Changes in the levels of adipokines in newly diagnosed pulmonary tuberculosis patients in case of treatment failure

R. M. Yasinskyi, O. M. Raznatovska

Zaporizhzhia State Medical University, Ukraine

Key words: tuberculosis, treatment failure, adipokines, leptin, adiponectin.

Purpose. To define the characteristics of adipokines levels changes in newly diagnosed pulmonary tuberculosis patients in case of treatment failure by examining the levels of leptin, adiponectin and leptin/adiponectin ratio.

Materials and methods. A total of 58 patients with newly diagnosed pulmonary tuberculosis were the subject of this prospective study. The patients were divided into 2 groups: the first group was made up of 28 patients with the ineffectively treated newly diagnosed pulmonary tuberculosis; the second group (experimental group) consisted of 30 patients with successful treatment completion. The control group included 29 healthy voluntary donors. Changes in the levels of adipokines by measuring the blood serum leptin and adiponectin via enzyme linked immunosorbent assay using immunoassay analyzer Sirio S with ‘Mediagnost’ kit (Germany) (ng/ml) were studied at the Scientific Medical Laboratory Center of Zaporizhzhia State Medical University. Leptin/adiponectin ratio was calculated mathematically (relative units). Blood samples were collected after an overnight fasting. Statisitca for Windows 13.0 (Copyright 1984–2018 TIBCO Software Inc., all rights reserved, Licence No. JPZ8041382130ARCN10-J) software was used for the statistical analysis.

Results. The following significant changes in the adipokines levels have been found in patients with newly diagnosed pulmonary tuberculosis with massive pulmonary lesions and destructions of over 3 cm in diameter and positive sputum smear. These patients will be diagnosed with ineffective treatment. At the beginning of the antimycobacterial therapy, there was a significant 12.7 times decrease in leptin and 1.4 times increase in adiponectin indicators and 21 times decrease in the leptin/adiponectin ratio. The levels of leptin, adiponectin and leptin/adiponectin ratio were significantly worse than similar levels in patients, who completed the treatment efficiently. The level of the leptin was slightly increased during the antimycobacterial therapy, albeit being significantly reduced, and the level of the adiponectin continued to increase significantly. The leptin/adiponectin ratio was significantly lower than that in patients who completed the treatment efficiently.

Conclusions. Patients with newly diagnosed pulmonary tuberculosis with the risk of treatment failure are diagnosed with severe disorders of adipocyte functional activity, that antimycobacterial chemotherapy could not even restore the balance to the adipokine system and smooth down resulting concomitant variations in immune response. The findings showed the prognostic value of the changes in leptin, adiponectin and leptin/adiponectin ratio indicators at the beginning of the treatment in relation to treatment failure among patients with newly diagnosed pulmonary tuberculosis.

Improving the treatment efficacy for patients with newly diagnosed tuberculosis by reducing the number of treatment failure cases is very urgent issue nowadays.
испытывали достоверное снижение уровня показателя лептина в 12,7 раза, повышение уровня соотношения лептин/адипонектин достоверно (в 3,4 раза) ниже, чем у больных, которые успешно завершили курс лечения. Контрольную группу составили 29 здоровых доноров-волонтеров. Изменения показателей адипокинов изучали в Учебном медико-лабораторном центре Запорожского государственного медицинского университета путем исследования уровней лептина и адипонектина в сыворотке крови методом твердофазного иммуноферментного анализа на приборе иммуноферментный ридер Sirio S с применением наборов «Mediagnost» (ФРГ), (нг/мл). Соотношения лептин/адипонектин рассчитывали математически (усл. ед.). Образцы крови больных собирали утром натощак. Статистический анализ выполняли с использованием программы Statistica for Windows 13.0 (Copyright 1984–2018 TIBCO SoftwareInc. All rights reserved, лицензия № JPZ8041382130ARCN10-J).

Результаты. У больных с впервые диагностированным туберкулезом легких с распространенным легочным поражением, деструкциями в легочной ткани более 3 см и с наличием бактериовыделения, у которых в дальнейшем установили неэффективность лечения, определены следующие достоверные изменения показателей адипокинов. В начале антивибриобактериальной терапии отмечено достоверное снижение уровня показателя лептина в 12,7 раза, повышение уровня показателя адипонектина в 1,4 раза и уменьшение соотношения лептин/адипонектина в 21 раз. Уровни лептина, адипонектина и соотношение лептин/адипонектина достоверно выше, чем у больных, которые успешно завершили курс лечения. В процессе антивибриобактериальной терапии уровень лептина несколько возрастал, однако оставался достоверно сниженным, а уровень адипонектина продолжил достоверно расти. Уровни соотношения лептин/адипонектина достоверно (в 3,4 раза) ниже, чем у больных, которые успешно завершили курс лечения.

Выводы. У больных с впервые диагностированным туберкулезом легких с риском неэффективного лечения определены тяжелые нарушения функциональной активности показателей адипокинов, что даже антивибриобактериальная химиотерапия не здатна відновити баланс у системі адипокінів та нивелювати спричинені ними супутні порушення імунної відповіді. Результати вказують на прогностичне значення таких змін показників лептина, адипонектина та співвідношення лептин/адипонектина на початку лікування щодо невдачі лікування хворих на вперше діагностований туберкульоз легень.
The study groups distribution by age and sex

<table>
<thead>
<tr>
<th>Patients</th>
<th>The 1st group (n = 30)</th>
<th>The 2nd group (n = 30)</th>
<th>The control group (n = 29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>20 (71.4 %)</td>
<td>23 (76.7 %)</td>
<td>19 (65.6 %)</td>
</tr>
<tr>
<td>Women</td>
<td>8 (28.6 %)</td>
<td>7 (23.3 %)</td>
<td>11 (34.4 %)</td>
</tr>
<tr>
<td>Average age, years</td>
<td>46.04 ± 2.09</td>
<td>43.0 ± 3.48</td>
<td>42.2 ± 2.9</td>
</tr>
</tbody>
</table>

However, the study results of the leptin and adiponectin level in tuberculosis patients are controversial enough. So, some researchers believe, that the blood levels of leptin in these patients are decreased, while the levels of adiponectin are elevated [10–12]. Keicho N. et al. [13] also recommend using a decreased leptin/adiponectin ratio (LAR) as a predictive measure to estimate a progressive course of tuberculosis, alongside the specified measurements.

Perma V. et al. [8] have determined in their study that in diagnosed tuberculosis, the level of leptin is reduced compared to the normal ranges of adiponectin indicators. Other researchers point that leptin levels in tuberculosis patients are not different from stated values [14], or even increased [15].

In the process of considering an adipokines impact on a treatment failure, N. Santucci, et al. [16] found that the levels of leptin are decreased, the levels of adiponectin are increased and particular decreasing in the LAR with tuberculous inflammation progresses.

Thus, improving the treatment efficacy for patients with newly diagnosed tuberculosis by reducing the number of treatment failure cases is very urgent issue nowadays. The literature review shows that adipokines are an important part of tuberculosis pathogenesis associated with the impact on both the metabolism of human body and the cell-mediated immunity.

The results of the studying the leptin and adiponectin involvement, which attract the interest of researchers more than anything else does nowadays, are controversial, especially in predicting/forecasting a newly diagnosed tuberculosis treatment failure. The changes in the adipokines level in patients with pulmonary pathology have been studied only in relation to chronic obstructive pulmonary disease (COPD) in Ukraine [17]. There has been no assessment of these indicators in tuberculosis patients in national literature. According to the literature data on the subject of pathogenetic importance of adipokines indicators in the specific process progression it could be argued that the study of this indicators changes in treatment failure is very important nowadays and also allows developing the case management algorithm to increase the treatment effectiveness among this patient population as a result.

Aim

To define the characteristics of adipokines levels changes in newly diagnosed pulmonary tuberculosis patients in case of treatment failure by examining the levels of leptin, adiponectin and leptin/adiponectin ratio.

Materials and methods

This prospective study included 58 patients with newly diagnosed pulmonary tuberculosis. Patients were divided into 2 groups: the first group was made up of 28 patients with the ineffectively treated newly diagnosed pulmonary tuberculosis; the second group (comparison group) consisted of 30 patients who completed the treatment successfully. The control group was made up of 29 healthy voluntary donors.

There were no significant age and sex differences between the groups (Table 1).

Changes in the blood serum adipokines levels were determined by leptin and adiponectin levels measurements via enzyme linked immunosorbent assay using immunoassay analyzer Sirio S with “Mediagnost” kit (Germany) (ng/ml) at the Scientific Medical Laboratory Center of Zaporizhzhia State Medical University. LAR was calculated mathematically (relative units). Blood samples were collected after an overnight fasting.

All the patients received an inpatient treatment in the Communal Institution “Zaporizhzhia Regional TB Clinical Dispensary” during 2017–2019. Patients were included in the study after voluntary signing an informed consent. The study was approved by Commission for Bioethics of Zaporizhzhia State Medical University (Protocol No. 1 dated 02.02.2017).

Inclusion criteria: newly diagnosed pulmonary tuberculosis, massive pulmonary tuberculosis process (infiltrative and disseminated), pulmonary tissue destructions of over 3 cm in diameter and positive sputum smear.

Exclusionary criteria: other cases of the 2nd category, chemoresistant tuberculosis, TB/HIV co-infection, comorbidities, age over 70 years, non-compliance with treatment.

Since the massive pulmonary tuberculosis process was diagnosed in patients, an intensive phase for patients was 90 doses. Therefore, treatment efficacy was evaluated in 3 months according to the Unified Medical Care Protocol “Tuberculosis” (Order of the Ministry of Healthcare of Ukraine No. 620 dated 04.09.2014) [18]. Assessments of the changes in adipokines levels were performed at the beginning of the treatment by using antituberculosis drugs (0 doses) and after 3 months of the treatment (90 doses).

Statistica for Windows 13.0 (Copyright 1984–2018 TIBCO Software Inc., all rights reserved, License No. JPZ8041382130ARCN10-J) software was used for the statistical analysis. Normality of the quantitative indicators distribution was performed by the Shapiro-Wilk method. The study results were presented in a form of M ± m, where M – the mean value, m – the mean error. A statistical significance of differences between groups was determined using the Student’s method (since the normality of the quantitative indicators distribution was performed). The results considered to be significant only if the indicator of P was lower than 0.05.

Results

The study results of the adipokines levels are presented in Fig. 1–3.

When comparing the initial levels of the adipokines studied and LAR, it was found that the leptin levels (Fig. 1) were decreased in both groups of patients in comparison with the control group: in the 1st group by 12.7 times, in the 2nd group – by 3.8 times (1.20 ± 0.35 ng/ml and 4.10 ± 1.09 ng/ml, respectively, against 15.40 ± 2.91 ng/ml; P < 0.01). Besides, the level of leptin was 3.3 times lower in the 1st group by 3.8 times in the 2nd group.
group compared to the 2nd group (1.2 ± 0.35 ng/ml against 4.10 ± 1.09 ng/ml; P < 0.05).

The levels of adiponectin (Fig. 2) were also increased in both groups of patients in comparison to the control: by 1.4 times in the 1st group and by 1.8 times in the 2nd group (17.20 ± 1.25 ng/ml and 21.10 ± 1.16 ng/ml, respectively, against 12.00 ± 1.06 ng/ml; P < 0.01). Wherein the levels of adiponectin in the 2nd group 1.2 times exceeded that in the 1st group (21.10 ± 1.16 ng/ml against 17.20 ± 1.25 ng/ml; P < 0.05).

According to the data obtained, a decrease in LAR was observed (Fig. 3) in both groups of patients as compared to the control: in the 1st group by 21 times and in the 2nd group by 6.1 times (0.07 ± 0.03 relative units and 0.24 ± 0.07 relative units, respectively, against 1.47 ± 0.32 relative units; P < 0.001). In the 1st group, this indicator was 3.4 times lower (P < 0.05) than that in the 2nd group.

Assessment of adipokine indicators was performed after 3 months (90 doses) only in the 1st and 2nd groups. Analyzing the dynamics of the indicators studied it was found that the levels of leptin (Fig. 1) were elevated in all the patients regardless of the further treatment effect: in the 1st group by 2 times (2.40 ± 0.46 ng/ml against 1.20 ± 0.35 ng/ml; P < 0.01) and in the 2nd group by 1.4 times (5.7 ± 1.37 ng/ml against 4.10 ± 1.09 ng/ml; P < 0.01). The levels of adiponectin (Fig. 2) increased in dynamics, but no significant differences were found. The LAR indicators (Fig. 3) were 1.7 times increased in the 1st group (0.12 ± 0.03 relative units against 0.07 ± 0.03 relative units; P < 0.05).

Assessing the levels of adipokines in patients treated for 3 months (90 doses), it was found that, despite changes in the dynamics, the levels of leptin (Fig. 1) remained 6.4 times lower in the 1st group and 2.7 times in the 2nd group compared to the control (2.40 ± 0.46 ng/ml and 5.7 ± 1.37 ng/ml, respectively, against 15.4 ± 2.91 ng/ml; P < 0.05). No significant differences were found between leptin levels in the 1st and 2nd groups.

The levels of adiponectin (Fig. 2) remained elevated in patients of both groups compared to the control group: by 1.6 times in the 1st group, by 1.8 times in the 2nd group (18.8 ± 1.76 ng/ml and 22.20 ± 1.35 ng/ml, respectively, against 12.00 ± 1.06 ng/ml; P < 0.01). No significant differences were found between adiponectin levels in the 1st and 2nd groups.

The LAR indicators (Fig. 3) remained lower in patients of both groups compared to the that values in the control group: by 12.3 times in the 1st group and by 3.6 times in the 2nd group (0.12 ± 0.03 relative units and 0.41 ± 0.14 relative units, respectively, against 1.47 ± 0.32 relative units; P < 0.01). The LAR indicators were significantly 3.4 times lower in the 1st group compared to the 2nd group (0.12 ± 0.03 relative units against 0.41 ± 0.14 relative units; P < 0.05).

Discussion

This paper presents the study results of the adipokines levels (leptin, adiponectin and LAR) in patients with newly diagnosed pulmonary tuberculosis with generalized pulmonary involvement, lung tissue destruction of over 3 cm in diameter and positive sputum smear. Such changes in patients with newly diagnosed pulmonary tuberculosis are the risk factor for ineffective treatment, but determination of adipokines levels in this category of patients is under-reported in the literature available.

As a result of the measurements, it was found that all the patients with newly diagnosed pulmonary tuberculosis presented significantly reduced baseline values of leptin and LAR, and significantly increased levels of adiponectin. The data obtained did not contradict the majority of other researchers’ results [11–13,16].
It was established that patients with newly diagnosed pulmonary tuberculosis and the risk of ineffective treatment by clinical, radiological and bacteriological indexes, who were further diagnosed with ineffective treatment, presented more profound changes in adipokines levels demonstrating significantly lower levels of leptin, adiponectin and LAR than patients with newly diagnosed pulmonary tuberculosis successfully completed the antymycobacterial chemotherapy later.

In the dynamics, all the indicators of adipokines (leptin, adiponectin and LAR) were found to be increased in all the patients, regardless of further treatment results, that has been confirmed in several works [8,19]. In contrast to our results, Keicho N. et al. found that leptin levels continued to decrease in dynamics and adiponectin levels increased [13].

Such changes occurred as a result of treatment, the number of mycobacteria and their activity decreased, which had an impact on the functional activity of adipocytes. In turn, changes in the activity of adipocytes had an effect on the immune cells functional activity, which in certain values of adipokines contributed to the positive course of tuberculous process in some patients (the 2nd group) and protracted one in others (the 1st group).

It was found that despite some increase in LAR among patients who subsequently were diagnosed with treatment failure, it remained significantly lower compared to the results of patients who completed the treatment successfully later. That is, we can agree with the data obtained by N. Keicho et al. [13] that the LAR has a great diagnostic value in predicting ineffective treatment.

However, the results showed that in patients with newly diagnosed pulmonary tuberculosis and generalized pulmonary involvement, lung tissue destructions of over 3 cm in diameter and positive sputum smear at the beginning of antymycobacterial therapy, the prognostic value of ineffective changes have divergent changes in adipokine indicators: decreased leptin levels and increased adiponectin levels. The LAR reduction has the prognostic value after 3 months of treatment (90 doses).

Conclusions

In patients with newly diagnosed pulmonary tuberculosis with generalized pulmonary involvement, lung tissue destructions of over 3 cm in diameter and positive sputum smear, who were further diagnosed with an ineffective treatment, the following significant changes in adipokines levels were established:

1. At the beginning of antymycobacterial therapy, there was a significant decrease in the levels of leptin by 12.7 times, an increase in the levels of adiponectin by 1.4 times and a decrease in the LAR by 21 times.
2. The levels of leptin, adiponectin and the LAR were significantly worse than in patients who successfully completed the treatment course.
3. In the process of antymycobacterial therapy, the levels of leptin was slightly increased, but remained significantly reduced, and the levels of adiponectin continued to increase significantly. The LAR was 3.4 times significantly lower than in patients who successfully completed the treatment course.

Thus, patients with newly diagnosed pulmonary tuberculosis with the risk of ineffective treatment were diagnosed with severe impairment of the adipocytes functional activity, when antymycobacterial chemotherapy could not restore the balance to the adipokine system and smooth down resulting concomitant variations in immune response.

The findings showed the prognostic value of the changes in leptin, adiponectin and leptin/adiponectin ratio indicators at the beginning of the treatment in relation to treatment failure among patients with newly diagnosed pulmonary tuberculosis.

Prospects for further scientific research. To develop an algorithm for managing this category of patients in order to reduce the number of treatment failure and increase the effectiveness of antymycobacterial therapy.

Conflicts of interest: authors have no conflict of interest to declare.

Відомості про авторів: Ясинський Р. Н., канд. мед. наук, доцент каф. фтизіатрії і пульмонології, Запорізький державний медичний університет, Україна.
Разнатовська О. М., д-р мед. наук, професор, зав. каф. фтизіатрії і пульмонології, Запорізький державний медичний університет, Україна.

Сведения об авторах: Ясинский Р. Н., канд. мед. наук, доцент каф. фтизиатрии и пульмонологии, Запорожский государственный медицинский университет, Украина.
Разнатовская О. М., д-р мед. наук, профессор, зав. каф. фтизиатрии и пульмонологии, Запорожский государственный медицинский университет, Украина.

References

