (має значення підвищення концентрації іонів Ca, надлишковий прийом вітаміну С).

Розвитку сечокам'яної хвороби у спортсменів можуть сприяти наступні причини:

– втрата рідини з потом на тренуваннях і змаганнях, що призводить до зменшення об'єму сечі і випадання в осад великої кількості солей;
– порушення обміну, мікроциркуляції в нирковій тканини при значному фізичному навантаженні;
– інфекції і сечовий стаз.

Крім того, надмірне споживання білкових препаратів, поживних сумішей, мінеральної води з невідомою спрямованістю рН, їжа, багата пуриновими підставами, також можуть стати причинами утворення конкрементів.

За даними французьких дослідників виявлено, що тільки у 19% спортсменів зафіксовані нормальні показники pH сечі. У той же час патологічно кисла сеча виявляється у 57% спортсменів. Отримано дані, що ранньою весною нормальною кислотністю сечі відносилося майже у 72% спортсменів. У літні та осінні місяці рН сечі наближається до нормальних цифр. При порівнянні різних видів спорту кисла сеча (зниження pH до 5,0) зустрічається у 60% випадків у спортсменів ігрових видів; в індивідуальних видах спорту – 44%. Значна відмінність виявлена і в осіб з лужною реакцією сечі. Так у спортсменів ігрових видів спорту pH сечі у 7,0 зустрічається у 20%, а в осіб індивідуальних видах спорту ці показники дорівнюють 36%.

У зв'язку з цим при розробці заходів профілактики сечокам'яної хвороби у спортсменів необхідно враховувати і вид спорту.

У практиці спортивної медицини корекція pH сечі проводиться призначенням соків, сечогінних трав і мінеральних вод. При цьому враховується вага спортсмена, інтенсивність тренувань, сезон року, вид спорту.

У практиці спортивної медицини корекція pH сечі проводиться призначенням соків, сечогінних трав і мінеральних вод. При цьому враховується вага спортсмена, інтенсивність тренувань, сезон року, вид спорту.

У різних випадках, які можна рекомендувати спортсмену, варіюється не тільки наявність тих чи інших солей, але і здатність їхніх змінити pH сечі. У зимовий і весняний час необхідно звернути особливу увагу спортсмену на достатню кількість овочів і фруктів в щоденному раціоні, а також продуктів з великим вмістом магнію.

У спортивно-медичній практиці застосовуються сечогінні трави, які змінюють pH сечі: або підкислюють сечу, або сечу подлужнюють.

Подкисляють сечу листя мучиниці, трава остудника, кореневище пирію, квіти волошки, трава вероніки, корінь марени фарбувальної, плоди і листя брусниці.

Подлужнюють сечу корінь метелика, трава ниркового чая, листя суниці, трава хвоща польового, листя берези, кореневище селери.

Це сприяє змінюванню pH сечі до або біля 7,0.
У профілактиці будь-якого каменеутворення важливо, щоб сеча була малоконцентрованою, тому спортсмен повинен пити багато рідини. Ці та інші профілактичні заходи дозволяють попередити розвиток сечокам'яної хвороби у осіб, до неї схильних.

3.12 Ендогенна інтоксикація

Хронічні інфекційно-запальні захворювання — велика проблема в клінічній спортивній медицині, а саме:
- хронічний тонзиліт;
- карієс;
- хронічне запалення верхніх дихальних шляхів;
- хронічний гайморит;
- хронічний холецистит;
- хронічний аднексит;
- вогнища інфекції в інших органах і тканинах.

За даними ряду авторів (Левандо В.А., 1999, Гладков В.Н., 2004; Сапнінський В.Н., 2004) останнім часом спостерігається зростання хронічних запальних захворювань у спортсменів всіх рівнів. За літературними даними спортсмени мають вогнища хронічної інфекції набагато часто, ніж люди, що не займаються спортом. Найбільш поширені серед спортсменів хронічний тонзиліт і карієс. Особливе завдання — боротьба з дисбактеріозом (див. «Профілактика дисбактеріозу»), так як від правильного функціонування кишечника залежать не тільки спортивний результат, але і якість самого життя.

Спортсмен з несанірованими вогнищами інфекції не може вважатися абсолютно здоровим. Перш ніж приступити до тренувань, осередки інфекції повинні бути ліквідовані.

Будучи джерелом ендогенної інтоксикації, вогнища хронічної інфекції впливають на зростання спортивних результатів і спортивну працездатність. Хронічна інтоксикація сприяє більш швидкому розвитку перетренированості. При зниженні імунної реактивності організму (наприклад, при стресі, охолодженні, перегріванні, зміні кліматичних зон, фізичному навантаженні і т. п.) Інтоксикація проявляється яскравими клінічними симптомами, бо свідчить про загострення захворювання.

Можна припустити, що одним з факторів, що сприяють виникненню хронічного тонзиліту і карієсу, є виключення носового дихання як наслідок переохолодження і зниження міцевого імуніту слизової оболонки порожнини рота і глотки. Підтвердженим таким припущенням служить великий відсоток вогнищ тонзилітів серед спортсменів, що спеціалізуються в зимових видах спорту. Спортсмени, що тренуються в басейні, піддаються впливу хлору, що міститься в воді, який негативно діє на зубну емаль і лімфоїдну тканину носоглотки, розпушує її і тим самим знижує захисні сили організму, сприяючи впровадженню бактеріальних агентів. Спортсмени, що тренуються в залі, не завжди знаходяться в «нормальних» гігієнічних умовах (пил, порушення теплового режиму).

Вагому роль в зниженні міцевого імуніту слизових рота і горла грає незбалансоване харчування. Білкове харчування (як надмірне, так і недостатнє), нестача вітамінів А і С підвищують чутливість організму до інфекції.

Недооцінка значення осередків хронічної інфекції нерідко призводить до неправильного трактування різних скарг, до гіпердіагностики перетренированості, яка іноді (при ретельному клінічному обстеженні) виявляється проявом хронічної інтоксикації.

Аналізуючи скарги спортсмена, необхідно завжди враховувати можливість наявності вогнищ хронічної інфекції, які слід розцінювати як захворювання, чреваті серйозними ускладненнями.

Патологічний вплив хронічного інфекційного вогнища на організм в цілому здійснюється наступними шляхами.

Рефлекторний шлях. Потік імпульсів з екстер- інтерорецептори мигдалин створює у
відповідній області центральної нервової системи вогнище застійного збудження – домінанту. Внаслідок цього виникають патологічні функціональні зрушення в різних системах і органах.

Токсемічний шлях. Відбувається всмоктування токсичних речовин з вогнища інфекції, причому не тільки бактеріальних токсинів, але і продуктів білкового розпаду ураженої тканини, відпрацьованих лейкозів і т.п. Створюється токсемія, також вкрай негативно впливає на внутрішні органи.

Бактеріємічний шлях. Відбувається прорив самої інфекції на навкісні органі, викликаючи в них запальний процес. Можливий «бактеріємічний» шлях через заковтування інфекції (тонзиліт, каріозні зуби).

Основним шляхом патологічного впливу вогнища хронічної інфекції на організм слід вважати токсемічним.

Вогнища хронічної інфекції можуть виникати практично у всіх органах, де є сприятливі умови для життя і розмноження інфекційного агента. Однак найчастіше вони локалізуються в зубах, мигдалинах з їх численними лакунами і жовчному міхуру (жовч – живильне середовище для мікроорганізмів), проявляючись відповідно карієсом, хронічний тонзиліт і хронічний холецистит. Саме ці осередки хронічної інфекції є основними, що впливають на спотворну працездатність. Крім того, вогнища інфекції можуть локалізуватися в вухах – отити, гайморових порожнинах – гайморити, бронхах – бронхіти, яєчниках – сальпігнооофоріти (аднексити).

Вогнища хронічної інфекції нерідко поєднуються, а це посилює їх патологічний вплив на організм. Виявивши один осередок інфекції, завжди слід шукати інший.

Очевидно, що хронічний тонзиліт може супроводжуватися нейроциркуляторною дистонією, що впливає на функції різних органів і систем організму (впливають на рівень артеріального тиску).

Тривала тонзилогенна інтоксикація може привести до порушень функції автоматизму, збудливості і провідності в серцевому м’язі. Зміни ЕКГ в ряді випадків підтверджують уявлення про дистрофічні зміни міокарда або бактеріальному міокардіті з результатом в кардіосклероз (Дембо О.Г., Земцовський Е.В., 1989). Найбільш часто на ЕКГ реєструються різні порушення ритму, збільшення внутрішньошлуночкові провідності, низький вольтаж, зміни зубців Т і R.

Серед ускладнень на серцево-судинну систему, що викликаються на хронічний тонзиліт, перше місце займає так zwani tonzilокардіальний синдром. Основні положення, що вони з кінця 1970-х, з ростом числа високорискових вогнищ інфекції, повинні бути враховані у східній медицині на діагностичні, а також на терапевтичному плані.

Дуже важливо те, що зміни в більшості вогнищ інфекції можуть виникнути незалежно від того, компенсований він або декомпенсований. Поняття «компенсації» при хронічному тонзиліті не повинно впливати на виразженість питання про характер лікування. Відсутність антіген не виключає хронічного тонзиліту, як і відсутність нежиті – хронічного запалення придаткових пазух, відсутність болю в області правої підребер’я – хронічного холециститу, відсутність пронесів – хронічного ентериту.

Все це створює значні труднощі в діагностиці, тим більше що «німі» вогнища інфекції можуть також бути причиною загальної інтоксикації, сенсибілізації і алергізації організму.

Не завжди реєструються зміни з боку крові: лейкоцитоз, зміни лейкоцитарної формули
крові і т. д. Однак слід звертати увагу (при обстеженні спортсменів) на зрушення лейкоформулі вліво при нормальному показнику кількості лейкоцитів. При хронічному тонзиліті часто відзначаються болі в лівій половині грудної клітини коле, іноді стискає характери і різної тривалості (від декількох хвилин до декількох днів). Ці прояви симулюють серцеві болі. Зменшення або зникнення болю при фізичному навантаженні дозволяють вважати їх проявлом тонзілогенного болюового неврозу. Можливі, болі є наслідком порушення обмінних процесів в тканинах серця під впливом токсичних факторів.

З ураженням серцево-судинної системи при хронічних тонзилітах пов'язаний синдром «незадоволеного вдиху»: серцебиття і різні порушення серцевого ритму. Зазвичай при цьому виражені симптоми загальної інтоксикації. Не можна також виключити недостатність коронарного кровообігу, що виникає в результаті нервово-рефлекторних впливів через змінених мигдалин.

Клініка. Клінічними проявами вогнищ хронічної інфекції у спортсменів найчастіше стають симптоми загальної інтоксикації. До них відносяться: іноді субфебрильна температура, підвищення стомлюваність, порушення сну, пітливість, погіршення апетиту, диспепсичні явища, при появи яких слід мати на увазі можливість хронічного холециститу.

Однією з причин виникнення симптомів загальної інтоксикації є неправильна терапія, недотримання постільного режиму під час гострі ангіні і ранне включення в роботу після неї. Термін допуску спортсменів до тренувальних занять після ангіні повинен бути подовжений. Це відноситься не тільки до ангіні, а й будь-яких інших захворювань.

Лікування. Лікування хронічних тонзилітів може бути оперативним і консервативним.

Іноді відмова від тонзилектомії виправдовується фізіологічним значенням мигдалин. Вони дійсно беруть участь в роботі імунітету, однак тільки протягом першого десятиліття життя людини. Що ж стосується ендокринної функції мигдаліків, то вони випускають активну речовину, аналогічну гормону зобної залози. Ця функція втрачається до періоду статевого дозрівання. Якщо ж мигдалини вражені запальним процесом, вони не володіють цими можливостями.

Лікування хронічних тонзилітів може бути оперативним і консервативним.

Іноді відмова від тонзилектомії виправдовується фізіологічним значенням мигдалін. Вони дійсно беруть участь в роботі імунітету, однак тільки протягом першого десятиліття життя людини. Що ж стосується ендокринної функції мигдаліків, то вони випускають активну речовину, аналогічну гормону зобної залози. Ця функція втрачається до періоду статевого дозрівання. Якщо ж мигдалини вражені запальним процесом, вони не володіють цими можливостями:

– наявність інших вогнищ хронічної інфекції крім тонзиліту;
– ранній початок інтенсивного тренування без дозволу лікаря;
– наявність в міокарді необоротних змін.

Значення своєчасної діагностики та лікування хронічного тонзиліту визначається ще й тим, що таким чином проводиться профілактика різних інфекційно-алергічних захворювань аутоімунного характеру.

Поліпшення загального стану після тонзилектомії відбувається іноді протягом тривалого часу – до 4-6 місяців. Спортсмен після операції повинен перебувати під наглядом лікаря, приймати полівітамінні комплекси з метою підвищення опірності організму. Важливо також підтримання імунітету протягом 1-2 років.

Профілактикою карієсу і планової санацією порожнини рота спортсмени, як правило, займаються неохоче.

Крім систематичних відвідувань стоматолога (не рідше двох-трьох разів на рік), є важливи відвідування місцевого фтору, який, на думку фахівців, запобігає розвитку карієсу. Рекомендується витримувати фторовані зубні пасти, періодично приймати таблетки з фтором. Слід також звертати найсерйознішу увагу на ретельний догляд за порожнину рота і гігієнічне утримання зубів і слизової рота.

Профілактикою карієсу і планової санацією порожнини рота спортсмени, як правило, займаються неохоче.
Консервативне лікування носоглотки може бути місцевим і загальним.
Місцеве лікування має на увазі цілий комплекс наступних заходів.
Полоскання рота після кожного тренування легким дезінфікуючим розчином слід вважати за доцільним, особливо спортсменам, постійно тренуються в приміщеннях або в умовах, що викликають переохолодження. Плавцям можна рекомендувати полоскання з дубильними речовинами, наприклад відваром кори дуба.
Інгаляції олійними розчинами з додаванням прополісу та інших антисептиків.
Розчином Люголя обробляються мигдалини, задня стінка глотки при найменшій підозрі на інфекцію.
Використовують зігріваючі компреси на область носових пазух, горла при закладеності носа, вух, болях в горлі (при гострих процесах, а також яскраво виражених загострениях хронічних захворювань зігріваючі процедури не проводять).
Інтерферон капають в ніс для підвищення локального імунітету.

Лікування.
Підвищення імунного статусу.
Відволікаючи засоби – гірчичники на підошви, «парити» ноги. Рясне пиття.
Необхідно ширше залучати народні засоби.
Антибіотики надають бактеріостатичну або бактерицидну дію, але знижують працездатність спортсмена. Крім того, при вірусній інфекції та аутоинфекції антибіотики неефективні. Не треба забувати, що парацетамол, сульфаніламіди також різко знижують працездатність спортсмена.

3.13 Профілактика дисбактеріозу
Дисбактеріоз може значно впливати на працездатність спортсменів високої кваліфікації, тому необхідно приділяти особливу увагу його профілактиці.
Термін «дисбактеріоз кишковий» позначає порушення в кількісному і якісному складі мікрофлори, в нормі заселяє ШКТ людини.
Зниження імунітету, неповноцінне харчування, екологічне неблагополуччя, безконтрольне застосування фармакологічних препаратів, стреси, інфекційні та паразитарні захворювання, хронічні захворювання шлунково-кишкового тракту – ось далеко неповний перелік причин, що призводять до дисбактеріозу кишечника.
Спочатку виникає дисбіоз, що полягає в дефіциті біфідофлори на тлі зниження числа лактобацил або порушення співвідношення між біфідобактеріями і непатогенними штамами кишкової палички. Слідом за зниженням вмісту біфідобактерій і лактобацил, іноді аж до їх повного зникнення, відзначається посилене розмноження умовно-патогенних і патогенних ентеробактерій, а також грибів переважно типу Candida.
Клінічна картина дисбактеріозу кишечника:
– синдром недостатності вимірювання обумовлений порушенням мембранного і порожнинного травлення;
– синдром недостатності всмоктування виникає в результаті порушення процесів всмоктування в тонкій кищі;
– синдром подразненої товстої кишки проявляється кишковою колькою, слизовою колькою і т. п.;
– метеоризм, пронос, запори;
– зниження аппетиту, загальна слабкість.
Під час виконання тренувальних навантажень на тлі дисбіозу або дисбактеріозу спортсмени можуть пред'являти скарги на болі в животі, що імітують печінково-білковий синдром (особливо якщо спортсмен страждає дискінезією жовчовивідних шляхів).
В цьому випадку необхідно виконати посів калу на мікрофлору. Якщо це неможливо – проводять профілактичне лікування дисбактеріозу.
Лікування і профілактика дисбактеріозу роблять позитивний вплив на печінку при хронічних захворюваннях, так як при нормалізації процесів травлення активується детоксикаційна функція органу.

Позакишкові прояви дисбактеріозу кишечника. Інфекційно-токсичний синдром супроводжується підвищенням температури тіла (частище субфебрильної), незначним ознобом, головним болям, поганним самочувством, порушенням сну.

Розвивається полігіповітаміноз, найчастіше вітамінів групи В. Недостатність вітаміну В6 приводить до зміни слизової оболонки губ, утворення тріщин з сухими краями, дерматиту на крилах носа, носогубні складки, зміни нігтів, підвищеної ламкості волосся. Можлива алергія, електролітні порушення, зниження енергозабезпечення, імунітета.

Профілактика дисбактеріозу полягає, перш за все, у виключенні аліментарних погрішностей в харчуванні і раціональному призначення антибіотиків. Слід пам’ятати, що одноманітне харчування, надмірне захоплення дієтами можуть вести до дисбактеріозу, рафіновані продукти також несприятливо впливають на мікрофлору кишечника (як і продукти з вмістом консервантів) (табл. 39).

Розвиток дисбактеріозу (сезонного, харчового) можна запобігти, призначивши раціональне харчування. З профілактичною метою в раціон включають продукти, що містять велику кількість клітковини (висівки по 1 ч. л. 2 рази в день, вівсяні пластівці, різні салати з додаванням соя, соняшникової олії), а також регулюють функцію кишечника ягоди, фрукти, овочі (яблука, буряк, морква, ріпа, гарбуз, абрикоси, грейпфрути, брусниця, чорна смородина та ін.). Велике значення мають фрукти, овочі, ягоди і лікарські рослини, що виділяють антимікробну активність.

З метою регулювання стільця в дієту включають продукти рослинного походження як в свіжому вигляді, так і у вигляді десертів, супів. При запорах п’ять сирій картоплі з населенням (в січні і лютому), різними салатами з додаванням соя, соняшникової олії, а також зеленого салату, який підкислюють содою, розсипають по столу, овочі, рибу, яйця, мицети. Велике значення має вживання свіжого овочевого салату з додаванням оливкової олії.

Таблиця 39 - Профілактика дисбактеріозу

<table>
<thead>
<tr>
<th>Засоби</th>
<th>Сроки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дієта</td>
<td>Постійно</td>
</tr>
<tr>
<td>Харчові волокна</td>
<td>2-3 тижні кожного місяця</td>
</tr>
<tr>
<td>Вітаміни</td>
<td>Постійно</td>
</tr>
<tr>
<td>Ферменти</td>
<td>Під час значного навантаження</td>
</tr>
<tr>
<td>Засоби, що регулюють стул</td>
<td>За необхідності</td>
</tr>
<tr>
<td>Седативні засоби</td>
<td>При втомі, погіршенні сну</td>
</tr>
<tr>
<td>Кисломолочні продукти</td>
<td>Постійно</td>
</tr>
<tr>
<td>Біфідобактерії, лактобактерії</td>
<td>За необхідності</td>
</tr>
</tbody>
</table>

Доцільно проведення протягом року двох-трьох курсів прийому біфімбактерина, біфіформа, біфідумбактерину форте тривалістю 3-4 тижні. Вони ефективні не тільки в плані...
профілактики дисбактеріозу, а й підтримки імунного статусу організму.

Лікування дисбактеріозу кишковика. Незважаючи на наявність великої кількості препаратів, лікування дисбактеріозу кишковика є важким завданням. Спроба лікування дисбактеріозу кишковика без уточнення порушень в мікрофлорі рідко може увінчатися успіхом. Для більш точного і цілеспрямованого лікування необхідно робити посів калу на мікрофлору.

Порядок призначення різних груп медикаментів визначає лікар з урахуванням ступеня і характеру дисбактеріозу, клінічних проявів, наявності супутніх захворювань.

3.14 Відновлення м'язів, сухожил, суглобів при травмі

У спорті причинами травми часто стають: реакції гальмування в ЦНС внаслідок втоми; перетренированості; зовнішні причини (недотримання правил техніки безпеки, гігієні т. п.).

Наслідки травми – порушення або повна втрата локомоторних функцій і працездатності.

Виявляються травми, а також постійні контроль порушень в мікрофлорі рідко може увінчатися успіхом. Окрім точних патології хребта, яку повинні спостерігати ортопед та вертебролог.

Лікування травм

Лікування травм, а також деяких захворювань опорно-рухового апарату (радикуліт, тендовагініт, міозит, міалгія), отриманих в результаті занять спортом, має на меті швидкого, ефективного відновлення функцій локомоторного апарату. Травми, які не потребують оперативного втручання, припускають певні методи лікування, що дозволяють в найкоротші терміни повернути спортсмена до повноцінних тренувань і змагальному процесу.

Заходи, що прискорюють процес відновлення після травм: мобілізація; гірудотерапія; лікувальна фізкультура; фізіотерапія; масаж; аутотренінг.

Препарати що прискорюють відновлення після травми: вітаміни, мінерал и, коректори кісткової і хрящової тканини, муміє, місцево застосовуються (зовнішні) кошти.

Місцеве лікування

Місцеве лікування ран. Застосовують різні мазі, гелі, креми та інші допоміжні засоби, безпосередньо накладаючи їх на місце травми.

Дія мазей, кремів, гелів, розчинів обумовлена властивостями активних речовин, що входять до їх складу (табл. 40).

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Перші години</th>
<th>Загострення</th>
</tr>
</thead>
<tbody>
<tr>
<td>Зупинка кровотечі</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Антисептики</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Загальноанестезуючі</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Очищаючі рани</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Регенератори</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Епітелізуючі</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Відповідно дії активних речовин зовнішні кошти можна розділити на групи:
– місцевоанестезуючі;
– протинавібразові;
– поліпшують мікроциркуляцію;
– розігріваючі;
– дративливі (відволікаючі);
– протизапальні (біогенні, НПЗЗ);
– ранозагоювальні;
– засоби, що впливають на обмін у хрящовій тканині;
– антисептики;
– бактерицидні і бактеріостатичні засоби.

Групи препаратів, що застосовуються місцево

Місцевоанестезуючі: анестезин, лідокаїн, новокаїн, прилокаїн, хлоретил.

Протизапальні: венорутон, гепаринова мазь, гепатромбин, ліотон-1000, троксевазін, троксерутин, ессен.

Місцевоанестезуючі:
– анестезин, лідокаїн, новокаїн, прилокаїн, хлоретил.

Протизапальні:
– фіто- і гомеопатичні препарати: арніка, календула, живокосту кор інь, ромашки квіти, ромазулан, ревма-гель;
– біогенні: апізартрон, віпратокс, віпросал, гексетидин.

Групи препаратів, що застосовуються місцево

Місцевоанестезуючі:
– анестезин, лідокаїн, новокаїн, прилокаїн, хлоретил.

Протизапальні:
– фіто- і гомеопатичні препарати: арніка, календула, живокосту кор інь, ромашки квіти, ромазулан, ревма-гель;
– біогенні: апізартрон, віпратокс, віпросал, гексетидин.

Таблиця 41 = Застосування зовнішніх коштів при гострій травмі

<table>
<thead>
<tr>
<th>Засоби</th>
<th>Травма</th>
<th>Сроки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Біль</td>
<td>Гематома</td>
</tr>
<tr>
<td>Загальноанестезуючі</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Охолоджуючі (холод)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Тиснуча повзяка</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>П'яви</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Протизапальні</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Розігріваючі</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Розсмоктуючі</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Покращаючі мікроциркуляцію</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

При гострій травмі протипоказані дратівливі і розігріваючі мазі. Застосовуються тільки мазі, які мають болезаспокійливу і протизапальну дію. При свіжих травмах мазі накладають, а не втирають, щоб не викликати гіперемію тканин.

Можливо спільне застосування декількох зовнішніх коштів з метою розширення
спектру їх дії і посилення лікувального ефекту. Але активні інгредієнти не повинні конкурувати між собою і основи повинні бути ідентичними: крем + крем, мазь + мазь, гель + гель.

При першому використанні найкраще наносити мазі ввечері, перед сном. На другий день, якщо перший сеанс перенесений добре, така ж доза застосовується вже трічі — вранці, вдень і ввечері. На третій день — вранці і ввечері, але кількість мазі вже можна збільшити. Після втирання мазі хворе місце слід тримати в теплі (обернути тканиною, краще вовняний). При сильному палінні цю ділянку можна змастити вазеліном, нейтральним кремом. Якщо хворе місце занадто чутливе, можна нанести і масажувати тканини навколо. В цьому випадку лікарські компоненти, що містяться в мазі, будуть доставлені до хворого місця по кровоносних судинах (табл. 42).

Користуватися сильнодіючими мазями слід з особливою обережністю. Перш ніж застосовувати мазь типу нікофлекс, фіналгон, апізартрон, слід перевірити реакцію шкіри. Для цього незначна кількість мазі наносять на обмежену ділянку шкіри. Якщо мазь терпимо переноситься, її можна наносити на уражену ділянку і втирати з масажем. Щоб уникнути сильного пінення шкіри після застосування фіналгон, нікофлекс і аналогічних засобів, не рекомендується застосовувати гарячий душ або будь-які інші теплові процедури.

Застосування зовнішніх коштів: спочатку проводять легкий масаж на місці пошкодження або болю, а за 3-5 хв до кінця сеансу масажу наносять мазь на пошкоджену ділянку тіла і далі продовжують масаж вже з маз’ю.

При різних ударах, розтягненнях, мікротравматизації, артрозах добре допомагає компрес з медичної (бичачої) жовчі. Компрес зазвичай накладають ввечері на уражену ділянку і залишають на ніч.

Таблиця 42 - Місцеве лікування забитих місць, переломів, вивихів, розтягнень і розривів м’язів, зв’язок

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Перші години</th>
<th>1-7-ма доба</th>
<th>Відновлювальний період</th>
</tr>
</thead>
<tbody>
<tr>
<td>Знеболювальне</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Протинабрякове</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>НПЗЗ</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Розтіральне</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Покращуюче мікроциркуляцію</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Коректори кістної і хрящової тканини</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Якщо спортсмен продовжує активно тренуватися, чи не ліквідувавши повністю травму або її наслідки, то протягом нетривалого часу на місці перевантаження виникає мікротравматична хвороба і далі можливі травми різного ступеня тяжкості опорно-рухового апарату. У цьому випадку застосування зовнішніх засобів (мазей, гелів і кремів) направлено на поліпшення мікроциркуляції, зменшення набряку, зменшення подразнення тканин, стимуляцію регенерації тканин, анестезію, так як значне фізичне навантаження завжди провокує пошкодження капілярів (табл. 43).

Для прискорення відновлення після травми також застосовуються: вітаміни, мінерали, муміє, коректори кісткової і хрящової тканини.

Таблиця 43 - Місцеве лікування мікротравматичні хвороби локомо апарату
<table>
<thead>
<tr>
<th>Препарати</th>
<th>Знеболювальне</th>
<th>Лікування асептичного запалення</th>
<th>Нормалізація метаболізму</th>
</tr>
</thead>
<tbody>
<tr>
<td>Загальноанаестезуючі</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>НПЗЗ</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Протизапальні</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Розігруючі</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Покращуючі мікроциркуляцію</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Засоби, що впливають на обмін в кістковій та хрящовій тканинах</td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Муміє. Головним чином, сприяє успішному загоєнню кісток і ран (табл. 44). Муміє підвищує мінеральний обмін, прискорює загоєння переломів кісток (кістковий мозоль утворюється на 8-17 днів раніше, ніж зазвичай).

Таблиця 44 - Застосування муміє при спортивній травмі

<table>
<thead>
<tr>
<th>Патологія</th>
<th>Щоденна доза</th>
<th>Курс</th>
<th>Кількість курсів</th>
<th>Перерва</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кісткові переломи</td>
<td>0,2-0,5 г</td>
<td>3-4 тижні</td>
<td>1-3</td>
<td>10 днів</td>
</tr>
<tr>
<td>Травма м’яких тканин (розв’язки, розтяги)</td>
<td>0,2 г</td>
<td>2-3 тижні</td>
<td>1-2</td>
<td>10 днів</td>
</tr>
<tr>
<td>Компрес при травмі</td>
<td>2 г+2 г меду</td>
<td>5-10 днів</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

При ударах грудної клітки та органів, що знаходяться за грудиною, рекомендується пити по 0,2 г муміє щодня з відваром кмину. У цих же випадках можливе застосування розтирання з подальшим компресом в композиції: 2 г муміє змішати з 2 г меду при розігруванні. Муміє зовнішньо застосовують у вигляді розтирань, аплюкацій, компресів, які готують безпосередньо перед застосуванням.

Муміє нормалізує кров, покращує загальний стан. З прийомом мумій з’являється хороший сон, апетит, зникають болі, швидко відбувається відновлення функцій ураженої кінцівки.

Муміє має бактерицидну дію. Лікувальний ефект проявляється і при інфікованих переломах кісток, остеоміелітів, опіках, загоюються.

Муміє застосовується практично при всіх хворобах і прикордонних станах як зовнішньо, так і внутрішньо. Діє на організм загальноміціюючи, знімає відчуття втоми. При застуді муміє в кількості 0,2 г в поєднанні з медом приймають щодня протягом одного тижня.

Для прийому всередину муміє найчастіше розчиняють в гарячій воді з подальшим охолодженням. Можливо розчинення в соках, молоці, різних маслах, відварах трав. Для цього користуються водяною банею, яку помірно підігрівають. Компоненти змішують скляною паличкою до утворення однорідної маси. Суміш зберігають до вживання в прохолодному місці. В період лікування муміє алкоголю протипоказаний.

Коректори метаболізму кісткової і хрящової тканин. Порушення метаболізму кісткової тканині знижує міцність і масу скелета, розположує до переломів. Остеопороз є дистрофію кісткової тканини. При порушені мінерального складу кісток застосовуються препарати вітаміну D, кальцію, фтору.

Порушення обмінних процесів в хрящовій тканині призводить до розвитку остеоартрозу (за міжнародною класифікацією – остеоартрит). Одним із факторів ризику розвитку остеоартрозу є спортсмени і травми. Тому надзвичайно важлива профілактика і лікування остеоартрозу у діючих спортсмени і ветеранів спорту, так як функціональний стан суглобів визначає спортивну працездатність (табл. 45).

Таблиця 45 - Застосування засобів, що впливають на обмін у хрящовій тканині
Останнім часом велику популярність в лікуванні і особливо при профілактиці цієї патології набувають так звані хондропротектори. До препаратів цієї групи відносять речовини, що містять гіалуронову кислоту, хондроітинсульфати, глюкозамінсульфат, з яких в організмі синтезуються специфічні для людини полісахариди (гіалуронова кислота, хондроітинсульфати та ін.), що забезпечують нормальне функціонування суглобових хрящів. Хондропротектори сприятливо впливають на хрящ, тим самим перешкоджаючи розвитку остеоартрозу, і одночасно діють як знеболюючі та протизапальні засоби.

Гірудотерапія при спортивній травмі, ускладненою гематомою. Гірудотерапію (лікування п'явками) слід розглядати як один із способів лікування травм і захворювань, пов'язаних із заняттям спортом. П'явки в травматології найчастіше використовуються при пошкодженнях мягкотканих структур опорно-рухового апарату.

Лікувальна дія гірудотерапії визначається властивостями секрету слінних залоз п'явок. Встановлено, що в секреті крім гирудина (інгібітору ферменту тромбіну) міститься цілий ряд інших біологічно активних сполук. Наявністю цих з’єднань і пояснюється лікувальний вплив секрету слінних залоз медичних п'явок на організм людини: антикоагулюючий, противотромботичний, тромболітичний, протизапальний, імуностимулюючий, бактеріостатичний, болезнеспокійливий.

Єдине протипоказання до застосування п'явок – індивідуальна непереносимість.

Методика застосування п'явок. Процедури можуть бути розпочаті з першого дня травми, т.e. в гострому періоді, що сприяє попередній виникнення посттравматичних ускладнень. Можна застосовувати одночасно до чотирьох п'явок на процедуру. Перші 2-3 процедури проводяться щодня. П'явку поміщають в пробірку, яку прикритим приставляють до тіла на область ураження (місця зі слідами мазей, пластиру, ліків обробляють, обмивають з дитячим милом, обтирають насухо) і тримають в такому положенні до присмоктування. Відшукавши зручне для себе місце на шкірі, п'явка прокушує її. Присмоктавшись, вона завмирає і починає смоктати кров, що видно по появи хвиляподібних рухів її тіла. П'явка смокче кров протягом 20-90 хв, після чого самостійно відпадає. Навіть після цього місце укусу продовжує кровоточити. З кожної ранки витикає приблизно до 40 мл крові. Таким чином, за допомогою 4-6 п'явок можна здійснити кровопускання обсягом до 200-300 мл крові. Після відпадання всіх п'явок на кровоточиві ранки (можуть кровоточити від 12 до 24 годин) накладають стерильний тампон і зав’язують стерильним бинтом на добу.

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Дорослі</th>
<th>Підлітки</th>
<th>Курс, тижні</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дона</td>
<td>400 мг, в/м, 2-3 рази в тиждень</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Дона</td>
<td>1 порошок</td>
<td>1 порошок</td>
<td>4</td>
</tr>
<tr>
<td>Алфутоп</td>
<td>10 мг, в/м</td>
<td>-</td>
<td>20 ін'єкцій</td>
</tr>
<tr>
<td>Артра</td>
<td>1 табл. 2 рази</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Кондронова</td>
<td>1 капс. 2-3 рази</td>
<td>-</td>
<td>3-4</td>
</tr>
<tr>
<td>Структум</td>
<td>2 капс. 2 рази</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Стопартроз</td>
<td>1 пак. 2 рази</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Терафлекс</td>
<td>1 капс. 2-3 рази</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Хондроїтин</td>
<td>2 капс. 2 рази</td>
<td>1-2 капс. 2 рази</td>
<td>3</td>
</tr>
<tr>
<td>Хондроїтин Сульфат</td>
<td>2 капс. 2 рази</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Хондролон</td>
<td>100 мг, в/м, через день</td>
<td>-</td>
<td>25-30 ін'єкцій</td>
</tr>
</tbody>
</table>
Найчастіше п'яви застосовуються при розтягуванні (надриву) зв'язок, значних ударах суглобів, м'яких тканин з утворенням гематом.

Після першої ж процедури відзначається зменшення набряку, зниження больової чутливості. Через 48 год взагалі, або через 24 год, вміст навколишніх зв'язків, знижується, і через декілька днів вони проблематичні для рухів. Після третій процедури набряк і больові відчуття повністю зникають. На 5-7-й день після отримання травми спортсмен може приступити до індивідуальних тренувань, продовжуючи отримувати теплоі лікування, фізіолікування, фіксацію еластичним бинтом. Повернення спортсменів до повноцінної тренувальної та змагальної діяльності відбувається на 10-14 день після отримання травми (навіть при великий гематомі).

У випадках відмов спортсменів лікуватися п'явками, курс лікування традиційними методами триває, як правило, не менше 4 тижнів. При застосуванні п'явок терміни лікування, а головне – реабілітації, скорочуються вдвічі.

Патологія хребта і м'язові порушення. Особливе ставлення до патології хребта пояснюється центральною роллю, яку він грає в підтримці і рух всього тіла, а також високою частотою порушень його функцій у спортсменів високої кваліфікації.

При аналізі патологічних станів слід враховувати будову суглобових зчленувань хребта, багатошаровий характер спинної мускулатури, що служить як для фіксації тулуба в певному положенні, так і для здійснення рухів, а також особливості зв'язкового апарату.

Функціональна рухова одиниця хребта включає анатомічні структури, які беруть участь в русі хребців відносно один одного: 1) міжхребцеві диски, що з'єднують тіла хребців спереду; 2) парні суглобові відростки і 3) зв'язки, дуги і остиці відростки хребців. Для здійснення рухів необхідна єдність дій всіх цих структур.

Міжхребцеві диски характеризуються еластичністю. Вони служать «амортизаторами», складаються з драглистого (пульпозного) ядра і навколишнього його фіброзного кільця, роль якого утримує речовину ядра. Заду хребці з'єднуються між собою суглобовими відростками, які забезпечують надійність і рухливість хребетного стовпа.

Всі зміни форми хребетного стовпа, відхилення від фізіологічних вигинів – кіфоз і лордоз (скопіоз) – змінюють статику хребта.

Причины таких відхилен можуть бути різними, їх можна розділити на наступні групи:

1) м'язові причини – результат слабкості спинньої мускулатури, черевних м'язів; односторонній гіпо і гіпертонус м'язів спини;
2) деформація хребців: вроджена або отримана в результаті професійної діяльності, захворювання, травми;
3) позапозвоночних – скопіоз в результаті зміненого положення таза (наприклад, через укорочення однієї ноги після перелому або запалення тазостегнового суглоба), виражений лордоз крижового відділу хребта як компенсаторне явище при двосторонній ригідності тазостегнового суглоба.

Ясно, що обумовлене деформацією хребців аномальна напруга м'язів виникатиме знову і знову, тому, щоб позбутися вони повинні бути відновлені, тому і запобігти подальшому розвитку дегенеративні, слід регулярно проводити заходи для нормалізації міотонуса.

Всі види дегенеративної, деструктивної, обумовлені порушеннями статики, можна назвати порушеннями механіки хребта. Різко прискорюють процес дегенерації конституційні чинники і перевантаження (монофункціональні відділи хребта) або перегруз для двосторонній ригідності тазостегнового суглоба.

Ясно, що обумовлене деформацією хребців аномальна напруга м'язів виникатиме знову і знову, тому, щоб позбутися вони повинні бути відновлені, тому і запобігти подальшому розвитку дегенеративні, слід регулярно проводити заходи для нормалізації міотонуса.

Всі види дегенеративної, деструктивної, обумовлені порушеннями статики, можна назвати порушеннями механіки хребта. Різко прискорюють процес дегенерації конституційні чинники і перевантаження (монофункціональні відділи хребта) або перегруз для двосторонній ригідності тазостегнового суглоба.

Дегенеративні зміни виникають головним чином там, де є максимальна (компресійна) навантаження, особливо велика рухливість (шийний, поперековий відділи хребта) або різка зміна розмаху рухів (перехід від рухомої нижньої частини шийного відділу до відносно малоподвижному грудному відділу; від рухомої частини крижового відділу до нерухомому...
Початкові ураження хребта можуть протікати без вираженої клініки. Однак часто вони супроводжуються характерними скаргами: місцеві і іррадіюючі нючі болі, обмеженість рухів, болю при русі – на все це спортсмени скаржаться досить часто.

Дегенерація починається з міжхребцевих дисків і розвивається поступово або дуже швидко - в залежності від попередніх подій. Диски поступово «усихають», їх дралгисте ядро в результаті кохонних замін втратяє пластичність і рентгенографія показує зниження висоти міжхребцевих дисків. Зменшення здатності витримувати компресійну навантаження рефлекторно компенсується остеоцистезією тел і крайх хребця (остеохондроз). Дегідаратія диска приводить до зменшення сили, що розсумує хребці, а це, в свою чергу, викликає невелики зрушення хребців відносно один одного. Дегенеративне зрушення відривається від хребців, що вони виявляється в змозі утримати дралгисте ядро і не витримує сильна, що розвивається при русі двох хребців. Зовнішні волока кілька надриваються. Натиску диска, що зазнає компресію, пручаться тільки поздовжні звуки.

Передня поздовжня звука, тісно пов'язана з хребцями, реагує на таке патологічне напруження обізнавання в місці прикріплення, що проявляється на рентгенівських знімах у вигляді наростів по краях хребців (деформуючий спондиліт). Залих ж поздовжня звука, яка не має зв'язку з хребцями, може не витримати натиску ядра: в екстремальних випадках, при сильному неволі, виникає грижа міжхребцевого диска. Це може привести до перетягування дурального мішка спинного мозку або самого спинного мозку, або корінців спинномозкових нервів у хребетному каналі.

Дегенеративні зміни можуть охоплювати і міжхребцеві суглоби. Дегенерація суглобів веде до пошкодження хрящів, і порочне коло артрозу (в даному випадку спондилоартроз) замикатиметься.

Неврологічне визначення, що проходить від розтратованих зв'язкових нервових корінців, викликає рефлекторне підвищення тонусу моносегментної мускулатури (коротких глибоких м'язів), завданням якої є фіксація таза, внаслідок чого вона утримує вражений хребетний сегмент в безболісному положенні, а полісегментні м'язи обмежують рухливість всього ураженого відділу хребта, посилаючи сигнал болю при всяких спробах руху.

При обстеженні коротких глибоких м'язів спини виявляються хворобливі довгасті ущільнення і більш окремі інкапсулози, токож хворобливі при натисканні. Нерідко тяжковидами безправляють всі м'язи ураженої області. Якщо ці явища протягом тривалого часу не лікувати, в процес втягується підшкірна сполучна тканина, розвивається клініка, типова для фіброзіту.

Часто болі поширюються в обидва боки від хребта (наприклад, в руки, лопатки, сідници і стегна) або віддаються в якусь одну кінцівку. Але якщо ретельна перевірка функцій периферичних нервів, рефлексів і чутливості не може виявити патологічних відхилень, то в цьому випадку болі, швидше за все, іррадіюючі. Справжні корінцеві симптоми, тобто односторонні поразки корінців і порушення рефлексів, мають місце тільки при механічному пошкодженні спинних нервів в результаті випадання міжхребцевого диска. Розрив суглобових суккупностей викликає місцеву спінальну тканину, розвивається клініка, типова для фіброзіту.
поліпшивши біомеханіку локомо апарату спортсмена.

Реабілітація

Реабілітація – система засобів і заходів, спрямованих на максимально швидке відновлення здоров'я і спортивної працездатності після травм.

Спортивна реабілітація має на увазі застосування лікарських засобів, психотерапію.

У процесі реабілітації перед тренером і спортсменом стоять наступні завдання:

1) збереження під час лікування досить високого рівня розвитку нервово-м'язового апарату пошкодженої області;
2) раннє відновлення амплітуди рухів і сили пошкодженої області;
3) створення у спортсмена певного психологічного фону, який допомагає йому швидше перейти до повноцінних тренувань;
4) підтримання загальної та спеціальної тренованості.

На вирішенні цих завдань будується весь комплекс заходів, що включає різні види фізичних вправ і має лікувальну та тренувальну спрямованість (табл. 46).

Таблиця 46 - Засоби реабілітації спортивної травми в залежності від періоду

<table>
<thead>
<tr>
<th>Засоби</th>
<th>Период</th>
<th>Іммобілізації</th>
<th>Постиммобілізаційний</th>
<th>Повна функціональна реабілітація</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Гострий</td>
<td>Підгострий</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Масаж</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Аутотренінг</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Ідеомоторне тренування</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Фізотерапія</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Компреси з мазями</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Електростимуляція м'язів</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ЛФК</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ЛФК – заняття тренувального характеру</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ізометричні вправи</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Підтримання загальної працездатності</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Тренування – динамічний режим</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Тренування – силові вправи і вправи на розслаблення</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Спеціальна силова підготовка</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Тейпі, захищені пристосування (фіксація)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Період іммобілізації. Накладена фікуюча пов'язка і активні рухи неможливі, що негативно позначається на функціональному стані нейромоторного апарату пошкодженого органу. Виражений больовий синдром.

Постіммобілізаційний період. Це період після зняття гіпсу або фікуючої пов'язки.
Основне завдання – розробка суглобів на повну амплітуду рухів і відновлення сили в травмованої області.

Період повної функціональної реабілітації. Закінчення постіммобілізаціонного і початок наступного періоду – повної функціональної реабілітації – встановити важко, так як вони органічно пов’язані між собою і поступово переходять один в інший. Примірною кордоном може служити повне відновлення сили м’язів і обсягу рухів в ушкоджений зоні.

3.15 Актуальні проблеми жіночого спорту

Репродуктивна система жінок-спортсменок визначається генетичними і віковими особливостями, тривалістю і певною спрямованістю тренувальної діяльності, специфікою видів спорту, супутніми захворюваннями, наявністю факторів ризику.

Статевий розвиток. На час настання і протягом періоду статевого дозрівання впливають чисельні фактори. Їх прийнято розділяти на внутрішні (спадкові, конституціональні, стан здоров’я, маса тіла) і зовнішні (кліматичні, харчування).

Генетичний фактор є основним серед факторів, що впливають на швидкість статевого дозрівання. Наступ перших «місячних» (менархе), динаміка становлення повноцінних менструальних циклів і завершення статевого дозрівання обумовлені більшою мірою рівнем фізичного розвитку, ніж хронологічним віком.

Особливо важливе значення для менструальної функції має маса тіла. Відомо, що більш повні дівчинки починають дозрівати раніше. Останнім часом в безлічі робіт було доведено, що для початку менструації необхідна певна маса тіла. Для позначення цієї маси пропонуються терміни: «менструальна», «критична».

За даними Е.А. Богданової (1972), менструація починається при масі тіла 47,8 ± 0,5 кг при зрості 154 см. Зв’язок маси тіла з швидкістю дозрівання здійснюється через ендокринні механізми і через кількість жирової тканини в організмі. Показано, що для початку менструальної функції дівчатам надто багато жиру, достатньо обов’язково мати жирові відкладення не менш ніж 17-22% (Пауестейн Дж., 1985).

F. Frisch (1988) пов’язує цю кількість жиру з вмістом води в організмі: менархе не почнеться доти, поки дівчата не наберуть певну масу тіла, при якій вміст води в організмі має знизитися до 59,8%. При такому вмісті води на частку жиру, на думку автора, доводиться щонайменше 17% маси тіла.

Роль жирової тканини в статевому дозріванні пояснюється тим, що жир акумулює стероїди, і особливо – прогестерон, а також бере участь в обмінні естрогенів, перетворення яких в активну форму залежить від його кількості. При втраті жиру маса тіла в результаті виснажуючих фізичних навантажень або голодування виникає вторинна аменорея (відсутність місячних) навіть в зрілому віці.

Вміст жиру в організмі має особливе значення у жінок, що займаються спортом. Співвідношення жирової і безжирової (м’язової) тканини – важливий морфологічний чинник, що визначає спортивний результат. Серед спортсменок найвище відносний зміст жирової маси мають гімнастки. Причому досягши високого спортивного результату мають наявную кількість жиру. Багато авторів пов’язують затримку статевого дозрівання у спортсменок з рівнем спортивної майстерності.

Більшість авторів дотримуються думки про широкі межі статевого дозрівання жіночого організму.

Пубертатний розвиток може швидко прогресувати (L. Wilkins) або відбуватися поступово з порівняно повільним зростанням тіла. Воно може початися в 8-9 років і закінчуватися в 17-18 років, тобто тривалість пубертатного періоду може скласти від 2 до 10 років.

B.I. Бодяжина, оглядаючи на дані про ступінь зрілості гіпotalамічних структур, результати спостереження клінічного перебігу періоду статевого дозрівання, дані екскреції
гонадотропів, виділили періоди дозрівання гипотоламо-гіпофізарної системи: препубертатний і дві фази пубертату.

Препубертатний період (7-9 років) характеризується посиленням секреції гіпоталамічних структур, які досягли певного ступеня зрілості. Відбувається ациклічний викид гонадотропів. Секреція естрогенів низька.

1-я фаза пубертатного періоду (10-13 років). Формується добовий ритм і збільшується секреція гонадотропів, під впливом яких зростає секреція гормонів яєчників. Цей період закінчується настанням «місячних».

2-я фаза пубертатного періоду (14-17 років). Формується циклічний характер виділення і кількість викид гонадотропів, з високим (овуляторним) викидом лютеїнізуючого гормону (ЛГ) і фолікулостимулюючого гормону (ФСГ) на тлі базальної секреції, має монотонний характер.

Здійснюється чітка взаємодія всіх ланок ендокринної ланцюжка з суворою циклічністю секреції гіпоталамуса, гіпофіза і яєчників – менструальний цикл носить овуляторний характер.

Фізіологія 1-ї фази пубертату: збільшення молочних залоз у 10-11 років, оволосіння лобка в 11-12 років. Завершує цей період наступ першої менструації, закінчення швидкого зростання тіла в довжину.

У 2-й фазі пубертатного періоду (14-17 років) молочні залози і статеве оволосіння завершують розвиток, оволосіння пахвових западин починається в 13 років і останньому закінчує свій розвиток. Менструальний цикл набуває регулярний характер, остаточно формується жіночий таз.

Фемінізація фігури і розвиток вторинних статевих ознак відбувається під впливом гормонів яєчників і андрогенів надниркових залоз. Андрогени прискорюють ріст скелета. Естрогени викликають дозрівання кісткової тканини і окостеніння росткових зон трубчастих кісток.

Є досить істотні відмінності у розвитку і дозріванні спортсменок і неспортсменок. При дослідженнях, проведених спортивними медиками, відзначена ретардація статевого розвитку як риса, характерна в цілому для жінок-спортсменок.

У сукупності затримка статевого розвитку всіх ступенів виявляється у дівчаток-спортивок в 20 разів частіше, ніж в популяції. Менархе у спортсменок з'являється майже на півтора року пізніше, ніж у незаймаючихся спортом дівчаток в популяції. За показниками розвитку грудної залози спортсменки відстають від популяції.

Своєчасна діагностика патології визначає можливість збереження регулярного менструального циклу і фертильності.

Менструальний цикл. Менструальний цикл в гормональному «виконанні» складається з двох фаз: фолікулярної (триває від першого дня менструації до овуляції, тобто виходу...
яйцеклітини) і лютеїнової (триває від овуляції до початку менструації). Вироблення гормонів яєчників (естрогену і прогестерону) регулюється гіпоталамо-гіпофізарною системою. Під впливом коливань ФСГ і ЛГ відбувається зростання і дозрівання фолікулів в яєчниках, де виробляються естрогени і прогестерон. Регуляція менструального циклу відбувається за типом зворотного зв’язку під впливом зміни концентрації гормонів. Сенс всього циклу – дозрівання яйцеклітини і підготовка її до вагітності. Якщо вагітність не настала, то відбувається менструальна реакція, а потім весь цикл запускається знову.

Облік фаз менструального циклу дає тренеру і спортсменці додаткову можливість правильно розподілити тренувальні навантаження, сприяє оптимізації тренувального процесу і підвищення працездатності (табл. 47, 48).

За реакцією організму на «місячні» жінок-спортивних умовно можна розділити на 4 групи: 1 група – 50% з числа займаються спортом, 2 – 34%, 3 – 5% 4 – 5 %.

Проблем в жіночому спорті досить багато. Найбільш важливі проблеми: вибір методу контрацепції, регулювання менструального циклу, передменструальний синдром, анемія.

Таблиця 47 - Реакція організму спортсменів на менструальну фазу

<table>
<thead>
<tr>
<th>Реакцію організму</th>
<th>1 група (50%)</th>
<th>2 група (34%)</th>
<th>3 група (5%)</th>
<th>4 група (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Самопочуття</td>
<td>N</td>
<td>↓</td>
<td>↓↓</td>
<td>↓↓</td>
</tr>
<tr>
<td>Загальний стан</td>
<td>N</td>
<td>↓</td>
<td>↓↓</td>
<td>N↓</td>
</tr>
<tr>
<td>Пульс</td>
<td>N</td>
<td>↓</td>
<td>↑</td>
<td>N↓</td>
</tr>
<tr>
<td>АТ</td>
<td>N</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Фізичний стан</td>
<td>N</td>
<td>↓</td>
<td>N</td>
<td>↓</td>
</tr>
<tr>
<td>Спортивний результат</td>
<td>N↑</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>

Прикметка. N – нормальна і хороша реакція, 4 – зниження, 4-4 – значне зниження, TT – збільшення. Зниження деяких показників у спортсменок 1-3 груп, як правило, не повторюється з циклу в цикл.

Таблиця 48 - Спеціальна працездатність в різні фази менструального циклу

<table>
<thead>
<tr>
<th>Якість</th>
<th>Фази менструального циклу</th>
<th>Міжменструальний</th>
<th>Предменструальний</th>
<th>Менструальний</th>
<th>Постменструальний</th>
</tr>
</thead>
<tbody>
<tr>
<td>Максимальна сила</td>
<td>N</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Сила</td>
<td>N</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Витривалість</td>
<td>N</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Швидкість</td>
<td>N</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Силова витривалість</td>
<td>N</td>
<td>↓↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Статична витривалість</td>
<td>N</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Відновлювальні процеси</td>
<td>N</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

Прикметка. N – нормальні і хороші показники, 4 – зниження, 4 4 – значне зниження. Індивідуальна реакція на фази менструального циклу яскраво виражена і може не збігатися зі статистичними даними, наведеними в таблиці.

Методи контрацепції:
1) механічні (вагінальні діафрагми, шийні ковпачки, презерватив);
2) хімічні (спеціальні креми, пасти, таблетки, кульки, свічки і т.д.);
3) біологічний (фізіологічний);
4) хірургічний (чоловіча або жіноча стерилізація);
5) внутрішньоматкова контрацепція;
6) оральна контрацепція (прийом контрацептивних таблеток). Найбільшого поширення в останні роки отримала ральній контрацепція, яка найбільш ефективна для попередження вагітності. Прийом контрацептивних таблеток заснований на впливі їх на менструальний цикл.

Оральні контрацептиви за складом бувають комбінованими, тобто містять естроген і прогестаген, і часто прогестинові, до яких відносяться мініпілі і постинор. Комбіновані ж препарати бувають монофазними (регулон, новінет, ліндінет і т. п.), двофазними (антеовін) і трифазними (трірегол).

Метод екстреної контрацепції (або «пожежний метод») існує для того, щоб навіть в непередбачених ситуаціях, коли відбувся незахищений статевий контакт, дати жінці шанс уникнути аборту, мінімізувавши ризик втрати репродуктивного здоров'я. Найчастіше це або перший статевий контакт, або рідкісні статеві контакти, або неспроможність бар'єрного або якого-небудь іншого застосованого методу. Одним з нечастих, але дуже актуальних свідчень є сексуальне насильство. Препарат постинор (1 таб.) слід приймати протягом перших 72 годин після незахищеного статевого акту, а через 12 годин після прийому таблетки прийняти другу. Дуже важливо, що метод практично не має протипоказань, і в разі його невдачі настає вагітність зберігати можна. Застосування постинора щомісяця (а тим більше частіше) не допускається. Краще використовувати не екстрену, а планову контрацепцію.

Для планової контрацепції добре підходять монофазні оральні контрацептиви. Дані препарати сучасні, безпечні та ефективні, в них міститься мінімальна кількість гормонів. З контрацептивної метою рекомендується прийом мікродозованих препаратів (новінет, Ліндінет).

Комбіновані противзаплідні таблетки мають ще й лікувальний ефект. Їх призначають при порушеннях менструального циклу, дисменореї, передменструальному синдромі, гіперандрогенії, для лікування ендометриозу і міоми матки, кістах яєчників. Дані препарати мають протизапальну дію, попереджають залізодефіцитну анемію, сприяють профілактиці позаматкової вагітності. Крім того, у даних препаратів є і віддалені ефекти: протягом 10-15 років після скасування контрацептивних таблеток на 50% зменшується ризик розвитку злойкісних утворень яєчників, матки, молочних залоз.

В силу своїх фармакологічних особливостей дезогестрел, що входить до складу регулонів, новінет, додатково може надавати антиандрогенну дію. Це проявляється в поліпшенні стану шкіри і волосся у тієї групи пацієнток, у яких підвищення тестостерон в крові призвело до появи вугрів і себореї.

Можливості гормональних контрацептивів набагато ширші, ніж просто попередження небажаної вагітності. Це можливість зберегти здоров'я жінки, а значить, і здоров'я її майбутніх дітей. Функції групи контрацептивів, які називаються оральними гормональними контрацептивами, не тільки в надійному захисті від небажаної вагітності (що само по собі вже не мало), але і в збереженні репродуктивного здоров'я жінок. Для оральных контрацептивів, як і для будь-яких лікарських препаратів, існують свої обмеження. Тому вони відпускаються в аптекі за рецептом, і перше призначення повинен робити кваліфікований лікар.

Необхідно звернути увагу на те, що контрацептивні препарати не захищають від інфекцій, що передаються статевим шляхом.

Регулювання менструального циклу. Іноді менструальна фаза у жінок-спортоменок доводиться на дні змагань. Зміна початку менструального циклу вирішується прийомом оральних контрацептивів. Зміна терміну менструації за допомогою контрацептивів бажано проводити за 2-3 циклу до потрібної дати.

Починати прийом таблеток слід з 1-го по 5-й день менструального циклу протягом 21
дня (номерні таблетки приймають відповідно до доданої до них інструкції по 1 таб. В день, бажано в один і той же час). Потім слід зробити 7-денну перерву, після якого почати прийом таблеток з нової упаковки. У проміжку між прийомами настане менструально-подібна реакція. Прийом таблеток за певною схемою дозволяє регулювати фізіологічні функції в залежності від необхідності. У таких випадках можна приймати два цикли підряд. Іноді навіть лікарі рекомендують приймати таблетки в режимі 63 таблетки – 7 днів перерва – 63 таблетки і т.д. Але ця схема можлива тільки при застосуванні монофазних препаратів. Якщо застосовуються трифазні контрацептиви, то для відстрочки менструально-подібних виділень потрібно приймати з наступної упаковки тільки останню фазу.

Після відміни препарату протягом 7 днів змінюється рівень жіночих гормонів в крові, відторгається ендометрій і виникає менструально-подібна реакція, відбувається відновлення гормонального циклу, з відновленням правильної циклічності.

Зазвичай оральні контрацептиви мають відмінну переносимість. Рідко протягом двох-трьох циклів можливі нудота, головний біль, напруга молочних залоз, міжменструальні виділення. Дані побічні ефекти, як правило, через 2-3 місяці зникають.

Протипоказання для призначення гормональних протизаплідних препаратів: захворювання печінки, злоякісні пухлини, артеріальна гіпертензія, тромбози, варикоз вен.

Предменструальний синдром. Спостерігається у кожної п'ятої жінки після 20 років і кожній другій після 30. Предменструальний синдром – складний симптомокомплекс, що виникає за 2-10 днів до менструації і зникає відразу після її початку. Спімтоми передменструального синдрому: депресія, втома, відривість, нервозність, болі в молочних залозах, болі внизу живота, зміна апетиту, відризання усього тіла. При якісних місячних, дієті, яка виключає достатня надходження заліза в організм, поступово виникає зміна заліза і зосередження менструального синдрому стає більш вираженим.

Профілактика передменструального синдрому: нenasичені жирні кислоти; магній, калій, цинк; вітаміни В6, С, А, Е; гормональні контрацептиви (регулон, новинет). З дієти виключаються кофеєовмісні продукти (кава, шоколад, міцний чай, кока-кола). При емоційному напруженні приймають денний, який не викликає сонливості транквілізатор.

Дисменорея. Дисменорея характеризується цикличними нападами болю внизу живота, пов’язаними з початком менструації, загальним неудоволінням, депресією, втомою, головним біль, непритомнім станом, що призводять до порушення працездатності. 50% дорослих жінок і 80% підлітків страждають цією патологією. Основним засобом лікування є оральні контрацептиви (Ліндінет) і нестероїдні протизапальні засоби. Ефективні при даній патології спазмолітики, вітамінотерапія (вітамін В6, вітамін BF), психотерапія.

Адаптація спортсменок до різних фаз менструального циклу повинна проводитися через контрольні старті і тренування. Спортсменки високого рівня повинні мати до свід виступу на змаганнях і під час менструальної фази (табл. 49).

<table>
<thead>
<tr>
<th>Результати змагань</th>
<th>Тренування під час менструації</th>
<th>Не проводиться</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хороші</td>
<td>50%</td>
<td>20%</td>
</tr>
<tr>
<td>Знижені</td>
<td>50%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Анемія. При якісних місячних і дієті, яка виключає достатнє надходження заліза в організм, поступово виснажуються запаси заліза. В цьому випадку слід приймати препарати заліза і антиоксидант 7-10 днів кожного місяця в кінці менструації протягом 3-4 циклів. Жінкам з якісними і тривалими менструаціями дослідження показників феррокінетики проводиться 2 рази на рік. В даному випадку також показаний один з препаратів: регулон, новинет.
Ведення щоденника гінекологічного самокontroлю, облік фаз менструального циклу дає тренеру і спортсменці додаткові можливості правильно розподіляти тренувальні навантаження, планувати відновлювальні заходи, підвищувати працездатність, тобто оптимізувати тренувальний процес.

При виникненні будь-яких гінекологічних проблем (індивідуального підбору методу контрацепції, в разі бажання перейти на прийом іншого орального контрацептиву) за допомогою необхідно звертатися до фахівця.

3.16 Десинхроноз (порушення добового динамічного стереотипу)

Перетин чотирьох і більше часових поясів призводить до зміни звичного ритму «день – ніч». Показники внутрішнього біологічного годинника у людини в перші дні перебування на новому місці не збігаються з місцевим астрономічним часом. Відбувається зсув добових ритмів активності і спокою, неспання і сну, які десинхронізовані з добовими ритмами фізіологічних процесів (ЧСС, температура тіла, швидкість проведення збудження по нервових волокнах, фізична працездатність, артеріальний тиск, концентрація гемоглобіну, імунні фактори і т. д.).

Неузгодженість (десинхрозу) триває до тих пір, поки організм не пристосується до місцевого часу і обидва цикли не синхронізовані. Адаптація спортсмена до нових умов і відновлення середнього рівня працездатності настаче трохи раніше, ніж повна адаптація організму, необхідна для досягнення рекорденних результатів.

Кліматична і тимчасова адаптація при переміщенні на чотирьох і більше часових поясів має три стадії.

Перша стадія (початкова, 2-4 доби) – порушення добового ритму синхронізації основних процесів життєдіяльності. Це відбувається тому, що тренування, змагання, прийом їжі та інші заходи, що проводяться за місцевою годиною, будуть проходити в період, який не відповідає добовому ритму.

Друга стадія завершується через 7-10 днів. Відбувається активна перебудова психофізіологічних функцій: наявні порушення сну, апетиту, настрою, самопочуття у більшості спортсменів починають поступово зникати. Показники функціонального стану нервової і м'язової систем і, особливо, вегетативних функцій підвищуються. Фізична працездатність зменшується, але можливі загострення хронічних захворювань.

Третя стадія – стабілізація психофізіологічних функцій. Для цієї стадії характерний психологічний комфорт, відносна стабілізація нового добового ритму більшості фізіологічних процесів, хоча по ряду показників (споживання кисню, температура тіла), особливо після м'язової роботи, ще можливо прояв ритму постійного місця проживання. Працездатність в різних видах спорту при переміщенні через часові поєси показана в табл. 50.

| Таблиця 50 - Працездатність в різних видах спорту при переміщенні через часові поєси |
|---|---|---|---|---|---|---|---|---|---|---|
| Види спорту | Працездатність, доба | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| Циклічні | N | N | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | N |
| Швидкісно-силові | N | N | ↓ | ↓ | ↑ | ↑ | ↑ | ↑ | ↑ | N | N | N |
| Єдиноборства | N | N | ↑ | ↑ | ↑ | N | N | N | N | N | N | N |
| Складно-координаційні | N | N | ↓ | ↓ | ↓ | ↓ | ↑ | ↑ | ↑ | N | N | N |
| Спортивні ігри | N | N | ↓ | ↑ | ↑ | ↑ | ↓ | N | N | N | N | N |

Примітка. N – нормальна працездатність, 4 – зниження працездатності, 4-T – нестійка. У спортсменів, що спеціалізуються в циклічних видах спорту, спрямованих на
переважний розвиток витривалості, спостерігається відносно невисока реактивність вегетативних функцій в порівнянні з представниками інших видів спорту.

1 стадія – спортивна працездатність вперше дві доби змінюється незначно, в наступні дві-три доби її рівень знижується.

2 стадія (процес становлення нового добового ритму) протікає більш тривалий час, що позначається на термінах всього періоду адаптації. Після короткочасного підвищення працездатності слід, як правило, друга хвиля нестійкого стану (7-9-ї доби), яка полягає в значних перепадах функціонування систем організму на тлі тенденції до підвищення. Потім настає тривала стадія поліпшення загального стану і спортивної працездатності, яка починається на 11-12 добу адаптації.

У швидкісно-силових і складно-координаційних видах спорту особливістю адаптації спортсменів є виражений індивідуальний характер і висока реактивність вегетативних функцій. Відбувається порушення координації рухів, поява помилок протягом 1-ї стадії. У 2 стадії перебудова проходить більш активно. Спортивна працездатність в перші дві доби не змінюється, на 3-4 добу вона істотно знижується. У цей період не рекомендується використовувати максималі навантаження (за обсягом, інтенсивності, психічної та координаційної напруженості). Завершується перебудова на 8-10 добу після перельоту встановленням нового добового ритму.

У єдиноборствах у спортсменів при зміні тимчасового режиму, як правило, також спостерігається підвищення реактивність вегетативних функцій. Значення має і ступінь зменшення ваги і передстартові реакції.

Особливістю адаптації спортсменів є більш швидке пристосування функціонального стану нервої і м'язової систем і провідних фізичних якостей. Це обумовлено фізичними вимогами спорту і особливостями адаптації, яка проводиться в контрастні поясно-кліматичні умови.

Тривалість стадії адаптації при переміщенні через часові пояси знаходиться в прямій залежності від різниці поясного часу: чим більше вона, тим довше термін адаптації. Синхронізація ритмів після перельоту (переїзду) відбувається в середньому зі швидкістю 90-100 хв в день.

Досвід показує, що найважливішою значення в процесі тимчасової адаптації набуває режим і фізична діяльність спортсмена в перші два доби після перельоту, особливо примусовий перший нічний сон і перші тренувальні заняття. Тому вже в ході перельоту необхідно відрядити перейти до новий добовий режим. У зв'язку з можливими активізаціями хронічних захворювань необхідно провести іммунокорекцію, застосовуючи курсові дози імуномодуляторів (тималін, тимоген, циклоферон, ронколейкін, ехінацея) (табл. 51-53).

Виліт на захід доцільний у першу половину дня з прильотом до вечора, коли вдома вже глибока ніч і спортсмен хоче спати. Основним завданням фармааксії на цьому етапі стає перешкоджання заснуванню спортсменів під час перельоту. Подальшої запобігання сну варто домагатися аж до вечора за місячним часом: легке тренування, вечера (не переїдати).
<table>
<thead>
<tr>
<th>Режим</th>
<th>Тренування</th>
<th>Дієта</th>
<th>Препарати</th>
</tr>
</thead>
<tbody>
<tr>
<td>За 5 днів до переміщення</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Приблизитись до режиму міста прибуття</td>
<td>Тренувальне навантаження високої інтенсивності і об’єму</td>
<td>До вильоту – високий вміст білків і низький вуглеводів</td>
<td>Адаптогени вранці. Янтарна кислота 0,1 г 3 рази в день. Можливе застосування іммунокоректорів</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>_</td>
</tr>
<tr>
<td>Під час перельоту</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Виліт вранці або днем, приліт ввечері. Сон в літаку не рекомендується</td>
<td>Неспецифічна розминка в літаку</td>
<td>Мала кількість пиття без кофеїну</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Відразу після прибуття</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Бажано спати (лежати) До 5-7 годин ранку за місцевим часом</td>
<td>Вранці за місцевим часом слід провести легке тренування</td>
<td>Вечера 1-1,5 годин до сну. Значна кількість вуглеводів</td>
<td>Седативні препарати призначаються за 40-60 хв до сну: екстракт валеріанни 2-3 таб., рідкий екстракт пассіфлори 30-40 кап. Вранці адаптогени</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3 доби після прибуття – десіхроноз</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Перед сном тепла ванна, розслаблюючий масаж, аутотренінг</td>
<td>Тренувальні заняття підпорядковуються новому добовому режимі</td>
<td>По прильоту переважно білкова їжа</td>
<td>Тонізуючі препарати вранці. Седативні препарати за 1 час до сну. Мелаксен</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-7-10 доба після прибуття – адаптація</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Режим етапа підготовки</td>
<td>Тренування проводять в години, коли плануються змагання</td>
<td>Два етапи підготовки</td>
<td>Адаптогени вранці. Седативні препарати за 1 час до сну. Мелаксен</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 діб і більше після прибуття – синхронізація</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Режим етапа підготовки</td>
<td>Тренування проводять в повному об’ємі в годині, коли плануються змагання</td>
<td></td>
<td>Фармакологія повинна відповідати етапу підготовки і індивідуальні реакції на переміщення</td>
</tr>
</tbody>
</table>
Таблиця 52 - Засоби адаптації при переміщенні на схід

<table>
<thead>
<tr>
<th>Режим</th>
<th>Тренування</th>
<th>Дієта</th>
<th>Препарати</th>
</tr>
</thead>
<tbody>
<tr>
<td>Приблизитись до режиму міста прибуття</td>
<td>Тренувальне навантаження високої інтенсивності і об'єму</td>
<td>До вильоту – вуглеводи</td>
<td>Адаптогени вранці. Янтарна кислота 0,1 г 3 рази в день. Можливо застосування іммунокоректорів</td>
</tr>
<tr>
<td>За 5-10 днів до переміщення</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Під час перельоту

<table>
<thead>
<tr>
<th>Режим етапа підготовки</th>
<th>Вранці або дном. Навантаження повинне бути знижене</th>
<th>По прильоту переважно білкова їжа</th>
<th>Тонізуючі засоби</th>
</tr>
</thead>
<tbody>
<tr>
<td>Перед сном тепла ванна, розслабляючий масаж, аутотренінг</td>
<td>За тренувальним планом</td>
<td>Переважно білкова їжа</td>
<td>Адаптогени вранці. Тонізуючі засоби. Янтарна кислота</td>
</tr>
<tr>
<td>2-3 доби після прибуття – десіхроноз</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-7-10 доба після прибуття – адаптація

<table>
<thead>
<tr>
<th>Режим етапа підготовки</th>
<th>Тренування проводять в години, коли плануються змагання</th>
<th>Два етапи підготовки</th>
<th>Адаптогени вранці. Седативні препарати за 1 час до сну. Мелаксен</th>
</tr>
</thead>
<tbody>
<tr>
<td>Перед сном тепла ванна, розслабляючий масаж, аутотренінг</td>
<td>Тренування проводять в повному об’ємі в години, коли плануються змагання</td>
<td>Дієта етапа підготовки або змагання</td>
<td>Фармакологія повинна відповідати етапу підготовки і індивідуальні реакції на переміщення</td>
</tr>
</tbody>
</table>

Закінчення табл.52

<table>
<thead>
<tr>
<th>Режим етапа підготовки</th>
<th>Тренування проводять в години, коли плануються змагання</th>
<th>Два етапи підготовки</th>
<th>Адаптогени вранці. Седативні препарати за 1 час до сну. Мелаксен</th>
</tr>
</thead>
<tbody>
<tr>
<td>Перед сном тепла ванна, розслабляючий масаж, аутотренінг</td>
<td>Тренування проводять в повному об’ємі в години, коли плануються змагання</td>
<td>Дієта етапа підготовки або змагання</td>
<td>Фармакологія повинна відповідати етапу підготовки і індивідуальні реакції на переміщення</td>
</tr>
</tbody>
</table>

Таблиця 53 - Режимні заходи при перельотах

<table>
<thead>
<tr>
<th>Режим</th>
<th>Направлення переміщення</th>
<th>Захід</th>
<th>Схід</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дієта</td>
<td>До вильоту – високий вміст білків і низький вуглеводів; Під час перельоту мала кількість рідини без кофеїну; За 1-1,5 годин до сну, переважна кількість вуглеводів</td>
<td>До вильоту і під час перельоту – вуглеводи. По прильоту (2-3 дня) переважно білкова їжа; далі дієта етапа підготовки або змагання</td>
<td>Вранці або дном. Навантаження повинно бути знижене</td>
</tr>
<tr>
<td>Тренувальна діяльність в перший день</td>
<td>Ввечері легке тренування</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сон</td>
<td>Перед сном тепла ванна, розслабляючий масаж, аудотренінг</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Виліт на схід доцільний у вечірні години.
Сон у літаку обов’язковий і основним завданням у цьому випадку стає нормалізація сну в нічний час польоту: седативні засоби (пустирник, валеріана 2-3 таб.), снодійні (мелаксен – 3 мг, радедорм – 10 мг).
При переміщенні на схід адаптація проходить важче і більш тривалий час.
РОЗДІЛ 4
ФАРМАКОЛОГІЧНА ПІДТРИМКА СПОРТИВНИХ ЯКОСТЕЙ

4.1 Витривалість

У циклічних видах спорту витривалість (як фізична якість) – одна зі складових, що забезпечують високі спортивні досягнення. Зазвичай під витривалістю розуміють здатність працювати не стомлюючись і протистояти втомі, що виникає в процесі виконання роботи.

Витривалість проявляється в двох основних формах:
– у тривалості роботи на заданому рівні потужності до появи перших ознак зниження м'язової потужності;
– у швидкості зниження працездатності при настанні втоми.

Будучи багатофункціональною властивістю людського організму, витривалість інтегрує велике число різноманітних процесів, що відбуваються на різних рівнях: від клітинного до цілого організму. Провідна роль в прояві витривалості належить чинникам енергетичного обміну. Відповідно до наявності у людини трьох різних метаболічних джерел енергії виділяють і три компоненти витривалості: аеробний, гліколітичний і алактатний, кожен з яких може бути в свою чергу охарактеризований показниками потужності, ємності й ефективності.

За показником потужності оцінюють максимальну кількість енергії в одиницю часу, що може бути забезпечене кожним з метаболічних процесів.

Показником ємності оцінюють загальні запаси енергетичних резервів в організмі або загальна кількість виконаної роботи за рахунок даного джерела.

Критерії ефективності показують, яка кількість зовнішньої механічної роботи може бути виконана на кожну одиницю енергії, що виділяється.

За час виконання будь-якої фізичної вправи, що триває більше декількох хвилин, основним шляхом ресинтезу АТФ служить окисне фосфорилювання в мітохондріях, що використовують в якості енергетичного субстрату вуглеводи і ліпіди.

Цей процес вимагає адекватного забезпечення організму киснем, що доставляється кров'ю, а відповідної кількості енергетичних резервів. Останні можуть вилучатися з запасів, що знаходяться в самих м'язових волокнах (глікоген, трігліцериди, фосфати), а також з циркулюючої крові (глюкоза і вільні жирні кислоти).

Проблеми перетворення хімічної енергії в механічну породили феномен не тільки спринтерів, але і стаєр. Їм доводиться тривалий час здійснювати велику фізичну роботу. Звичайно, в цих умовах повністю працює система аеробного окислення субстрату. Однак кількість споживаного кисню обмежена. Наявність кисневого ліміту визначає необхідність використовувати додатково анаеробні процеси, що призводять до неминучого накопичення в м'язах La. Вчені довго не могли розгадати феномена стаєр, поки не виявили дві чудові особливості в роботі скелетних м'язів.

Одна з них була помічена академіком В.П. Скулачовим, який виявив новий, раніше невідомий шлях окислення La. При важкій фізичній роботі, коли енергетичний запит перевершує енергоперетворюючі можливості клітини, порушується енергетичний гомеостаз і знижується стабільність клітин. Останнє позначається на роботі всіх АТФ-залежних ферментів, в першу чергу на роботі Na\(^+\), K\(^+\), АТФази. В результаті в цитоплазмі зростає концентрація Na\(^+\), що призводить до нестабільності мембран. У цих умовах частина цитохрому С дисоціює з поверхні мітохондріальних мембран і з'являється в міжмембранному просторі.

Цитохром С забезпечує позамітохондріальне окислення лактату з використанням цитохорому НАДН за схемою:

\[
\text{lактат} \rightarrow \text{НАДН} \rightarrow \text{флавопroteїн} \rightarrow \text{C позамітохондріальний} \rightarrow \text{C мітохондріальний} \rightarrow \text{aa3} \rightarrow 02.
\]
У цьому випадку частина редокс-ланцюга реалізується у позамітохондріальному просторі, минаючи комплекси I і III, а заключний етап окислення проходить за участю комплексу IV. Така схема реакції дозволяє уникнути накопичення надлишку La в м'язах.

Порушення ресинтезу АТФ може статися в разі, коли виснажуються запаси внутрішньом'язових енергетичних джерел або коли падіння ефективності кровопостачання м'язів призводить до зниження доставки до них енергетичних субстратів і кисню.

Організм реагує зміною метаболічної відповіді на напружнє фізичне навантаження після реалізації тренувальної програми, спрямованої на розвиток витривалості, в такий спосіб:

- знижується коефіцієнт дихального обміну і м'язового дихального коефіцієнту;
- збільшується в плазмі концентрація вільних жирних кислот;
- підвищується утилізація внутрішньом'язових тригліцеридів;
- знижується швидкість утилізації м'язового глікогену;
- знижується споживання глікози крові м'язами;
- стає більш високим окислення ліпідів в порівнянні з вуглеводами;
- накопичення в м'язах La незначне.

Систематичне виконання фізичних вправ, спрямованих на розвиток витривалості, викликає м'язову і серцево-судинну адаптацію, яка і визначає шляхи забезпечення енергією і киснем. Така адаптація, що включає як ультраструктурні, так і метаболічні зміни, призводить до поліпшення доставки кисню і його екстракції скорочуються м'язами, а також модифікує і покращує регуляцію обміну в окремих м'язових волокнах.

М'язова адаптація до тренування, спрямованої на переважне розвиток витривалості, зумовлює розвиток наступних якостей:

- виборчу гіпертрофію волокон I типу;
- збільшення кількості капілярів, що припадають на одне волокно;
- збільшення вмісту міоглобіну;
- підвищення здатності мітохондрії до окислювального ресинтезу АТФ;
- збільшення розмірів і кількості мітохондрії;
- збільшення використання ліпідів з енергетичною метою;
- збільшення вмісту глікогену та тригліцеридів.

Треновані м'язи проявляють більш високу здатність до окислення вуглеводів. Отже, більшу кількість пірувату може бути відновлено і пропущено через цикл Кребса. При цьому зростає також здатність тренованих м'язів утилізувати ліпід. Відбувається це завдяки збільшенню активності ліполітичних ферментів і збільшенню капілярної цілісності в м'язах, що дозволяє збільшити інтенсивність більш вільних жирних кислот з крові. Активність ензимів в ендотелі капілярів тренованих м'язів збільшується так само, як і здатність мітохондрії до окислення вільних жирних кислот. Однак найголовніший ефект ензиматичних змін, що відбуваються в м'язах під впливом тренування, спрямованої на переважне розвиток витривалості, полягає в збільшенні внеску ліпідів і відповідно зниженні внеску вуглеводів в окислювальний енергетичний метаболізм (ресинтез АТФ) при виконанні фізичних вправ субмаксимальної аеробної потужності.

Під впливом тренування під час виконання фізичних вправ відбувається зниження як коефіцієнта дихального обміну, так і локального дихального коефіцієнта безпосередньо в працюючих м'язах. Зростання окислення ліпідів є, очевидно, наслідком збільшення можливості окисленнясубстратів в порівнянні з гліколітичною можливістю, яка проявляє менш виражену відповідь при тренуванні, спрямованої на розвиток витривалості.

Витривалі спортсмени використовують більше жиру і менше вуглеводів не тільки при виконанні однакової по абсолютній потужності м'язової роботи, але і при однаковій її відносній потужності, яка виражається у відсотках максимально споживаного кисню.

Під впливом тренування відбувається зниження утилізації внутрішньом'язового глікогену і глікози крові. У серцевому м'язі цей глікогенаційний ефект опосередкований
функціонуванням глікозожирнокислотного циклу, завдяки якому збільшення окислення ліпідів призводить до накопичення внутрішньоіонного цитрату і подальшого пригнічення гліколізу на рівні фосфорфруктокінази.

Зниження захоплення і утилізації глікози крові м'язами знижує також ступінь глікогенолізу в печінці і забезпечує краще підтримання гомеостазу глікози в крові під час виконання пролонгованих фізичних вправ. Зниження швидкості окислення вуглеводів у тренированих осіб під час виконання фізичної вправи взаємопов'язане зі зниженням швидкості продукції La. При виконанні фізичних вправ субмаксимальної аеробної потужності концентрація La у високотренованих спортсменів нижче, ніж у спортсменів низької кваліфікації. Це справедливо незалежно від того, виражається інтенсивність виконання фізичної вправи в абсолютних або відносних величинах. Зазначений ефект обумовлений ресинтезом (глюконеогенез) лактату до глікози печінкою. У тренованої людини швидкість глюконеогенезу в печінці під час виконання фізичної вправи під впливом тренування стає вищою.

Зниження швидкості окислення вуглеводів і зниження швидкості продукції La сприяють збереженню обмеженого вуглеводного резерву в організмі, оскільки швидкість використання м'язового глікогену під впливом тренування стає нижче.

У зв'язку з встановленням тісного взаємозв'язку між наявністю м'язового глікогену як енергетичного палива і здатністю до прояву витривалості, зниження швидкості витрачення глікогену слід розглядати в якості головного чинника, що сприяє підвищенню фізичних кондицій в видах спорту, що вимагають прояву якості витривалості (табл. 54).

| Таблиця 54 - Фармакологічна підтримка спортсмена при тренуванні витривалості | Препарати | Етапи підготовки | Передмагальний
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Втягуючий</td>
<td>Базовий</td>
<td>I</td>
</tr>
<tr>
<td>Полівітаміни</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Вітамін Е</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вітамін C</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Вітамін В12 | | * | * | *
| Антигіпоксанти | | | | *
| Антиоксиданти | * | * | | *
| Адаптогені | * | | | *
| Препарати заліза | | * | | *
| Ноотропи | | | * | *
| Гепатопротектори | | | * | *
| Енергетики | * | * | * | *
| Гінкго-білоба | | * | * | *
| Седативні засоби | | * | * | *
| Мінерали (K, Mg) | * | * | * | *
| Рибоксин (інозін) | * | * | * | *
| Імунокоректори | | * | * | *
| Регулятори психічного статусу | | | * | *
| Коректори лактат-ацидоза | | | * | *
| Коректори вуглеводневого обміну | | | * | *
| Регулятори білкового обміну | | | * | *
| Регулятори ліпідного обміну | | | * | *
| Анаболітичні препарати | * | * | | *

Примітка. Втягуючий етап – підготовка функцій організму до навантажень, зміщення м'язів, зв'язок.

Зміни у використанні субстратів, що відбуваються під впливом тренування, можуть бути також пов'язані з меншим порушенням гомеостазу АТФ під час виконання фізичних

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Етапи підготовки</th>
<th>Передмагальний</th>
</tr>
</thead>
</table>
| Полівітаміни | * | * | * | *
| Вітамін Е | * | | | |
| Вітамін C | * | | | |
| Вітамін В12 | | * | * | *
| Антигіпоксанти | | | * | *
| Антиоксиданти | * | * | | *
| Адаптогені | * | | | *
| Препарати заліза | | * | | *
| Ноотропи | | | * | *
| Гепатопротектори | | | * | *
| Енергетики | * | * | * | *
| Гінкго-білоба | | * | * | *
| Седативні засоби | | * | * | *
| Мінерали (K, Mg) | * | * | * | *
| Рибоксин (інозін) | * | * | * | *
| Імунокоректори | | * | * | *
| Регулятори психічного статусу | | | * | *
| Коректори лактат-ацидоза | | | * | *
| Коректори вуглеводневого обміну | | | * | *
| Регулятори білкового обміну | | | * | *
| Регулятори ліпідного обміну | | | * | *
| Анаболітичні препарати | * | * | | *
вправ: з підвищенням функціональних можливостей мітохондрій, що відбуваються під впливом тренування, з меншим зниженням АТФ і креатинфосфату і з меншим збільшенням АДФ і неорганічного фосфату під час фізичного навантаження для підтримки балансу між швидкістю ресинтезу АТФ і швидкістю його утилізації.

Іншими словами, зі збільшенням кількості мітохондрій потреба в кисні, так само як в АДФ і фосфат неорганічний, яка припадає на одну мітохондрію після виконання тренувальної програми стає менше, ніж до тренування.

Відомо, що те, що відбувається під впливом тренування зниження окислення вуглеводів під час виконання м'язової роботи компенсується збільшенням швидкості окислення ліпідів.

Такі короткі особливості протікання біохімічних процесів в умовах тренування якості витривалості.

Змінюючи інтенсивність вправи, час його виконання, кількість повторень вправи, інтервали і характер відпочинку, можна вибірково підбирати навантаження по його переважному впливу на різні компоненти витривалості. Удосконалення ж рухових навичок, підвищення технічної майстерності призводить до зниження енерговитрат і підвищення ефективності використання біоенергетичного потенціалу, тобто до збільшення витривалості на посилення позитивних моментів (ліполіз, глюконеогенез і т. д.) і має бути направлено на фармакологічне забезпечення видів спорту з циклічною структурою виконання фізичної роботи.

Базовий І – висновок фізіологічних функцій і швидкості протікання біохімічних реакцій на максимальний рівень.

Базовий ІІ – робота над спеціальною витривалістю.

Передзмагальний – доведення якості витривалості до рівня змагання.

4.2 Сила

Сила людини визначається як здатність долати зовнішній опір (або активно протидіяти йому) за допомогою м'язових напружень. Саме так сила (як фізична якість) представлена в загальній теорії та методики фізичної виховання і спортівного тренування.

Сила, що розвивається м'язом, залежить:

1) від її фізіологічного поперечника;
2) активує впливу з боку ЦНС;
3) співвідношення в ній двох основних типів волокон (сильних і швидких – білих, витривалих і повільних – червоних);
4) від зовнішніх біомеханічних умов (наприклад, від показників статури, індивідуальних особливостей техніки виконання вправ).

Один з істотних моментів, що визначають м'язову силу, – режим роботи м'язів. При подоланні зовнішнього опору м'язи скорочуються і коротшають – це переборюючий режим їх роботи. Але м'язи можуть при напрузі і подовжуватися – це поступаючий режим. Долає і поступається режимами об'єднуються поняттям динамічного режиму. Разом з тим дуже часто виникає ситуація, коли людині доводиться проявляти силу без зміни довжини м'язів. Такий режим їх роботи називається ізометричним, або статичним.

Найбільшу силу м'язи проявляють в статичному режимі, хоча в цілому для організму цей режим виявляється самим несприятливим.

При характеристиці силових можливостей людини прийнято виділяти такі їх різновиди:

1) максимальна статична сила – показник сили, що проявляється при опорі зовнішнього впливу або при утриманні протягом певного часу граничних обтяжень з максимальною напругою м'язів;
2) північна динамічна (жимова) сила – проявляється, наприклад, при переміщенні предметів великої маси, коли швидкість переміщення практично не має значення, а зусилля, що докладаються досягають максимальних значень;
3) швидка динамічна сила – визначається здатністю людини до переміщення в
обмежений час великих (субмаксимальних) обтяжень з прискоренням нижче максимального;

4) «взяла» сила — здатність долати опір з максимальною м'язовою напругою в найкоротший час і з максимально можливим прискоренням при рухах;

5) амортизаційна сила — характеризується здатністю до розвитку зусилля в короткий час;

6) сила витривалість — визначається здатністю тривалий час підтримувати оптимальні силові характеристики рухів.

Тренувальні заняття, спрямовані на розвиток сили, потужності, швидкості, мають незначний вплив (або не роблять взагалі) на аеробні можливості і викликають відносно невеликі адаптаційні зміни в серцево-судинній системі. Це знаходиться у відповідності з принципом специфічності спортивного тренування.

Підвищення м'язової сили протягом перших тижнів тренувальних занять, спрямованих на розвиток силових можливостей, сприяє повній активізації рухових одиниць і м'язових груп. Початковий швидкий приріст сили, який отримують на перших етапах тренувального процесу, виявляється не пов'язаним зі збільшенням розмірів м'язів і площі їх фізіологічного поперечника.

Більш тривала і напруженна тренувальна програма, спрямована на розвиток силових можливостей, призводить до гіпертрофії м'язів, подальшого приросту сили і до зниження частки проявів їх максимальної скорочувальної активності. Збільшення м'язової маси означає, що більша кількість м'язової тканини задійно у виконанні роботи, в результаті чого підвіщується гранична потужність останньої і загальна енергопродукція аеробних систем.

В результаті адаптації м'язів до силової тренуванні з ними відбуваються такі зміни:

– гіпертрофія м'язових волокон;
– збільшення площі анатомічного поперечника;
– підвищення вмісту креатинфосфату і глікогену;
– підвищення швидкості гліколізу;
– збільшення сили і здатності до виконання фізичних вправ високої інтенсивності;
– зниження ієрархії мітохондрій;
– поліпшення буферних властивостей м'язів.

Щодо короткочасних фізичних навантажень з обтяжень або спринт, які вимагають проробку високого рівня анаеробного метаболізму, викликають специфічні зміни в негайній (АТФ і КФ9) і коротко відставленій (гліколіз) системах енергозабезпечення, покращують силові і спринтерські здібності. До останнього відноситься збільшення максимальної потужності м'язових скорочень, кількості виробленої за короткий проміжок часу інтенсивної роботи, а також збільшення тривалості виконання (витривалості) високоінтенсивних фізичних вправ.

Відносних змін, що стосуються аеробних (мітохондріальних) ферментів, як правило, відзначається значна гіпертрофія волокон, в яких відбувається зниження активності окисних ензимів і цитохромів, связано, ймовірно, зі збільшенням площі поперечного перерізу м'язових клітин (переважно волокон типу II) без адаптивного підвищення кількості мітохондрій. У видах спорту, що вимагають проробку силових можливостей, кількість капілярів може залишатися незмінним, однак більша їх поверхня між великими м'язовими волокнами обумовлює зниження капілярної щільності, що припадає на одиницю площі перетину. Під впливом тренувальних занять анаеробної спрямованості при виконанні фізичних вправ максимальної інтенсивності концентрація La в крові може досягати високих значень, що пов'язано, очевидно, з більш високим вмістом внутрішньом'язового глікогену і ферментів гліколізу. Напруження тренування на силу вимагає значної мотивації і стійкості до больових відчуттів, що виникають в результаті метаболічного ацидозу (закислення) через підвищення рівня La в крові.

9 Креатинфосфат.
Підвищення здатності м'язів до буферізованих протонів, що накопичуються в зв'язку з накопиченням La, також може мати важливе значення. Волокна II типу характеризуються високими буферними можливостями і їх збільшення вказує на підвищення цієї здатності.

Під впливом спринтерських тренувань відбувається значне збільшення в м'язах фізико-хімічного буферізування при розрахунку буферної здатності на підставі показників рН і вмісту La, що визначаються після фізичного навантаження. Слід враховувати, що ці ефекти специфічні для м'язів, задіяних в реалізації тренувальної програми, особливо для окремих типів м'язових волокон, залучених до виконання фізичних вправ.

Останнім часом все наполегливіше йдеться про роль сили, силових можливостей при прояві витривалості спортсменів вищої кваліфікації, про їх силової витривалості, специфічної локальної м'язової витривалості.

Атлет, який займається розвитком м'язової маси, сили, силової витривалості, повинен чітко уявити які препарати приймати, щоб сприяти розвитку, підтримці та відновленню цих якостей.

У табл. 55 представлена схема, групи препаратів, які можуть бути використані при напрацюванні силових якостей.

Таблиця 55 - Фармакологічна підтримка при силовій підготовці

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Етапи підготовки</th>
<th>Втягуючий</th>
<th>Базовий (маса, сила)</th>
<th>Сила</th>
</tr>
</thead>
<tbody>
<tr>
<td>Адаптогени</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Анаболічні препарати</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Антигіпоксанти</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Антиоксиданти</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Аспаркам (K, Mg)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Вітамін B15</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Вітамін E</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Вітамін C</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Гепатопротектори</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Препарати заліза</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Імунокоректори</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Рибоксин (інозін)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Макроерги</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Ноотропи</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Полівітаміни</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Седативні засоби</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Гінкго-білоба</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Енергетики</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Примітка: Втягуючий етап – підготовка функцій організму до навантажень, зміцнення м'язів, зв'язок.

Базовий – набір м'язової маси і позбавлення від жиру.
Сила – робота над максимальною силою при утриманні маси м'язів.
4.3 Швидкість

Швидкісні здібності спортсменів вищої кваліфікації мають бути подані як здатність в короткі проміжки часу (інакше: швидко, миттєво, «вибухово») долати зовнішній опір за допомогою м'язових напружень, сили.

Тренувальні заняття, спрямовані на розвиток швидкості, неможливі без розвитку якості сили (потужності) – однієї з найбільш важливих її складових. Це знаходиться у відповідності з принципом специфічності спортивного тренування.

Щодо короткочасного фізичного навантаження з обтяженнями або спринт, які вимагають прояву високого рівня анаеробного метаболізму, викликають специфічні зміни в системах енергозабезпечення, покращують спринтерські здібності. До спринтерських якостей відносяться збільшення максимальної потужності м'язових скорочень за короткий проміжок часу, а також збільшення тривалості високоінтенсивної роботи.

У разі коли спринтерські можливості поліпшуються, то це супроводжується збільшенням обіговості АТФ завдяки збільшенню внеску анаеробного глюколізу в енергозабезпечення. Кількість і активність ферментів, задіяних в глюколітичному шляху, постійно виявляють тенденцію до зростання під впливом як спринтерській, так і силового тренування з найбільш вираженими змінами в волокнах II типу.

Фармакологічне забезпечення спринтерських можливостей спортсмена представлено в табл. 56 (см. також «Макроерги», «Фосфагени»).

Таблиця 56 - Фармакологічна підтримка спортсмена при тренуванні швидкісних складових

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Етапи спеціальної підготовки</th>
<th>Базовий (набір або підтримування м'язової маси)</th>
<th>Розвиток швидкісно- силового компонента</th>
</tr>
</thead>
<tbody>
<tr>
<td>Полівітаміни</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Анаболітичні препарати</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Фосфагени</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Енергетики</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Антиоксиданти</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Адаптогени</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Антигіпоксанти</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Непатопротектори</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Вітамін Е</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Вітамін С, В₁₂</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Нютроци</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Гінкго-білоба</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Мінерали (K, Mg)</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Рибоксин (Іозін)</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Препарати заліза</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Седативні засоби</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Примітка. У таблиці представлені групи препаратів, які можуть бути використані при напрацюванні швидкісних якостей спортсмена.
4.4 Координація

Основна увага при фармакологічній підтримці координаційних якостей слід звернути увагу на захист від стресу і розвиток здатності до концентрації уваги, поліпшення пам'яті.

Таблиця 57 - Фармакологічна підтримка спортсмена при розвитку координаційних якостей

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Етап спеціальної підготовки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Полівітаміни</td>
<td>*</td>
</tr>
<tr>
<td>Фосфагени</td>
<td>*</td>
</tr>
<tr>
<td>Адаптогени</td>
<td>*</td>
</tr>
<tr>
<td>Вітамін Е</td>
<td>*</td>
</tr>
<tr>
<td>Вітамін С</td>
<td>*</td>
</tr>
<tr>
<td>Ноотропи</td>
<td>*</td>
</tr>
<tr>
<td>Гінкго-білоба</td>
<td>*</td>
</tr>
<tr>
<td>Седативні засоби</td>
<td>*</td>
</tr>
</tbody>
</table>

У табл. 57 представлені тільки групи препаратів, які можуть бути використані при розвитку якостей, відповідних поняттю «координація». Застосування седативних засобів має на увазі зняття стресу при тривалому разучуванні складних рухових комбінацій і їх зв'язок, надання можливості спортсмену мати повноцінний відпочинок вночі, відключення від повторних переживань денних подій під час нічного сну.
РОЗДІЛ 5
ДОПОМОЖНІ ЗАСОБИ ВІДНОВЛЕННЯ

5.1 Спортивний масаж

Масаж має чіткі самостійні напрямки: спортивний, гігієнічний, косметичний, лікувальний.

У спортиві масаж застосовується при підготовці спортсмена до змагань для підвищення працездатності, зняття втоми (при відновленні), усунення явищ гіпоксії; в якості допомоги у виведенні мікроциркуляції, роботи внутрішніх органів; профілактики травматизму і захворювань опорно-рухового апарату.

«Під спортивним масажем розуміється сукупність масажних прийомів, що сприяють фізичному вдосконаленню спортсмена, спрямованих на боротьбу з втомою, підвищення спортивної працездатності, на різних спортивних пошкодженнях» (Саркізов-Серазини І.М., 1963).

Масажист бере участь в процесі підготовки спортсмена до занять і змагань, готує і «налаштовує» тканини (шкіру, м'язи, зв'язки) на опір сверхнагрузку і отримання максимального спортивного результату.

Завдання спортивного масажу:
– нормалізація мікроциркуляції і кровотоку в м'язах;
– усунення підвищеного м'язового тонусу;
– нормалізація метаболізму;
– активізація функціонального стану спінальних мотонейронів;
– стимуляція всіх ланок нерво-м'язового апарату;
– нормалізація шкірної температури на симетричних біологічно активних точках.

Особливо ретельним повинен бути масаж при проведені тренувань (змагань) при несприятливих кліматичних умовах.

Вибір засобу, з яким масажист проводить свої маніпуляції, залежить від мети і завдання, поставлених тренувальним процесом або умовами змагань. Необхідно пам'ятати, що проведення масажу перед стартом призводить до підвищення шкірної температури на 1,4-2,1°C, а від застосування розігріваючих мазей температура шкіри і м'язів підвищується в значній мірі.

Масаж використовується і як лікування травматичних ушкоджень. При м'язових порушеннях, викликаних порушенням статики і/або механіки хребетного стовпа або одного з його відділів, масажні лікувальні прийоми використовуються для профілактики і лікування травматичних ушкоджень.

Профілактичний масаж. Застосовуються для первинної профілактики травм і захворювань опорно-рухового апарату. Аналіз особливостей виникнення травм і захворювань опорно-рухового апарату у спортсменів показує, що найбільш часто змінами піддаються звукові зв'язки, суглоби кінцівок, кістки (див. «Травми»).

Тривалість масажу залежить від виду спорту, індивідуальних особливостей спортсмена, показників збудливості м'язів і т.д. Феномен звикання до масажу, тобто зниження або навіть припинення ефекту від його застосування, добре відомий.

Дозування масажу повинне бути індивідуальним.

Рівнівіт спортивного масажу (табл. 58, 59):
– профілактичний;
– активуючий, мобілізаційний;
– відновний.

Профілактичний масаж. Застосовується для первинної профілактики травм і захворювань опорно-рухового апарату. Аналіз особливостей виникнення травм і захворювань опорно-рухового апарату у спортсменів показує, що найбільш часто змінами піддаються хребет, суглоби кінцівок, кістки (див. «Травми»).

Великі фізичні навантаження, виконувані спортсменом багаторазово, протягом багатьох років, призводять до виникнення патологічних змін в тканинах опорно-рухового апарату. Передумовами до їх виникнення є порушення мікроциркуляції крові, обміну речовин, гіпоксії тканин, підвищення м'язового тонусу і ін. Крім того, тренування, що проводяться на твердому грунті, рано відновлення тренувань після перенесених інфекційних
захворювань, форсовані тренування у юних спортсменів і т. п. – все це призводить до виникнення травм, захворювань опорно-рухового апарату, тобто стає фактором, що лімітує спортивний результат.

Таблиця 58 - Застосування різних видів спортивного масажу на тренувальних етапах, змаганнях і при відновленні

<table>
<thead>
<tr>
<th>Види масажу</th>
<th>Тренувальні етапи</th>
<th>Змагальний</th>
<th>Відновлювальний</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Підготовчий</td>
<td>Базовий</td>
<td>Спеціфічний підготовчий</td>
</tr>
<tr>
<td>Профілактичний</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Активуючий</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Відновлювальний</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Таблиця 59 - Ефективність масажу в різних видах спорту

<table>
<thead>
<tr>
<th>Види спорту</th>
<th>Ефект</th>
<th>Стимулюючий</th>
<th>Адаптивний</th>
<th>Розслаблюючий</th>
</tr>
</thead>
<tbody>
<tr>
<td>Циклічні</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Швидкісно-силові</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Єдиноборства</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Координаційні</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Спортивні ігри</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Процедура превентивного масажу складається з підготовчої, основної та заключної частин.

Послідовність проведення профілактичного масажу: спина (особливо паравертебральні зони), суглоби, місце прикріплення сухожиль до кісток. Потім ретельно (глибоко) масажують м'язи, на які припадає найбільша (основна) фізичне навантаження. Масаж може проводитися з лікувальними фармакологічними засобами (мазями, маслами) з подальшим додатковим втиранням їх в максимально розігріті м'язи і суглоби.

Профілактичний масаж включає прийоми загального класичного масажу (підготовчі і заключна стадії) і сегментарно-рефлекторного масажу, а також масаж з розігріваючими мазями, вправні на розтягування і релаксаційний масаж. Якщо м'язовий тонус підвищений, то його спочатку за допомогою масажу і розігріваючих мазей усувають, і тільки потім проводять вправи на розтягування м'язів.

Застосування профілактичного масажу призводить до різкого зниження випадків виникнення травм і загострень захворювань опорно-рухового апарату. Найбільший ефект спостерігається при застосуванні масажу з розігріваючими мазями (потрібно часто міняти через розвиток звикання).

Особливо увагу профілактичному масажу треба при діяти при проведенні тренувань по ОФП, в підготовчому періоді, а також після перенесених травм або захворювань опорно-рухового апарату, коли спортсмен відновлює тренування.

Активуючий, мобілізаційний масаж. Цей різновид масажу виконують перед тренуваннями, змаганнями.

Завдання масажу: мобілізація (нормалізація) психоемоційного стану спортсмена; підготовка («прогрівання») нерво-м'язового апарату до майбутньої роботи; прискорення впрацьованості спортсмена; попередження виникнення травм і захворювань рухових структур. При проведенні масажу треба враховувати самопочуття спортсмена, температуру
навколишнього середовища, а також інтенсивність і тривалість майбутнього тренування або змагань.

Під впливом масажу поліпшується місцевий і загальний кровообіг, стимулюється обмін речовин, активізуються фізіологічні процеси в м'язах, підвищується еластичність м'язових волокон. Масаж попереджає поява патологічних змін в м'язах, змінює збудливість периферичних нервів.

Активуючий масаж прискорює процес впрацюваності, здійснює хвилювання або апатію, підвищує температуру шкіри, м'язів і тим самим збільшує їх скоротливість, покращує тонус і рухливість в суглобах, попереджуючи травматизм при надмірному навантаженні під час змагань. Масаж сприяє підвищенню здатності м'язів, з'єднує і інші гідроморфні структури локомоторного апарату до розтягування, що важливо для проведення активних та пасивних вправ.

У методиці масажу переважання тих чи інших прийомів також залежить від функціонального стану спортсмена, його віку, статі та індивідуальних особливостей, реакції на масажну процедуру. Масажуються ті частини тіла, які будуть нести найбільше навантаження. Після цього впливають на біологічно активні та моторні точки.

Під час масажу важливо враховувати метеорологічні умови. У холодну, вітрую погоду слід більшою мірою використовувати прийоми розтирання і розминання в поєднані з розігрівачами мазями, а в жарку погоду у вологому кліматі в основному використовувати погладжування, поколачування, поштовхи і неглибока розминка в поєднанні з охолоджуючими мазями.

У водних видах спорту масаж краще проводити з маслами або лінімент, так як вони знижують тепловіддачу і зменшують охолодження спортсмена.

Відновлювальний масаж. Завдання масажу: нормалізація кровообігу, м'язового тонусу, зняти втому з «робочих», допоміжних м'язів, м'язів-антагоністів, прискорення виведення продуктів метаболізму після значної тренувальної або змагальної навантаження.

Відновлювальний, репаративний масаж проводиться через 0,5-4 години після змагання або тренування. Чим вище ступінь втоми, тим більше відстороненим повинен бути масаж. Масаж проводиться, як правило, загальним тонусом, в м’язах вологому кліматі в основному використовувати погладжування, поколачування, поштовхи і неглибока розминка в поєднанні з охолоджуючими мазями.

Частота застосування цього виду спортивного масажу в тижневому циклітренування залежить від стану здатностей спортсмена. Після вживання масажу спортивці повинні бути підготовлені до повторної тренувальної та змагальної навантаження. В цьому випадку спортивному масажу слід дати відпустку. Під час напружених тренувальних періодів відновлювальні процедури проводяться за 0,5-4 години після тренування або змагання. Після锻 і змагання відновлювальний масаж проводиться за 0,5-4 години після змагання або тренування.

Частота застосування цього виду спортивного масажу в тижневому циклі тренування залежить від стану здатностей спортсмена. Після вживання масажу спортивці повинні бути підготовлені до повторної тренувальної та змагальної навантаження. В цьому випадку спортивному масажу слід дати відпустку. Під час напружених тренувальних періодів відновлювальні процедури проводяться за 0,5-4 години після тренування або змагання. Після锻 і змагання відновлювальний масаж проводиться за 0,5-4 години після змагання або тренування.

Частота застосування цього виду спортивного масажу в тижневому циклі тренування залежить від стану здатностей спортсмена. Після вживання масажу спортивці повинні бути підготовлені до повторної тренувальної та змагальної навантаження. В цьому випадку спортивному масажу слід дати відпустку. Під час напружених тренувальних періодів відновлювальні процедури проводяться за 0,5-4 години після тренування або змагання. Після锻 і змагання відновлювальний масаж проводиться за 0,5-4 години після змагання або тренування.

Частота застосування цього виду спортивного масажу в тижневому циклі тренування залежить від стану здатностей спортсмена. Після вживання масажу спортивці повинні бути підготовлені до повторної тренувальної та змагальної навантаження. В цьому випадку спортивному масажу слід дати відпустку. Під час напружених тренувальних періодів відновлювальні процедури проводяться за 0,5-4 години після тренування або змагання. Після锻 і змагання відновлювальний масаж проводиться за 0,5-4 години після змагання або тренування.

Частота застосування цього виду спортивного масажу в тижневому циклі тренування залежить від стану здатностей спортсмена. Після вживання масажу спортивці повинні бути підготовлені до повторної тренувальної та змагальної навантаження. В цьому випадку спортивному масажу слід дати відпустку. Під час напружених тренувальних періодів відновлювальні процедури проводяться за 0,5-4 години після тренування або змагання. Після锻 і змагання відновлювальний масаж проводиться за 0,5-4 години після змагання або тренування.

Частота застосування цього виду спортивного масажу в тижневому циклі тренування залежить від стану здатностей спортсмена. Після вживання масажу спортивці повинні бути підготовлені до повторної тренувальної та змагальної навантаження. В цьому випадку спортивному масажу слід дати відпустку. Під час напружених тренувальних періодів відновлювальні процедури проводяться за 0,5-4 години після тренування або змагання. Після锻 і змагання відновлювальний масаж проводиться за 0,5-4 години після змагання або тренування.
сильного печіння після застосування фіналгон, никофлекс і аналогічних засобів, не рекомендується застосовувати гарячий душ або будь-які інші теплові процедури. Фіналгон і дольпік утворюють на шкірі плівку, яка перешкоджає лікувальному впливу наступних сеансів. Тому перед черговим накладенням мазі необхідно цю область обмити холодною водою з милом, потім гарячою.

Основні цілі застосування додаткових засобів при масажі – швидке відновлення функцій опорно-рухового апарату, відновлення мікроциркуляції, функцій внутрішніх органів.

Значне фізичне навантаження завжди провокує пошкодження капілярів. Виникаючи при навантаженні набряк, біль свідчать про збільшення проникності стінок капілярів, гіпоксії тканини. При цьому порушуються місцевий (регіональний) кровообіг, метаболізм в тканинах, і відновлення їх різко сповільнюється.

Динаміка біохімічних процесів така, що якщо спортсмен продовжує активно тренуватися, до кінця не ліквідувавши порушення обміну в ураженій тканині, то протягом нетривалого часу на місці перевантаження виникає «мікротравматична хвороба», а далі можливі травми опорно-рухового апарату різного ступеня тяжкості.

У цьому випадку застосовуються тільки анальгезируючі і протизапальні мазі, т. е. Ті препарати, до складу яких входять анальгетики, гепарин, нестероїдні протизапальні засоби, рослинні екстракти, що володіють цими ж властивостями. Дратівливі і розігрівають мазі протипоказані при гострій травмі.

Яблучний оцет при загальному масажі знижує рівень молочної кислоти в тканинах.

Ароматичні масла при масажі анестезують, тонізують, розслаблюють (табл. 60).

Можливо спільне застосування декількох лікарських форм з різними активними речовинами з метою розширення спектру їх дії і посилення лікувального ефекту, але при цьому активні інгредієнти не повинні конкурувати між собою.

Таблиця 60 - Дія найбільш вживаних ароматичних масел при масажі

<table>
<thead>
<tr>
<th>Масло</th>
<th>Стимулюючі, працездатність</th>
<th>Заспокійливі, Розслабляючі</th>
<th>Знеболювальні</th>
<th>Протизапальні</th>
</tr>
</thead>
<tbody>
<tr>
<td>Апельсинове</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Баззілікове</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Бергамотове</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гвоздичне</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гераннєве</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Єлова</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Інкоре</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кедрове</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кіп pauses</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Лавандове</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Лимонне</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Майоранове</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мелісове</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Можжевелове</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>М'ятне</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пачулі</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Розмаринове</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Рожеве</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ромашкове</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сандалове</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Соснове</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Шелфейнове</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Евкаліптова</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

При першому застосуванні найкраще наносити мазі ввечері, перед сном. На другий день
(якщо перший сеанс перенесений добре) така ж кількість мазі втирається вже тричі — вранці, вдень і ввечері. На третій день — вранці і ввечері, збільшувши кількість мазі. Якщо хворе місце занадто чутливе, мазь можна нанести і масажувати вище або нижче. В цьому випадку лікарські компоненти, що містяться в мазі, будуть доставлені до хворого місця з лімфою або кров'ю.

Застосовувати при масажі зовнішні засоби також можна: спочатку проводять масаж на місці пошкодження або болю, а за 3-5 хвилин до кінця сеансу наносять потрібну кількість мазь (в кількості, яка визначається масажною ділянкою тіла, силою дії мазі і завданням масажу), далі продовжують масаж вже з маззою.

Використовуючи мазі і лініменти, потрібно стежити, щоб мазь не потрапила на чутливі місця на шкірі, слизові носа, очей. У разі потрапляння мазі на чутливе місце або при сильному подразненні шкіри необхідно на це місце нанести вазелін або будь-яке інертне масло, а потім зняти його ватним тампоном.

5.2 Баня

Банна процедура (сауна, парна) з метою підготовки до змагання, відновлення, лікування має свої, конкретні показання (табл. 61).

<table>
<thead>
<tr>
<th>Таблиця 61 - Ефекти банних процедур</th>
</tr>
</thead>
<tbody>
<tr>
<td>Банні процедури</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Парава баня</td>
</tr>
<tr>
<td>Сухоповітряна баня (сауна)</td>
</tr>
<tr>
<td>Інфрачервона сауна</td>
</tr>
<tr>
<td>Вологі укутування</td>
</tr>
</tbody>
</table>

Це засіб боротьби з втомою, поліпшення мікроциркуляції, прискорення окисно-відновних процесів; профілактика простудних захворювань за рахунок стимуляції біозахистних механізмів, основний спосіб зменшення ваги.

Лазня може допомогти, але може і навпаки, і нехтувати цим при підготовці спортсмена до відповідних змагань не можна. Під час відділення сауни протягом 2-3 днів поспіль можливі такі явища, як відчуття тяжкості в області серця, відчуття втоми. Баня надає значне навантаження на серцево-судинну систему, теплорегулюючі центри, шкіру, відбувається порушення водно-сольового і кислотно-лужної рівноваги.

При відділення лазні необхідно враховувати ступінь тяжкості і характер майбутнього навантаження і відповідно регулювати тривалість заходів в парну і їх кількість.

Банні процедури під час змагань не проводяться. Остання лазня дозволяється за 2-3 дні до змагань. З лікувальною метою («підсушити» носоглотку, бронхи) можлива позапланова сауна, але тільки один захід.

Регулярне використання банних процедур дозволяє більш ефективно протистояти впливу високих температур навколишнього середовища.

Парава баня — це поєднане лікувальний вплив на організм насиченого гарячого повітря високої вологості і холодної прісної води. У термальній камері паразової лазні формуються ізоляційна повітряна оболонка, в результаті чого поверхневі тканини нагріваються до 39-44 °С, а внутрішні органи до 38-39 °С. Механізмом теплопідіачі, обмежено функціонуючим в цих умовах, є випаровування поту, рясно виділяється на поверхні шкіри вже через 2-3 хв після перебування в парільниці. За одну процедуру з організму може виділитися до 1 л поту, що містить іони калію, натрію, хлору, а також сечовину,
молочну кислоту і деякі амінокислоти. Активація нейронів-термосенсором медіальної преоптическої області гіпоталамуса при неефективності тепловіддачі призводить до різкого зниження тонусу скелетних м'язів, діафрагми. У паровій бані частота серцевих скорочень збільшується в 1,5-2 рази, серцевий викид в 1,5-1,7, а кровообіг в малому колі прискорюється в 5-7 разів.

Парова лазня (як запланований стресовий чинник) підвищує якість адаптаційних резервів організму, підвищує його реактивність і рівень стійкості.

При періодичному відвідуванні парової лазні амплітуда коливання показників функцій серцево-судинної і діахілької систем помітно зменшується, що пов'язано з формуваннями механізмів довготріва адаптації (Тренування ендокринної, вегетативної нервової систем і т. п.), а в результаті – підвищення працездатності спортсмена.

Технічні умови парової лазні для спортсмена: температура повітря в парні 45-60°С, відносна вологість 90-100%; температура повітря в роздягальні 24-26°С, відносна вологість близько 60%; температура повітря в мильній 27-30°С, вологість близько 80%.

Тривалість перебування в паральні в основному 5-7 хв, число заходів – не більше 3. Парні процедури з пізнім або інтенсивним навантаженням проводять один раз в 5-7 днів.

Перед тим як увійти в парну, можна умити обличчя холодною водою, обов'язково закрити голову рушником або спеціальною шапочкою; не рекомендується мити голову перед процедурою.

Вінник у парні застосовується під час другого заходу і вибирається (евкаліптовий, березовий, дубовий, хвойний і т. д.) по індивідуальних переваг або виходячи з лікувально-профілактичних завдань. Механічний вплив вінника знижує збудливість периферичних нервів, викликавши вмісткі значні підвищення потовиділення і посилений приплив крові до шкіри, м'язів.

Сухоповітрювана лазня (сауна) надає поєднаній лікувальний вплив на організм завдяки лікувальному впливу, тепловій і тепловій віддачі. У сауні поверхневі тканини нагріваються до 38-42°С, а температура внутрішніх органів піднімається на 0,5-1°С. Теплове випромінювання викликає короткочасний спазм судин шкіри, який згодом швидко змінюється розширенням за рахунок активізації адренергічних волокон і освіти локальних регуляторів кровотоку (гістаміну, брадикініну, простагландинів та ін.). Обсяг виділення поту збільшується пропорційно зростанню температури в сауні і може становити 0,2-2 л.

З потою виводяться сечовини, креатинін, іони натрію, калію, магнію, хлору, молочна кислота, продукти білкового обміну, вода, що полегшує фільтраційну функцію нирок. Сечовиділення при цьому зменшується. Баня має визначна спазмолітичну дію.

Активація центральних термосенсорних нейронів призводить до прогресуючої зміни частоти серцевих скорочень (залежить від місця розташування людини в парильні). На тлі нагрівання судин збільшується приплив крові до шкіри, м'язів.

Вся банна процедура, як правило, триває 1-1,5 години з перебуванням в сауні протягом 15-35 хв (сумарно при двох-трьох заходах). Кількість заходів можна збільшити, якщо наступний день спортсмен вільний від тренувань. Температура повітря в сауні в режимі помірного впливу не повинна перевищувати 60-70°С, при режимі інтенсивного впливу – 85-95°С. Сауна може проводитися через 3-5 днів.

У сауні можливий масаж щадними прийомами: погладжування, розтирання, неглибоке разминання, поштовхи (не більше 15-20 хв).

Сауна протипоказана при перевтомі, підвищенному артеріальному тиску, струсі головного мозку (нокаут, нокдаун), травмах з виразними гематомами, запаленні середнього вуха, гострих інфекційно-запальних захворюваннях з підвищеною температурою тіла (ангіна, грип).

Інфрачервона сауна. Поглинання інфрачервоного випромінювання з утворенням тепла в тканинах викликає значну дилатацію судин шкіри і нирок. Посилюється функція виділення
потових залоз, що полегшує роботу нирок по виведенню сечовини, креатиніну, натрію хлориду; зменшує набряки. Активується мікроциркуляторне русло нирок, відбувається дегідратація тканин нирок.

Для поліпшення кровопостачання нирок використовують термокамери, оснащені інфрачервоними випромінювачами. Температура в термокамері – 55-65 °С, час перебування – до 20 хв. Проводять процедури через 2 дні на третій; курс 6-8 процедур. Застосовується при скачках ваги.

Вологі укутування – це лікувальний вплив на тіло людини гіdroфільної тканини, змоценою водою кімнатної температури.

При укутуванні вологим простирадлам або ковдрою змінюються умови тепловіддачі. В її структурі зростає питома вага випаровування через шкіру обличчя, а також відбуваються фазні зміни терморегуляції.

Перша фаза (перші 10-15 хв). За рахунок різниці температур простирадла і «ядра» тіла відбувається виділення тепла з організму і зниження шкірної температури.

Друга фаза (через 20-40 хв після початку процедури). Різниця між температурою простирадла і «ядра» зменшується і знижується активність судинних механізмів теплопровідності (виникає відчуття теплового комфорту).

Третя фаза (через 40-60 хв після початку процедури). Виникає теплій дискомфорт і починає переважати тепловіддача шляхом випаровування рідини. Рясне потовиділення сприяє виділенню через протоки потових залоз продуктів азотистого обміну і зменшенню «зашлакуванню».

Процедури проводять щодня або через день. Тривалість – 60 хв; курс 15-20 процедур. Після процедури приймають дощовий душ (по 1,5-2 х в, температура води 34-35 °С), потім тіло ретельно витирають. Далі відпочинок 10-20 хв.

Відвари, настої, масла, застосовувані при банної процедурі. Часто для посилення дії банної процедури або розслаблення і заспокіння застосовуються ароматичні масла (табл. 62).

Таблиця 62 - Застосування найбільш уживаних ароматичних масел у лазні

<table>
<thead>
<tr>
<th>Масло</th>
<th>Стимулюючі працездатність</th>
<th>Заспокійливі, Розслаблюючі</th>
<th>Протизапальні</th>
</tr>
</thead>
<tbody>
<tr>
<td>Апельсинове</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Баззілікове</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Бергамотове</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Гвоздичне</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Гераннєве</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Жасмінове</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Камфорне</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Кипарисове</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Лавандове</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Лимонне</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Майоранове</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Можевелове</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Пачулі</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Розмаринове</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Рожеве</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Ромашкове</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Сандалове</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Соснове Чайного дерева</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Шелфейне</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Евкаліптове</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>
Ароматичні масла і цілющі відвари використовуються в лазні і з лікувальною метою. Відвари готують безпосередньо перед лазнею, настої можна застосовувати й аптечні. Існує кілька способів застосування настій, відварів і ефірних масел. Для ароматизації настій, відвар, ефірна олія спочатку розводять в досить великі кількості води, а потім наносять на стіни парної, але не вище 1 метра від підлоги, щоб аромат поширювався по всьому приміщенню. Можна поплескати і на піч-кам’янку. Для того щоб парна не наповнилася запахом гару від згорілого на розпечениому камінні настою або масла, камені спочатку охолоджують, поливаючи їх гарячою водою, потім льют відвар, після чого знову поливають водою. У суховоздушної лазні (сауні) розчини наносять тільки на стіни. Розпорошуючись в повітрі, активні речовини рослин (фітоціти) миттєво потрапляють в легені і потім в кров, надаючи дію на центральну нервову систему, серце, судини, легеневу тканину. Дія ароматизованого пара залежить від цілющих властивостей рослинни.

Прийом рідини після банної процедури можливий тільки після першої фази охолодження, тобто через 20-40 хвилин після виходу з парної і носить індивідуальний характер, так само як і склад відновного чаю. Дія чаю не повинно вступати в протиріччя (бути антагоністом) з раніше вжитими в парній настій, відваром, маслом. Тобто дія активних речовин під час і після лазні повинно бути односпрямованим, по можливості посилювати і доповнювати один одного.
ДОДАТКИ
Додаток 1

Таблиця Д1 - Перетрениваність (спортивна хвороба)

<table>
<thead>
<tr>
<th>Симптоматика</th>
<th>Заходи</th>
</tr>
</thead>
<tbody>
<tr>
<td>I стадія.
 Спортивний результат не змінюється або знижується</td>
<td>Відміна участі в змаганнях. Перехід на режим загально фізичної підготовки (2-4 тижні). Ліквідація очагів хронічної інфекції</td>
</tr>
<tr>
<td>Скарди відсутні. Іноді порушення сну (погане засипання, часті пробудження). Розлади тончайших рухових координацій. Погіршення адаптації сердечно-судинної системи до швидкісного навантаження</td>
<td></td>
</tr>
<tr>
<td>Симптоми згублення —- відчуття втоми, сонливості, апатії, роздратованості, зниження апетиту, незадоволення тренуванням.</td>
<td></td>
</tr>
<tr>
<td>ІІ стадія.</td>
<td>Відновлення тренування на 1-2 тижні (заміна активним відпочинком). Далі 1-2 місяці – ЗФП з постійним включенням звичайного тренувального режиму. Обстеження: психотести, огляд невропатологом, основний обімн, ЖЕЛ, УЗД, ЕКГ, венозна проба, регулярне взважування</td>
</tr>
<tr>
<td>Спортивні результати продовжують знижуватися. Щоб підвищити результат, спортсмен збільшує тренувальне навантаження – це призводить до прогресивного захворювання</td>
<td></td>
</tr>
<tr>
<td>Суб'єктивно</td>
<td>Об'єктивні данні</td>
</tr>
<tr>
<td>В'ялість, сонливість, апатія, розтратованість, зниження апетиту, небажання тренуватися; швидка втомлюваність, неприємні відчуття і болі в області серця. Втрати гостроти м'язового відчуття, уповільнення контузиї, неадекватні реакції в кінці виконання складних фізичних вправ.</td>
<td>Добовий динамічний стереотип і добова періодичність в руху і спокої, порушення сну. При обстеженні – порушення франківської реакції, неприємні відчуття і болі в області серця.</td>
</tr>
<tr>
<td>ІІІ стадія.</td>
<td>Проводиться лікування в стаціонарі</td>
</tr>
<tr>
<td>Спортивні результати значно знижуються, незважаючи на всі зусилля спортсмена підвищити їх</td>
<td>Проводиться лікування в стаціонарі</td>
</tr>
<tr>
<td>Органічні зміни в серці. Недостатність кровообігу. Різні зміни в центральній нервовій системі. Розвиток астено-навраточного синдрому (неврастенія, істерія, психастенія); Висока конфліктність спортсмена з батьками, друзями, тренером, суддями</td>
<td>Проводиться лікування в стаціонарі</td>
</tr>
</tbody>
</table>

Примітка. Лікувальні заходи (в тому числі фармакологічну підтримку) проводить тільки лікар.
Профілактика спортивної хвороби.

Тренування і участь в змаганнях у хворобливому стані категорично протипоказані. Режим тренувань і відпочинку, навчання, харчування має бути оптимізований і приведений у відповідність з віком. Рекомендуються мед, пилок, цілорічна вітамінізація, прийом фармакологічних препаратів для профілактики перевантаження серцево-судинної системи, перенапруження ЦНС і т. д. (див. Схеми фармакологічної підтримки на етапах підготовки).

Лікування.

Підвищені дози вітамінів С і Е. Екстракт валеріани по 2 драже на ніч – 2-3 тижні.

Транквілізатори. Ноотропи – 3 тижні.

Н е й р об у т а л по 1 т а б . (0,25 г) 2-3 рази на день. Неотон (введення високоенергетичних фосфорилюють з'єднань становить основу в метаболічної захисту серця). Рибоксин (інозин) по 1 таб. 3 рази на день разом з панангіном, магнеротом, орота-тє калію. Енеріон 2 таб. щодня. Фосфаден по 1 таб. 3 рази на день – 2 тижні. Рослинні анаболіки з розгалуженными ланцюгами. Курага. Печена картопля.

Рекомендується суміш маточного молочка з медом у співвідношенні 1:100. Приймати по 0,5 ч. л. в день (тримати в роті до повного розчинення) протягом двох тижнів. Зробити перерву в один тиждень, потім курс повторити.

Додаток 2

ВІТАМІНИ. МІНЕРАЛИ

Вітаміни

Дефіцит вітамінів розвивається з багатьох причин, головні з яких – недостатній вміст їх в їжі і збільшена потреба організму у вітамінах.

Таблиця Д2 - Водорозчинні вітаміни

<table>
<thead>
<tr>
<th>Вітамін</th>
<th>Метаболічна характеристика</th>
<th>Добова потреба, мг</th>
</tr>
</thead>
<tbody>
<tr>
<td>В₁ (тіамін)</td>
<td>Кофермент ряду реакцій вуглеводневого обміну. Бере участь в білковому обміні, в проведенні нервового імпульсу</td>
<td>Дорослі 1,7-3,0; Діти 1,0-1,4</td>
</tr>
<tr>
<td>В₂ (рибофлавін)</td>
<td>Бере участь в синтезі енергонасичених сполук. Здійснює клітинне динизання, синтез немоглобіну</td>
<td>Дорослі 2,5-3,0; Діти 1,6-2,2</td>
</tr>
<tr>
<td>В₅ (кальцию пантотенат)</td>
<td>Активує метаболічні процеси в тканинах, покращує енергетичне збагачення серцевого м'язу. Складова частина коензиму А</td>
<td>Дорослі 10-12; Діти 3-5</td>
</tr>
<tr>
<td>В₆ (піридоксин)</td>
<td>Підтримує метаболізм амінокислот</td>
<td>Дорослі 2-3; Діти 1,4-2,2</td>
</tr>
<tr>
<td>В₁₂ (цианокобаламін)</td>
<td>Активує углеводневий, ліпідний, азотистий обмін. Бере участь у тваринні еритроцитов</td>
<td>Дорослі 0,003; Діти 0,001</td>
</tr>
<tr>
<td>В₁₅ (кальцию пангамат)</td>
<td>Активує кисневий обмін, обмін ліпідів. Підвищує креатин фосфату і глікогену в м'язах</td>
<td>Дорослі 200-300; Діти 150</td>
</tr>
<tr>
<td>В₇ (аскорбінова кислота)</td>
<td>Кофермент ряду окисно-відновлювальних ферментів, беруть участь в вуглеводових тканинах. Адипоянан</td>
<td>Дорослі 250-500; Діти 50-200</td>
</tr>
<tr>
<td>РР (нікотинова кислота)</td>
<td>Бере участь в обміні амінокислот, углеводів, піримідинів, ядерних білків клітин, так як входить в НАД і НАДФ</td>
<td>Дорослі 35-50; Діти 10-30</td>
</tr>
</tbody>
</table>
У здорових людей добова потреба у вітамінах залежить від багатьох факторів: кліматичних та інших зовнішніх умов, співвідношення в раціоні білків, жирів і вуглеводів. Потреба у вітамінах суттєво залежить також від обсягу і інтенсивності фізичної і розумової роботи, нерво-психічної напруги. Іншим показанням до застосування вітамінових препаратів є необхідність впливу на перебіг анаболічних, відновних процесів, перетрениваність.

Один з найважливіших принципів прийому вітамінів - комбіноване застосування, яке посилає дію і взаємодію ефектів окремих вітамінів, що дає можливість одночасного впливу на широкий спектр біохімічних процесів в організмі.

При цьому додаткове призначення одного або декількох вітамінових препаратів ґрунтується на переважному впливі окремих вітамінів на ту чи іншу ланку обміну речовин.

Тривалість прийому вітамінів залежить від бажаної швидкості досягнення ефекту. Водорозчинні вітаміни - це вітаміни, які, як правило, не володіють ефектом накопичення (акумуляція) і затримуються в організмі не більше доби. Тому необхідне постійне надходження їх ззовні або більш продуктивна вироблення організмом. Швидке збільшення вмісту цих вітамінів в організмі можливо за рахунок прийому великої доз.

Жиророзчинні вітаміни мають ефект накопичення в організмі. Витрачаються поступово.

<table>
<thead>
<tr>
<th>Вітаміни</th>
<th>Метаболічна характеристика</th>
<th>Добова потреба, мг</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (ретинол)</td>
<td>Бере участь в біосинтезі компонентів клітинних мембран</td>
<td>Дорослі: 1,5, Діти: 1</td>
</tr>
<tr>
<td>D (кальциферол)</td>
<td>Бере участь в обміні кальція</td>
<td>Дорослі: 0,012, Діти: 0,007</td>
</tr>
<tr>
<td>E (токоферол)</td>
<td>Підтримує цілесність мембран клітин. Антиоксидант</td>
<td>Дорослі: 12-15, Діти: 5-10</td>
</tr>
<tr>
<td>K (вікасол)</td>
<td>Бере участь в синтезі факторів згуртування крові, окисно-відновлювальних реакціях</td>
<td>Дорослі: 0,15-0,3, Діти: 0,01-0,015</td>
</tr>
</tbody>
</table>

Вітамінні комплекси (полівітаміни) містять спеціально підібраний набір вітамінів, вироблених за особливою технологією.

Для раціонального фармакологічного забезпечення тренувального процесу можна використовувати аптечні форми полівітамінових комплексів, які містять не тільки збалансований набір вітамінів, а й пропорційну кількість мінеральних елементів.

Дозування вітамінних комплексів при занятті спортом повинна бути збільшена в 2-3 рази в порівнянні з рекомендованою для здорових людей.

Курс повинен становити 3-4 тижні з подальшими повторами через тиждень перерви. Препарати, що містять вітамінні комплекси, не слід розжовувати.
Мінерали (макро- і мікроелементи)

Мінерали – життєво необхідні компоненти тканин організму. Перебуваючи в незначних концентраціях в структурі ряду найважливіших ферментів, гормонів, вітамінів та інших біологічних активів організму, макро- і мікроелементи здатні стимулювати або пригнічувати багато біохімічні процеси. Мінерали поділяють на дві групи – макроелементи і мікроелементи. Потреба людини в макроелементах обчислюється в грамах, мікроелементів – в міліграмах.

Таблиця Д4 - Застосування мінералів (макро- і мікроелементів)

Види спорту	Тренувальні етапи	Макроелементи	Мікроелементи			
	Підготовчий	Базовий	Спеціальної підготовчий	Предмагальний	Змагальний	Відновлювальні
Циклічні	*	*	*			*
Швидкісно-силові	*	*	*			*
Єдиноборства	*	*				*
Координаційні	*	*				*
Спортивні ігри	*					*

Таблиця Д5

Макроелементи

<table>
<thead>
<tr>
<th>Мінерал</th>
<th>Метаболічні характеристики</th>
<th>Добова потреба, г</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca (калцій)</td>
<td>Активує клітини, фермент. Бере участь в системі згортання крові. Складова частина скелету</td>
<td>Дорослі: 0,8-1,0 Діти: 0,7-1,0</td>
</tr>
<tr>
<td>Ф (фосфор)</td>
<td>Складова частина енергетичних здіян, нуклеотидних кислот, скелета</td>
<td>Дорослі: 0,7-1,2 Діти: 0,5-0,7</td>
</tr>
<tr>
<td>Mg (магній)</td>
<td>Активно бере участь в проведенні нервового збудження, активації клітин</td>
<td>Дорослі: 0,4-0,5 Діти: 0,2-0,3</td>
</tr>
<tr>
<td>Na (натрій)</td>
<td>Регулює осмотичний тиск, активує ферменти</td>
<td>Дорослі: 3-5 Діти: 1,1-6</td>
</tr>
<tr>
<td>K (калій)</td>
<td>Регулює осмотичний тиск. Активує клітини, ферменти. Бере участь у синтезі колагену</td>
<td>Дорослі: 3,5-5 Діти: 2-3,7</td>
</tr>
<tr>
<td>Cl (хлор)</td>
<td>Регулює осмотичний тиск. Бере участь в утворенні кислоти шлункового соку</td>
<td>Дорослі: 5-7 Діти: 1,8-2,5</td>
</tr>
<tr>
<td>S (сірка)</td>
<td>Складова частина білків, ферментів</td>
<td>Офіційної дози не існує</td>
</tr>
</tbody>
</table>
Введення додаткової кількості мінералів в раціон спортсмена особливо важливо в період важких тренувальних навантажень і змагань, при зміні часових поясів, тренуваннях в горах, в жарку погоду, інших несприятливих кліматичних умовах, при різко змінившись обміні речовин під впливом різних факторів.

Таблиця Д6 - Мікроелементи

<table>
<thead>
<tr>
<th>Мінерали</th>
<th>Метаболічні характеристики</th>
<th>Добова потреба, г</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe (залізо)</td>
<td>Складова частина гемоглобіну, міоглобіну, ферментів</td>
<td>10-18</td>
</tr>
<tr>
<td>J (йод)</td>
<td>Йод - складова частина гормонів щитовидної залози</td>
<td>0,1-0,15</td>
</tr>
<tr>
<td>F (фтор)</td>
<td>Захищає зуби від кар'єсу</td>
<td>1,5-3</td>
</tr>
<tr>
<td>Cu (мідь)</td>
<td>Складова частина білків крові, ряд ферментів</td>
<td>1,2-2</td>
</tr>
<tr>
<td>Zn (цинк)</td>
<td>Активатор ферментів</td>
<td>10-15</td>
</tr>
<tr>
<td>Mn (марганець)</td>
<td>Складова частина ферментів і скелету</td>
<td>5-10</td>
</tr>
<tr>
<td>Cr (хром)</td>
<td>Складова частина інсуліну. Бере участь в метаболізму вуглеводів, жирів</td>
<td>0,2</td>
</tr>
<tr>
<td>Mb (молібден)</td>
<td>Бере участь в метаболізмі заліза, міді</td>
<td>0,3-0,5</td>
</tr>
<tr>
<td>Si (кремній)</td>
<td>Бере участь в синтезі колагену, кератину. Складова частина скелету</td>
<td>Близько 20-30</td>
</tr>
<tr>
<td>Se (селен)</td>
<td>Бере участь в сперматогенезі. Забезпечую метаболізм білків. Антиоксидант</td>
<td>0,06-0,2</td>
</tr>
<tr>
<td>Co (кобальт)</td>
<td>Складова частина вітаміну B12, еритроцитів</td>
<td>0,1-0,2</td>
</tr>
<tr>
<td>Br (бор)</td>
<td>Складова частина скелету</td>
<td>Близько 2</td>
</tr>
</tbody>
</table>

Таблиця Д7 - Мінерали. Застосування фармакологічних форм

<table>
<thead>
<tr>
<th>Препарати</th>
<th>Дорослі</th>
<th>Діті</th>
</tr>
</thead>
<tbody>
<tr>
<td>Аспаркам</td>
<td>0,5 г 3 рази</td>
<td>0,5 г 2 рази</td>
</tr>
<tr>
<td>Калія оротат</td>
<td>0,5 г 3 рази</td>
<td>0,5 г 1-2 рази</td>
</tr>
<tr>
<td>Кальцій міні</td>
<td>1 табл. 2-3 рази</td>
<td>1 таб.</td>
</tr>
<tr>
<td>Кальцій – Сандоз форте</td>
<td>1 табл.</td>
<td>1 таб.</td>
</tr>
<tr>
<td>Кальцій D3</td>
<td>1 табл. 2 рази</td>
<td>1 таб.</td>
</tr>
<tr>
<td>Кальція гліцефосфат</td>
<td>0,5 г 3 рази</td>
<td>0,5 г 2-3 рази</td>
</tr>
<tr>
<td>Кальція глюконат</td>
<td>0,5 г 3 рази</td>
<td>0,5 г 3 рази</td>
</tr>
<tr>
<td>Кальція лактат</td>
<td>0,5 г 3 рази</td>
<td>0,5 г 3 рази</td>
</tr>
<tr>
<td>Магнерот</td>
<td>0,5 г 3 рази</td>
<td>1 таб. 1-2 рази</td>
</tr>
<tr>
<td>Магне В6</td>
<td>1-2 табл. 3 рази</td>
<td>0,5 г 1-2 рази</td>
</tr>
<tr>
<td>Панангін</td>
<td>0,5 г 3 рази</td>
<td>-</td>
</tr>
<tr>
<td>Регідрон</td>
<td>1 пак. В день</td>
<td>-</td>
</tr>
<tr>
<td>Селен</td>
<td>75 мкг</td>
<td>40 мкг</td>
</tr>
<tr>
<td>Цинк</td>
<td>1 таб. 3 рази</td>
<td>1 таб. 1-2 рази</td>
</tr>
</tbody>
</table>
Курс прийому препаратів повинен бути розрахований на ліквідацію дефіциту мінералу в організмі. Мінімальний курс становить не менше трьох тижнів.

Останнім часом все більшу увагу в спортиві звертають на застосування магнію.

Магне В6. Комбінований препарат, що складається з солі магнію і вітаміну В6 (піридоксину). З фізіологічної точки зору магній (Mg) – катіон переважно внутрішньоклітинної локалізації. Іони Mg зменшують збудливість нейронів і сповільнюють нервово-м'язову передачу, є одним з основних активизаторов ферментів, що поліпшують проникність мембран і регулюють трансмембранну циркуляцію іонів. Mg як активатор ферментів вкрай необхідний для поповнення енергетичних запасів в працюючому м'язі.

Піридоксин як кофермент бере участь у багатьох метаболічних процесах. В організмі через ряд реакцій перетворюється в метаболічно активну форму – піридоксал-5-фосфат. Покращує всмоктування Mg з шлунково-кишкового тракту, є транспортом для Mg всередині клітини, підвищує проникність клітинної мембрани і фіксує іони Mg всередині клітини, таким чином перешкоджаючи виникненню його дефіциту.

Після орального прийому Магне В6 з шлунково-кишкового тракту абсорбується приблизно 50% Mg. В організмі Mg розподіляється в основному у внутрішньоклітинному просторі (близько 99%). Близько 2/3 внутрішньоклітинного Mg розподіляються в кістковій тканині, і інша третина – у гладкій або поперечно-смугастої мускулатури, а також в еритроцитах. Приблизно 1/3 дози прийнятого всередину Mg виводиться з сечею.

Показання в спорти. Великий обсяг і інтенсивність фізичних навантажень. Перетренированість. Несприятливі кліматичні умови. Зміна часових поясів. Дефіцит Mg в організмі внаслідок підвищеного виведення (інтенсивне потовиділення, особливо при високій температурі повітря і підвищеної вологості), підвищеній потребі (період росту, період одужання, стрес, фізичні та нервові перевантаження), знижене споживання Mg (незбалансоване харчування, дієта); порушене всмоктування в кишечнику (високий вміст жиру і білків в їжі, захворювання шлунково-кишкового тракту).

У разі поєднання дефіциту Mg з недоліком Ca рекомендується компенсувати в першу чергу недолік Mg і тільки після цього почнати курс Ca.

Симптоми дефіциту Mg (носить неспецифічний характер): серцево-судинні (біль в області серця, тахікардії, екстрасистолія, вісім видів аритмій); церебральні (головний біль, запаморочення, погана концентрація, порушення пам’яті, психічні розлади типу дративності або безсоння, відчуття хронічної втоми); вісцеральні (болі в животі, нудота, діарея, запори); м’язові компресії (м’язові судоми в області потилиці, спини, парастезії кінцівок, судоми підошов, стопи).

Явними симптомами дефіциту Mg у спортсмена є зниження працездатності. Падіння рівня вмісту Mg після спортивної навантаження пояснюється переміщенням Mg у внутрішньоклітинні області, тобто в активні м’язові клітини. За допомогою Mg можна домогтися кращої переносимості навантажень у видах спорту на витривалість (легка атлетика, лижний спорт, біатлон, веслування, плавання і т. д.).

Побічна дія. З боку шлунково-кишкового тракту: діарея, болі в животі; з боку центральної нервової системи: при прийомі високих доз (понад 2 г піридоксину на добу) і тривалому лікуванні (кілька місяців) можуть відзначатися парестезії, периферичні невропатії, що проходять при відміні лікування.

Кальцій D3 Ні комед. Регулює обмін кальцію і фосфору, особливо в кістковій тканині. Знижує резорбцію (вимивання кальцію і фосфору) і запаморочення зубів. Мінералізація зубів, у згортанні крові, у регуляції процесів нервової провідності та м’язових скорочень, у підтримці стабільної серцевої діяльності. Вітамін D3 підвищує всмоктування кальцію в шлунково-кишковому тракті та його зв’язування в кістковій тканині. Вітамін D3 всмоктується в тонкому кишечнику. Період напіввиведення вітаміну D3 становить кілька діб, виводиться з організму через шлунково-кишкового тракту і нирками. Кальцій всмоктується в тонкому
кишечнику. Виводиться через потові залози і шлунково-кишкового тракту.

Показання. Профілактика та комплексне лікування остеопорозу і його ускладнень, в тому числі пороки кісток (профілактика і комплексна терапія). Заповнення нестачі кальцію і вітаміну D3.

Протиокремання. Гіпергуморальність, гіперкальціємія, гіперкаліємія, виражені порушення функції нирок; остеопороз, обумовлений тривалою іммобілізацією; передозування вітаміну D3.

Побічна дія. Диспептичні явища (запор, діарея, метеоризм, нудота, біль в животі). Збільшення кальцію в крові і сечі (при тривалому застосуванні).

Взаємодія. Проносні засоби на основі мінеральної або рослинної олії зменшують всмоктування вітаміну D. Кисла реакція харчових продуктів збільшує всмоктування кальцію, слабкозначна – зменшує.

Передозування. Нудота, блювота, поліурія, запор, біль в епігастрії, гіперкальціємія, гіперкальціурія. При хронічному застосуванні вітаміну D3 можливий розвиток кальцинозу судин і тканин. При появі симптомів передозування слід звернутися до лікаря.

Основні вказівки. Необхідно враховувати можливе додаткове надходження вітаміну D3 з інших джерел. Під час тривалого застосування обов’язковий контроль вмісту кальцію і вітаміну D3 в крові і сечі. При рівні кальцію в сечі вище 7,5 ммоль на добу, підвищення концентрації кальцію або креатиніну в сироватці крові необхідно зменшити дозу або тимчасово припинити прийом.

**Додаток 3
ПРОДУКТИ БДЖІЛЬНИЦТВА**

До продуктів бджільництва відносяться мед, бджолиний пилок, перга (хлібина), маточне молочко, бджолиний віск, бджолина отрута, прополіс.

Бджолиний пилок, мед і маточне молочко використовуються в спортивній практиці для підвищення працездатності, зниження психоемоційної втоми, більш швидкого відновлення сил після великих навантажень.

Мед містить вітаміни, мікроелементи, фруктозу. Спортсмени звичайно вживають по 1 ст. л. від 1 до 3 разів протягом дня. Добова норма меду може становити 1-3 г на 1 кг ваги. При зниженні кислотності шлункового соку мед приймається за 1 годину до їжі з холодною водою; при підвищенні – за 20 хв до їді з теплою водою; при коліті – через 2-3 години після їжі. У жарку пору мед допомагає легше переносити спеку, менше пітніти і втрачати рідину.

Квітковий пилок - концентрат чоловічих статевих клітин квітучих рослин. Збирається безпосередньо з квітучих рослин.

Бджолиний пилок (обніжжя) - збирається за допомогою спеціальних пасток, що встановлюються перед вуликом: робочі бджоли, залітаючи в вулик, струшують в них частину пилку. Обніжжя складається з рослинного пилку, зібраних бджолами, скріпленого рослинним нектаром і пилом (містить багато білка, вітамінів, мінералів, амінокислот, ферментів і слідів низка мінералів).

Бджолиний пилок містить натуральні анатомічні речовини рослинного походження. Спеціфічна властивість пилку – прояв гормоноподібних активностей, якій обумовлює потужний анаболізм. Бджолиний пилок постійно випускає енергію, покращує спортивну працездатність і фізичну витривалість, омолоджує шкіру, регулює стільце, активізує імунну систему, розумові здібності, захищає від серцевих хвороб і стресу. Крім того, пилок – справжній концентрат амінокислот. Вона не викликає звикання і побічних дій і може застосовуватися дуже довго. Найчастіше спортивні поєднують (при щоденному прийомі) мед в кількості 1 г на 1 кг ваги тіла і квітковий пилок 0,3 г на 1 кг ваги на тлі збалансованого харчування.
Таблиця Д8 - Застосування продуктів бджільництва в циклічних видах спорту

<table>
<thead>
<tr>
<th>Продукти</th>
<th>Підготовчий</th>
<th>Базовий</th>
<th>Предмагальний</th>
</tr>
</thead>
<tbody>
<tr>
<td>Апілак</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мед</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Пильца</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пильца + Адаптогени</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мед+ пильца</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Мед+ Пильца + Адаптогени</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Сотовий мед</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Приготувати суміш меду з пилком можна в такій пропорції: 50 г пилку (обніжжя) на 250 г незацукрованого меду. Зберігати в темному місці в скляному посуді при кімнатній температурі. Вживати через 5 днів після приготування суміші по 1 ст. л. 2-3 рази на день (в залежності від ваги тіла) за півгодини до їди.

В результаті нормалізується робота серцево-судинної, легеневої і м'язової систем, збільшується максимальне споживання кисню, покращуються показники гемоглобіну та еритроцитів. Дія цих продуктів в повній мірі зберігається ще 10 днів після закінчення їх прийому.

Пилок в чистому вигляді краще приймати за 20-30 хв до їди (тримати під язиком до повного розсмоктування, оскільки в шлунку вона частково руйнується травними соками). Пилкова дієта відновлює втрачені сили і сприяє дезінтоксикації.

Таблиця Д9 - Застосування продуктів бджільництва в швидкісно-силових видах спорту

<table>
<thead>
<tr>
<th>Продукти</th>
<th>Підготовчий</th>
<th>Базовий</th>
<th>Предмагальний</th>
</tr>
</thead>
<tbody>
<tr>
<td>Апілак</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мед</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Пильца</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пильца + Адаптогени</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Мед+ пильца</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мед+ Пильца + Адаптогени</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Сотовий мед</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

В результаті застосування пилку збільшується кількість глікогену в печінці і в скелетних м'язах, зменшується в'язкість крові.

Маточним молочком (апілак, апіфіготонус, апіток) називається секрет маткових залоз робочих бджіл, який служить кормом для личинки бджолиної матки. Володіє анаболічним, тонізуючим, противапальним, спазмолітичним, бактерицидним і антивірусним діями, підвищує імунітет, розумову і фізичну працездатність.

Підсилює синтез ацетилхоліну, що призводить до підвищення м'язової сили і в той же час посилює синтез адреноаліну в наднирниках, який сприяє розвиткові витривалості. Маточне молочко посилює мінералокортикоїдній функції надниркових залоз – тканини стають більш
пружними.

Маточне молочко покращує ліпідний обмін.

Дозування маточного молочка строго індивідуальне. Подібно до інших засобів, що збуджує ЦНС, апілак в малих дозах може викликати загальмованість і сонливість, у середніх – підвищення тонусу днєм і міцний сон вночі, в надмірних – безсоння і збудження. Вартість відзначити, що збудліву дію апілаку не супроводжується появою тривожності і лякливості, навпаки, зрушення поведінкових реакцій йде в бік появи таких особливостей поведінки, як агресивність і надмірна загальна активність. Для одних тонізуюча доза – 20 таб., Прийнятих вранці, а для інших – не більше 1 таб. Апілак приймається, як правило, вранці або в першій половині дня, починаячи з 1 таб.

Препарати маточного молочка можна застосовувати при захворюваннях надниркових залоз і гострих інфекційних захворюваннях.

У Росії випускаються таблетки «Апілак» – препарат з висушеної бджолиного маточного молочка. В одній таблетці містяться 10 мг діючої речовини. Прийом таблеток – строго 1 раз на день вранці. Оскільки апілак руйнується в шлунку, його розсмоктують під язиком, щоб минути ШКТ.

При перетруваних можна використовувати суміш маточного молочка з медом у співвідношенні 1:100. Приймати її по 0,5 ч. л. в день (тримати в роті до повного розсмоктування) протягом двох тижнів. Далі зробити перерву в один тиждень, а потім повторити курс.

Свіже маточне молочко за своєю ефективністю перевершує висушене.

| Таблиця D10 - Застосування продуктів бджільництва у єдиноборствах |
|-------------------|-------------------|-------------------|-------------------|
| Продукти | Підготовчий | Базовий | Предмагаційний | Предмагаційний |
| Апілак | * | | | |
| Мед | * | | | |
| Пильна | * | | | |
| Мед+ пильца | * | | | |
| Сотовий мед | | | | * |
| Прополіс | * | | | |

Прополіс представляє буровату речовину, що містить деревну смолу, віск, ефірні і ароматичні масла, пильку; містить значну кількість мінералів, вітамінів B-комплексу, С, Е і про-вітаміну A.

Прополіс – потужний антиоксидант завдяки високому вмісту біофлавоноїдів, що сприяє підвищенню фізичної і розумової працездатності. Стимулює імунну систему і має протизапальні властивості.

Цю клейку речовину збирають бджоли для забивання щілин у вуликах, закріплення рамок з сотами в вуликах. Прополіс – сильний натуральний антисептик: це пояснє, чому неможливо виявити ніяких вірусів і бактерій в вуликах, наповнених медом і заселених тисячами бджіл.

Прополіс використовується як всередину при застуді, ряді захворювань, так і зовнішньо як потужного антисептика.

Прийом квіткового пилку і прополісу сприяє зниженню числа простудних захворювань.

Прополіс добре відмінний своїми лікувальними і відновлюючими діями на шкіру, він використовується як основа багатьох мазей, кремів. Дослідження показали, що мазь на основі прополісу швидше загоює і відновлює шкіру тканин.
Таблиця Д11 - Застосування продуктів бджільництва в спортивних іграх

<table>
<thead>
<tr>
<th>Продукти</th>
<th>Період</th>
<th>Змaganня</th>
</tr>
</thead>
<tbody>
<tr>
<td>Апілак</td>
<td>Підготовчий</td>
<td>*</td>
</tr>
<tr>
<td>Мед</td>
<td>*</td>
<td>Базовий</td>
</tr>
<tr>
<td>Пильца</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Мед+пильца</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Сотовий мед</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Прополіс</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Справжня алергія на продукти бджільництва (якщо вона є) проявляється практично відразу – протягом 20-60 хв і дуже рідко – протягом доби. Справжня алергія на прополіс буває в 0,1 -0,5% випадків; на мед і бджолине обніжжя ще менше; на маточне молочко – велика рідкість.

Додаток 4
ДЕЯКІ ОСОБЛИВОСТІ ПРИЙОМУ ЛІКІВ

Для ефективної, адекватної дії препарату, уникнення неприятливих наслідків його застосування необхідно дотримуватися певних правил прийому препаратів.

- Уважно ознайомитись з інструкцією, що додається до препарату, ліків.
- Приймати строго за вказівкою лікаря (дозування, режим, спосіб).
- Не приймати препарат, не впізнавши, як і в якому випадку він може допомогти, уточнити індивідуальну дозування.
- Деякі фармакологічні препарати протягом позазмагального і змагального періодів можна приймати за критеріями антидопінгового контролю.
- Для прискорення всмоктування і надання відповідної дії таблетку можна розчаркувати і запити гарячою водою.
- Не розжовувати капсули, драже, вкриті оболонкою препарати.
- Запивати ліки слід чистою водою в кількості не менше 100 мл.
- Щоб уникнути виникнення стійкого звикання (фізіологічного або психологічного) до окремих лікарських препаратів, слід дотримуватися прийому препаратів курсами.
- Кількість лікарських препаратів, що приймаються одночасно, має бути не більше 5 (більше тільки у виняткових випадках), так як існує ймовірність передозування або виникнення алергічних реакцій при одночасному введенні великої кількості фармакологічних препаратів, їх взаємне посилення або ослаблення дії.
- Призначення ліків натощак дозволяє виключити взаємодію лікарських засобів з компонентами їжі і значно обмежує негативний вплив на них травних соків, виключає затримуючий вплив їжі на всмоктування лікарських препаратів.
- При призначенні деяких фармакологічних засобів натощак можливо місцеве подразнення слизової шлунка, що можна уникнути, якщо запивати ліки водою, крохмальним слизом або молоком.
- Часто ліки змішують з фруктовими або овочевими соками в спробі замаскувати їх неприємний смак або для полегшення їх прийому. Однак соки містять ряд органічних кислот, у присутності яких відбувається руйнування деяких лікарських препаратів, зокрема антимікrobіків.
- Час прийому тих чи інших препаратів (під час їжі, до або після) дуже важливо для прояву їх властивостей. Наприклад, після їжі призначають нерозчинні в воді і розчинні в жирах препарати (в тому числі вітаміни А, Е, К), а також солі калію, брому, натрію, відновлене залізо і т. п.
- Правильний прийом препаратів дозволяє зменшити їх дозу і уникнути побічних ефектів.
Додаток 5
РЕЧОВИНИ І ПРЕПАРАТИ, ЩО ЗНИЖУЮТЬ ПРАЦЕЗДАТНІСТЬ СПОРТСМЕНА

Алкоголь:
– зменшується швидкість складних рухових реакцій, точність м’язових зусиль;
– з’являється дисбаланс процесів збудження і гальмування в ЦНС;
– зменшується накопичення глікогену в печінці; при великих навантаженнях висока небезпека зараження гепатитом;
– порушується обмін вітамінів групи В, мікроелементів;
– збільшується згортання крові;
– можливі явища нейроциркуляторна дистонія;
– тахікардія;
– сповільнюються процеси відновлення;
– знижуються вольові якості спортсмена.

Куріння (в тому числі і пасивне):
– сповільнюється зростання в підлітковому віці;
– знижується розумова і фізична працездатність;
– зменшується швидкість складної рухової реакції, точність м’язових зусиль;
– на 10% зменшується здатність засвоювати кисень, а отже, зростає навантаження на внутрішні органи і особливо на серці;
– вичерпуються запаси вітамінів С, Е, А;
– збільшується схильність до спазмів судин;
– збільшується ризик захворювань бронхів, легенів, шлунка внаслідок ушкодження слизових.

Лікарські препарати, безумовно знижують фізичну працездатність:
– антибіотики (особливо тетрациклінового і цефалоспоринового ряду);
– сульфаніламіди;
– цитостатики;
– іммуносупрессори;
– анаболічні стероїди (при передозуванні);
– психомоторні стимулятори.

Лікарські препарати, які можуть викликати безпосереднє ураження печінки або змінити метаболізм так, що він стає патогенным для печінки: аспірин, парацетамол, сульфаніламіди, оксацілін, кортикостероїди, солі важких металів.

Додаток 6
ПРАВОВІ АСПЕКТИ ФАРМАКОЛОГІЇ СПОРТУ

22 липня 1993 року вищим законодавчим органом був прийнятий один з найважливіших для медичних працівників, всього населення закон – Основи законодавства України про охорону здоров’я громадян.

Особливо важливі для лікаря і спортсмена такі статті «Основ»

Відповідно до ст. 17 «Основ» громадяни мають невід’ємним правом на охорону здоров’я. Під правами пацієнта розуміють права, що виникають в першу чергу із загальних цивільних, політичних і економічних прав людини, які можуть бути реалізовані при наданні медико-соціальної допомоги (ст. 30).

В «Основах» закріплені такі положення:

отримання пацієнтом інформації про стан свого здоров’я (ст. 31);
згоду пацієнта на медичне втручання (ст. 32);
пацієнт має право на відмову від медичного втручання (ст. 33);
примус медичного працівника до збереження лікарської таємниці (ст. 61); визнання права на відшкодування збитків у разі заподіяння шкоди здоров'ю пацієнта при наданні медичної допомоги (ст. 68).

Міжнародний олімпійський комітет має свій, розроблений Медичної Комісією «Медичний кодекс», який регламентує медико-біологічне забезпечення олімпійських видів спорту і відносин між суб'єктами цього процесу. Положення про «Медичному кодексі» міститься в правилі 48 Олімпійської хартії.

У розділі VIII «Медичного кодексу» записано:
«Будь-яка особа, яка виготовляє, екстрагує, переробляє, очищає, зберігає, доставляє, імпортує, експортує, перевозить транзитом, пропонує за гроші або безкоштовно, розподіляє, продає, змінює, пропонує брокерську угоду, набуває будь-яким способом, прописує як медикамент, займається комерцією, передає, приймає, має, купує чи придбувати будь-яким чином заборонені препарати або речовини, повинна бути за рішенням виконкому МОК піддано санкцій, аж до довічного виключення з Олімпійського руху ... ».

«... Незнання природи або складу препаратів, речовин, методів, заборонених Медичним кодексом МОК, а також все перераховане вище – не є пом'якшувальною обставиною для цих осіб; так само як і дія, вироблене в стані незнання, не робить з цього дію законним ... Наведене вище, не відноситься до діяльності лікарів, якщо мова йде про лікувальне завдання».

Свідомо і добровільно довіряючи лікаря найдорожче, що дається природою, - своє здоров'я і життя, спортсмен має право розраховувати на щире бажання лікаря допомогти позбавлення від страждань, на його надійні професійні знання і високоморальні риси характеру.

Не можна допускати призначення лікарських препаратів особами, які не мають на це юридичного права, тобто не лікарами. Спортивні функціонери, тренери, біологи, спортсмени, масажисти не мають права на лікувальну (лікарську) діяльність. Якщо вони беруться за «фармакологічну підготовку», це може бути кваліфіковано як «незаконне лікування». В цьому випадку порушуються закони (ст. 15 «Основ», вимоги МК МОК з подальшими санкціями).

Відповідно до законодавства Росії лікар може рекомендувати тільки ті препарати, які перераховані в «Реєстрі лікарських засобів» або, якщо це БАД, що мають відповідну реєстрацію.

Досвід роботи в збірних командах свідчить, що призначення препаратів необхідно документувати. Великий спорт у даний час підпорядковується законам бізнесу, і інтереси певних осіб пов'язані з великими грошима, що часто пов'язані з втратою етичних норм і моральних принципів, які захищають обов'язки спортивного лікаря в питаннях фармакологічної підготовки спортсменів високої кваліфікації.

На жаль, порушення з боку «доброзичливців» досить часто зустрічаються в повсякденній практиці лікарів і бувають предметом службових розглядів, особливо коли завдано шкоду здоров'ю спортсмена. Спортивний лікар, тренер, спортсмен повинні пам'ятати, що за їхньою діяльністю пильно стежать суперники, дуже зацікавлені в тому, щоб навмисно використовувати ситуацію в сумнівних чи спірних випадках у власних цілях.

Суперники прикладають всіх зусиль до того, щоб змусити відповідати спортивного лікаря, тренера, спортсмена, які можуть і не знати того, що мало місце «вкідання» якихось препаратів з допінгового списку в харчові продукти, питю. В цьому відношенні спортсмен повинен бути дуже обережний і уважний на змаганнях – у всіх сумнівних чи спірних випадках у власних цілях консультуватися з лікарем.

Тільки тоді, коли на кожною спортсмена буде заведена карта фармакологічного забезпечення тренувального збору, змагання, підписання лікарім, тренером (головним тренером) і самим спортсменом, тільки тоді можна буде говорити про відповідальність і захищеності лікарів і спортсменів. Лікар, спортсмен, тренер повинні не тільки попереджуватись про відповідальність за застосування тих чи інших препаратів, а й бути
своєчасно поінформовані про зміни в допінговому списку. І, найголовніше, - необхідно мати чіткий список документів (документів за встановленою формою, що виключає неоднозначне тлумачення), які регламентують роботу лікаря в команді, тренувальному зборі, змаганні.

Про наявність цих документів повинні знати все, включаючи журналістів. Однак документи повинні бути використані тільки для службового користування і відкриті постійно тільки для спортсмена, якого це стосується, лікаря, тренера (главного тренера), керівника комплексної наукової групи.

Ми впевнені, що такий підхід до справи (наявність цих документів і їх скрупульозне заповнення) не рутиня, а необхідна самозахист.

Необхідно, щоб в зазначеному напрямку діяли всі зацікавлені організації, починаючи від спортивних клубів та федераций спортивної медицини.

Висновки

Спортивний результат конкретного спортсмена як інтегральний показник, складається з:

– стану здоров’я;
– обдарованості від природи тим якістю, яке найбільш необхідно для даного виду спорту і спеціалізації;
– швидкості протікання психічних процесів, стійкості до стресових навантажень;
– методики (і умови) тренувань;
– якості життя спортсмена від моменту народження і до завершення спортивної кар’єри.

Визначення факторів, що лімітують працездатність, вивчення захворюваності та травматизму в процесі багаторічної спортивної тренування, представляється перспективним напрямком як в плані розробки профілактики патологічних станів, так і для продовження спортивного довголіття та прогнозування досягнення рекордних показників в спорті.

Розробка сучасної методики фармакологічного забезпечення повинна базуватися на знанні чинників, що обмежують адаптаційні механізми конкретного спортсмена у зв’язку з використовуваними навантаженнями і індивідуальним рівнем здоров’я. Нераціональне використання фармакологічної допомоги в підготовці спортсмена може привести не тільки до кумуляції втоми, але і до патології на системному і органному рівнях.

У практиці спорту корекція факторів, що лімітують працездатність фармакологічними засобами, повинна підкорятися наступним принципам:

– фармакологічна програма повинна бути комплексною і впливати на максимальну кількість факторів, що обмежують працездатність спортсмена;
– фармакологія повинна призначатися в оптимальних режимах і дозуваннях з урахуванням наявності або відсутності супутньої патології;
– за допомогою фармакології спортсмену повинно бути полегшено дотримання режимів фізичних навантажень;
– фармакологічні засоби повинні бути доступними, а призначення здійснюватися з урахуванням особистості спортсмена, його звичок гарчування, способу життя, соціального статусу;
– фармакологічна програма повинна бути простою, привабливою в застосуванні;
– всі призначення повинні бути безпечними для здоров’я спортсмена (спортсмен повинен бути інформований про побічні дії препаратів, про можливу загрозу ускладнень);
– фармакологічне забезпечення повинно бути безперервним протягом усього занять спортом.

Дотримання цих принципів оптимізує найближчі і віддалені спортивні результати.

Головним принципом медичного забезпечення, спрямованим на підвищення рівня здоров’я спортсмена і досягнення високого спортивного результату, повинна бути індивідуалізація тренувального процесу, в структуру якого органічно входять системи відновлення, стимуляції резервних можливостей організму, а також профілактики і лікування патологічних станів.
РЕКОМЕНДОВАНА ЛІТЕРАТУРА

Базова

Додаткова

БІБЛІОГРАФІЧНИЙ СПИСОК