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ABSTRACT
Introduction:The goal of this study was to elucidate a link of brain-derived neurotrophic factor
(BDNF) Val66Met genewith combined 6-month clinical endpoints in post-myocardial infarctionpa-
tients. Methods: 256 post-myocardial infarction patients who underwent primary percutaneous
coronary intervention were enrolled in the study. Variants of Val66Met gene BDNF were identified
by real-time polymerase chain reaction at baseline. Results: The combined clinical end points (ma-
jor cardiovascular events and hospitalization) were determined in 61 (23.8%) post-STEMI patients;
consequently, 195 (76.2%) patients did not meet the events. Univariate linear regression revealed
that predictors for combined clinical end points were peak TnI levels, NT-proBNP, SYNTAX score,
TIMI score, obesity, left ventricular ejection fraction, and genotype 66ValMet+66MetMet in BDNF
gene. The cumulative clinical outcomes (major adverse cardiac events and admission) were deter-
mined in 61 (23.8%) patients. Kaplan-Meier curves demonstrated that 66ValVal genotype of BDNF
gene was significantly associated with the low number of combined end points. Conclusion: The
Val66Met polymorphism in BDNF gene independently predicted 6-month combined clinical end
points in post-myocardial infarction patients.
Key words: ST-segment elevation myocardial infarction, single nucleotide polymorphism
Val66Met, brain derived neurotrophic factor, outcomes

INTRODUCTION
Recurrent major adverse cardiac events (MACEs)
and heart failure (HF) remain the most common
causes of premature cardiovascular (CV) mortality
amid post-ST-segment elevation myocardial infarc-
tion (STEMI) patients, regardless of wide imple-
mentation of early re-vascularization strategies in-
cluding primary percutaneous coronary intervention
(PPCI)1,2. In fact, conventional pure approaches
based on clinical assessment, transthoracic echocar-
diography and biomarkers of myocardial necrosis are
insufficient today to catch vulnerable post-STEMI pa-
tients after successful PPCI3. Although there are sev-
eral biomarkers (natriuretic peptides, high sensitive
cardiac troponins, soluble ST2, etc.) that are designed
for risk stratification among patients with STEMI4–6,
the risk assessment and prediction of poor clinical
outcomes after successful competed PPCI in post-
STEMI patients are uncertain7. There are several lim-
itations that could decrease the predictive value of
conventional biomarkers in post-STEMI individuals,
such as older age, morbid obesity, diabetes mellitus
(DM), preserved or normal left ventricular (LV) ejec-
tion fraction (EF), co-existing kidney insufficiency

and atrial fibrillation8–10.
Neurotrophins are a superfamily of regulatory pro-
teins which regulate proliferation, differentiation,
survival and plasticity of neurons11. Brain-derived
neurotropic factor (BDNF) was previously found as
one of the neurotrophins with proliferative, choliner-
gic, serotoninergic and dopaminergic activities, and
is predominantly synthesized in central and periph-
eral neurons12. Later, an expression of mRNA BDNF
was found inmyocardium, vessel vasculature, skeletal
muscles, parenchymal organs (including lung, spleen
and kidney), visceral epithelial cells, and mature and
progenitor endothelial cells13–15. Previous animal
and clinical studies have revealed that BDNF through
an activation of nuclear factor kB receptors medi-
ates endothelial cell survival and neoangiogenesis, re-
duces p75-mediated apoptosis of cardiac myocytes,
enhances endothelial function, regulates blood flow
in ischemic myocardium, and improves LV function
after ischemic injury, thereby providing cardioprotec-
tive effects16,17.
Observational and clinical investigations have shown
strong inverted associations between BNDF levels in
peripheral blood and cognitive dysfunction in HF
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patients, and CV risk in individuals with known
DM, hypertension, cardiomyopathy, stable coronary
artery disease and STEMI18–21. However, circulat-
ing levels of BDNF exhibited a close correlation with
single nucleotide polymorphism (SNP) in BDNF gene
that was associated with a replacement of valine to
methionine in the 66 position of codon (Val66Met). It
has been suggested that this SNP Val66Met affects the
intracellular processing of the peptide and leads to a
decline in the secretion of BDNF, resulting in lowered
susceptibility to ischemia and myocardial injury22,23.
The aim of the study was to elucidate a link of BDNF
Val66Met gene with cumulative 6-month clinical end
points in post-myocardial infarction patients.

MATERIAL ANDMETHODS
Patient population
From 2016 August to 2019 February, 320 patients un-
derwent selective coronary angiography due to sus-
pected acute STEMI. Acute STEMI was diagnosed
in accordance to the European Society of Cardiol-
ogy (ECS) recommendation (2017)24. The study flow
chart is shown in Figure 1. We identified 256 acute
STEMI individuals who underwent PPCI with an
implantation of bare-metal stent “COMMANDER”
manufactured by “Alvimedica” (Turkey) in culprit
artery (1 to 4 stents onto ischemic-related arteries)
and discharged with post-PPCI TIMI III score from
the hospital. All patients were treated with current
adjuvant care24.

Coronary angiography
We used radial or femoral vascular access and two-
to-three orthogonal projections to receive angiograms
at baseline. A digital X-ray system ”Integris Allura-
9” (Philips Healthcare, Eindhoven, Netherlands) was
used to visualize coronary anatomyto visualize coro-
nary anatomy. Ultravist-370 (Baier Pharma, GmbH,
Germany) was the contrast giving automatically
through the injector.

Ethical declaration
All patients enrolled in the study gave voluntary in-
formed consent to participate. The study was ap-
proved by the local ethics committee (Protocol №8,
29.08.2016). The study had been carried out in accor-
dance with the 1964 Helsinki declaration.

Sample size calculation
We calculated sample size by taking into consider-
ation the effect size estimation (0.99), type II error
(0.2), type I error (0.05), expected mortality rate of

7%, and one-yearmortality rate of 14% 25. The sample
size was 250 individuals.

Determination of risk factors and co-
morbidities
DM was diagnosed as serum level of fasting glucose
of > 7.0mmol/L, 2-h postprandial glucose serum level
of > 11.1 mmol/L, or current therapy of anti-diabetic
drugs26. Hypercholesterolemia (HCE) hypertension
was diagnosed in accordance with current recom-
mendation27,28. HF was diagnosed according to cur-
rent ECS clinical guidelines29. Information of other
diseases and medical history were obtained by inves-
tigators through a review of medical history or direct
contact with the patient’s general practitioner.

Echocardiography examination
Transthoracic B-mode echocardiography and Tissue
Doppler Imaging were carried out using 3.5 MHz
phase probe with “Aplio 500” (TUS-A500, Toshiba
Inc., Japan) at baseline. LVEF were measured by
Simpson’s method. LV global longitudinal strain (e‘)
and early transmitral velocity (E) were measured by
tissue Doppler imaging technique and impulse trans-
mitral Doppler regime, respectively.

Determination of STEMI prognosis
We used the TIMI score and the GRACE score to val-
idate prognostic capacity after STEMI30,31.

SYNTAX score determination
SYNTAX score (SS) was calculated by an experienced
interventional cardiologist accordingly32.

Determination of endpoints
The primary endpoint was MACEs in combination
with hospitalization that occurred during 6-month
period post-discharge period. MACEs included CV
death, recurrent angina, and newly diagnosedHF.The
endpoint was ascertained by personal or phone con-
tact with a general practitioner or staff of the hospital
in which the patient had been admitted.

Calculation of glomerular filtration rate
The Chronic Kidney Disease Epidemiology Collab-
oration (CKD-EPI) equation was used to calculate
glomerular filtration rate (GFR)33.

Collection of blood samples
Venous blood samples were collected from the pa-
tients using vacutainers at baseline and at the end of
the study. After 30-minute centrifugation, the serum
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Figure 1: Study design flow chart. Abbreviation: MACE: major adverse cardiac events

was collected and then stored at -700C until transfer
to the laboratory of GI “L.T.Malaya TNI NAMSU”.
Hematology and biochemistry, including lipid pro-
files and fasting glucose, were provided for each pa-
tient.
Serum levels of troponin I (TnI) were measured
by chemo-luminescent immunoassay method on the
biochemical analysator (Humalyser 2000,Mannheim,
Germany). The average of the TnI level was 0.5-50
ng/mL.
N-terminal fragment of brain natriuretic peptide
(NT-proBNP) was evaluated by use of a commercially
available kit manufactured by R&D Systems GmbH
(Wiesbaden-Nordenstadt, Germany). The average of
the NT-proBNP level was 10-12000 pg/mL.

SNPVal66Met (rs6265) in BDNFgenedeter-
mination
The extraction of DNA was executed per the con-
ventional protocol for a commercial set (TacMan
TMSNP Genotyping Assays; Thermo Fisher Sci-
entific Assay IDC_11592758_1). The BDNF ge-
netic variants were evaluated by real-time polymerase
chain reaction (PCR). Primers used in the BDNF
Val66Met (rs6265) polymorphism assay were as fol-
lows: CCTACAGTTCCACCAGGTGAGAAGAGTG

(forward), TCATGGACATGTTTGCAGCATCTAG-
GTA (reverse).

Statistics
Baseline characteristics are presented asmean± stan-
dard deviation (SD) or median (IQR) for continuous
variables and proportions for categorical variables.
Chi-square test or Mann-Whitney U test and T-test
were used to compare the categorical or normally-
distributed data, respectively. Hardy–Weinberg Equi-
librium was conducted to estimate allele frequencies.
Spearman correlation analysis was performed to in-
vestigate the relationship between circulating levels of
cardiac biomarkers, co-morbidities, and BDNF gene
SNP. Univariate and multiple variate linear regres-
sion analyses were done; factors that predict the com-
bined endpoint were determined. The beta coeffi-
cient, standard error (SE), odds ratio (OR), and 95%
confidence interval (CI) for predictorswere evaluated.
We also checked whether five common subject-level
gene models (recessive, multiplicative, additive, dom-
inant, and over-dominant models) were related to the
explanatory variables34. We also used area under
curve (AUC), integrated discrimination indices (IDI),
and net-reclassification improvement (NRI) for pre-
diction performance analyses. Significant differences
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between variables were set at p-value < 0.05.

RESULTS
The combined clinical endpoints (MACEs and hos-
pitalization) were determined in 61 (23.8%) post-
STEMI patients; consequently, 195 (76.2%) patients
did not meet the events. General clinical char-
acteristics of the entire patient population enrolled
in the study and both cohorts (with MACEs and
free MACEs) are reported in Table 1. The entire
population consisted of participants with mean age
of 58.76 years old, with male/female proportion of
77.3%/22.7%, with CV risk factors including hyper-
tension (52%), type 2 DM (T2DM) (19.5%), hyper-
cholesterolemia (63.7%), obesity (37.5%), and smok-
ing (34.9%). We did not find significant differences
between both cohorts of the post-STEMI patients in
terms of demographics, glomerular filtration rate, and
CV risk factor presentation, except in the incidence of
T2DMandhypertension, whichweremore frequently
seen in patients who met MACEs than in individuals
who were free of MACEs (P = 0.032 and P = 0.0008,
respectively). Therefore, participants with MACEs
were older that those who did not meet MACEs (P =
0.027).
The patients who met MACEs exhibited higher peak
serum levels of troponin I and circulating levels of
NT-proBNP than those who had no MACEs. Signif-
icant differences in lipid profiles among both patient
cohorts were not found.
The observed frequency of Val66Met BDNF genotype
in post-STEMI patients was as follows: 66ValVal —
74.2% and 66ValMet+66MetMet — 25.8%. Genotype
frequency matched to Hardy–Weinberg equilibrium
(χ2 = 0.17, P > 0.05). There were not differences be-
tween both cohorts in terms of phenotype of BDNF
(P = 0.272).
All post-STEMI patients were treated according to
contemporary clinical protocol and there were not
significant differences in concomitant medications,
except for metformin which was prescribed fre-
quently in the patient cohort withMACEs (P = 0.046).
We found that TIMI risk in patients with MACEs was
significantly higher in comparison with individuals
who had no combined endpoint (P = 0.046) (Table 2).
Nevertheless, the number of participants in both co-
horts having 22 – 32 SYNTAX score points and ≤ 22
SYNTAX score points did not differ, but the propor-
tion of the patients with MACEs having > 32 SYN-
TAX score points occurred frequently when com-
pared with those who did not meet the endpoint. Ad-
ditionally, total GRACE score points were similar in
both patient cohorts (P = 0.294).

Significant differences between both cohorts in terms
of localization of STEMI were not found, even though
one vessel injury frequently occurred in MACEs-free
patients. In contrast, patients having MACEs repre-
sented frequent circumflex artery injury (p = 0.021).
Hemodynamic characteristics in post-STEMI pa-
tients at baseline are reported in Table 3. The patients
having MACEs had lower LVEF (P = 0.005), higher
left atrium volume (P = 0.021), and E/e‘ ratio (P =
0.042) than those who had no MACEs.

Spearman correlation analysis between
STEMI severity, circulating levels of cardiac
biomarkers, co-morbidities and BDNF gene
SNP
There were statistically significant correlations of cir-
culating levels of NT-pro-BNP with TIMI score (r =
−0.33; p = 0.001), LVEF at baseline (r = −0.42; p =
0.003), obesity (r =−0.26; p = 0.012), age (r = 0.27; p
= 0.022), and 66ValVal genotype of BDNF gene (r =
−0.41; p = 0.003). The SYNTAX score was inversely
correlatedwith LVEF at baseline (r =−0.34; p = 0.001)
and 66ValVal genotype of BDNF gene (r =−0.26; p =
0.001), and positively correlated with T2DM (r = 0.32;
p = 0.002).

Univariate and multivariate linear regres-
sions
Univariate linear regression revealed that predictors
for the combined clinical endpoints were peak TnI
levels, NT-proBNP, SYNTAX score, TIMI score, obe-
sity, LVEF, and genotype 66ValMet+66MetMet in
BDNF gene (Table 4). Unadjusted multivariate lin-
ear regression showed that the peak of TnI levels,
NT-proBNP, SYNTAX score, TIMI score, and 66Val-
Met+66MetMet genotype in BDNF gene all remained
independent predictors for the combined clinical end-
points. After adjustment for SYNTAX score andTIMI
score, genotype 66ValMet+66MetMet in BDNF gene
(OR = 1.5476; 95% CI = 1.1277 – 4.1426; P = 0.0246)
and NT-proBNP (OR = 1.7546; 95% CI = 1.0219 –
3.1002; P = 0.046) independently predicted cumula-
tive clinical endpoint.

Comparison of the predictive abilities of
themodels
We compared both models (genotype 66Val-
Met+66MetMet in BDNF gene and NT-proBNP)
for STEMI individuals (Table 5). The genotype
66ValMet+66MetMet in BDNF gene was better than
NT-proBNP and standard model, while the only
adjusted models were entered in the analysis.
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Table 1: Clinical characteristic of STEMI patients enrolled in the study

Variables Entire STEMI
population (n =

256)

Patients who met
MACEs (n = 61)

Patients who did not
meet MACEs (n =

195)

χ2,p

Age, years, M (SD) 58.76±9.85 61.07±9.39 58.13±10.02 0.027

Male, n (%) 198(77.3) 42(68.9) 156(80.0) 0.070

Female, n (%) 58(22.7) 19(31.1) 39(20.0)

Hypertension, n (%) 133(52.0) 39(63.9) 94(48.2) 0.032

T2DM, n (%) 50(19.5) 21(34.4) 29(14.9) 0.0008

Smoking, n (%) 89(34.9) 27(44.3) 62(31.8) 0.074

HCE, n (%) 163(63.7) 42(68.9) 121(62.1) 0.335

BMI > 30 kg/m2, n (%) 96(37.5) 24(39.3) 72(36.9) 0.733

GFR, ml/min/1.73 m2 104.67±27.56 103.68±27.77 107.50±26.96 0.389

Circulating biomarkers

Peak TnI, ng/ml 18.4 [5.44-87.3] 21.56
[11.55-99.45]

13.18 [5.97-68.5] 0.038

NT-proBNP, pg/mL 246.81 [26.78 –
610.97]

415.12
[74.45-1305,42]

202.43 [54.48-802.60] 0.001

TC, mmol/l 4.97[4.00-5.75] 5.13[4.26-5.87] 4.89[3.97-5.68] 0.192

HDL, mmol/l 1.09 [0.90-1.28] 1.12 [0.94-1.28] 1.08 [0.90-1.28] 0.534

LDL, mmol/l 3.00[2.11-3.71] 3.20[2.45-3.98] 2.86[2.06-3.63] 0.078

TG, mmol/l 1.53 [1.17-2.02] 1.48 [1.17-1,83] 1.57 [1.17-2.06] 0.455

SNP polymorphism of BDNF gene

66ValVal, n (%) 190(74.2) 42(68.9) 148(75.9) 0.272

66ValMet+66MetMet, n (%) 66(25.8) 19(31.1) 47(24.1)

Concomitant medications

Beta-blockers, n (%) 256 (100) 61 (100) 195 (100) 1.00

ACEI / ARBs, n (%) 245 (95.7) 58 (95.1) 187 (95.9) 0.98

Clopidogrel /Ticagrelor, n (%) 252 (98.4) 58 (95.1) 194 (99.5) 0.99

Statins, n (%) 256 (100) 61 (100) 195 (100) 1.00

MCRAs, n (%) 178 (69.5) 43 (70.5) 135 (69.2) 0.94

Metformin, n (%) 32 (12.5) 10 (16.4) 22 (11.3) 0.046

Loop diuretics, n (%) 71 (27.7) 20 (32.7) 51 (26.2) 0.12

Abbreviations:
BMI: bodymass index; HCE: hypercholesterolemia; LDL: low-density lipoprotein; HDL: high-density lipoprotein; T2DM: type 2 diabetes
mellitus; TG: triglycerides; Tn: cardiac troponin; ACEI: angiotensin-converting enzyme inhibitor; ARBs: angiotensin-II receptor antagonist;
MCRA: mineralocorticoid receptor antagonist
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Table 2: STEMI localization and injured coronary arteries in patient population

Variables Entire STEMI
population (n =

256)

Patients who
met MACEs (n =

61)

Patients who did not
meet MACEs (n =

195)

χ2,p

STEMI scores

TIMI risk score, point 6 [4-7] 8 [5-9] 6 [4-8] 0.046

Total SYNTAX score, point 28.7±6.15 27.54±6.41 25.65±8.82 0.134

> 32 points, n (%) 76 (42.9) 41 (54.6) 35 (34.3) 0.011

22 - 32 points, n (%) 79 (44.6) 38 (50.7) 41 (40.2) 0.167

≤ 22 points, n (%) 22 (12.4) 10 (13.3) 12 (11.8) 0.765

Total GRACE Score, points 150 (120-172) 143 (117-170) 152 (119-176) 0.294

STEMI localization

Anterior, n (%) 126(49.2) 30(49.2) 96(49.2) 0.995

Posterior, n (%) 113(44.1) 22 (36.1) 91(50.8)

Lateral, n (%) 17 (6.6) 9 (14.8) 8 (4.1)

Culprit coronary arteries

One vessel injury, n (%) 96(37.5) 15(24.6) 81(41.5) 0.017

Two vessels injury, n (%) 69 (26.9) 19(31.1) 51(26.2) 0.445

Three and more vessels injury, n (%) 70 (27.3) 22(36.1) 48(24.6) 0.080

Quantity of stenosis 2.0 [1.0-4.0] 2.0 [1.0-4.0] 2.0 [1.0-4.0] 1.0

Left anterior descending injury, n (%) 185(72.3) 46(75.4) 139(71.3) 0.530

Right coronary artery injury, n (%) 142(55.5) 42(68.9) 107(54.9) 0.053

Circumflex artery injury, n (%) 106(41.4) 33(54.1) 73(37.4) 0.021

Left coronary artery injury, n (%) 24(9.4) 8(13.1) 16(8.2) 0.92

Table 3: Hemodynamic characteristics in post-STEMI patients at baseline

Variables Entire STEMI
population (n =

256)

Patients who
met MACEs (n =

61)

Patients who did
not meet MACEs

(n = 195)

P value

HR, per minute 76±15 79±16 76±15 0.079

Systolic BP, mm Hg 134±25 123±22 138±25 0.003

Diastolic BP, mm Hg 80±12 77±12 81±12 0.019

LV EDV, ml 136±37 137±45 136±35 0.930

LV ESV, ml 64±28 69±36 63±25 0.516

LVEF, % 51±10 48±11 52±10 0.005

LA, cm 4.10±0.51 3.68±0.54 4.04±0.53 0.477

LAV, ml 56±7 57±10 54±9 0.021

E/e‘, unit 11.6±4.28 12.89±5.34 11.31±4.86 0.042

Abbreviations:
HR: heat rate; LAD: left atrium diameter; LAV: left atrium volume; LVEDV: left ventricular end diastolic volume; LVESV: left ventricular end
systolic volume; LVEF: left ventricular ejection fraction; BP: blood pressure
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Table 5: Comparisons of predictivemodels with integrated discrimination indices and net-reclassification
improvement

Models Depending variable: combined end point

AUC NRI IDI

M 95%
CI

P
value

M 95%
CI

P
value

M 95%
CI

P
value

Standard model (TIMI score) 0.547 0.450
–

0.620

- Reference - - Reference - -

Genotype 66ValMet+66MetMet in
BDNF gene + Standard model vs
Standard model

0.709 0.610
–

0.810

0.0232 0.31 0.27
–

0.36

0.044 0.068 0.057
–

0.077

0.049

NT-proBNP + Standard model vs
Standard model

0.697 0.592
–

0.795

0.0480 0.30 0.22
–

0.41

0.057 0.046 0.020
–

0.061

0.180

Abbreviations:
AUC: Area Under Curve; IDI: integrated discrimination indices; NRI: net-reclassification improvement; CI: confidence interval

Determination of genetic model variants
We found that the model based on the genotype
66ValMet+66MetMet in BDNF gene carried out an
additive value because it was defined by the following
equation: OR2 = 2 − 1 / OR1 (Table 6). This means
that the regression analysis was the best fitted to the
model by applying the variables which predicted cu-
mulative clinical endpoint.

Kaplan-Meyer analysis for combined end-
point accumulation trends in post-STEMI
patients
Kaplan-Meier curves demonstrated that post-STEMI
patients having 66ValVal genotype of BDNF gene had
the lowest accumulation of combined endpoint when
compared with those who had the combination of
66ValMet and 66MetMet genotypes (Cox-criterion, P
= 0.019; log-rank criterion, P = 0.03) (Figure 2).

DISCUSSION
The results of our study showed negative associa-
tions between the 66ValMet + 66MetMet polymor-
phisms in the BDNF gene and 6-month endpoints in
post-STEMI patients. The prognostic significance of
BDNF 66ValMet polymorphism was investigated in
post-STEMI patients first, while these relations were
previously determined in individuals with acute coro-
nary syndrome35. Therefore, there was an associ-
ation between the BDNF levels and severity of HF
NYHA functional class among individuals with HF
with reduced LVEF (HFrEF)21, atherosclerosis sever-
ity in stable CAD patients36, and patients with un-
stable angina37. The exact causes for the decline in

circulating BDNF levels among patients with known
CV diseases (including unstable angina, acute coro-
nary syndrome, STEMI and HF) are uncertain. Prob-
ably, BDNF can be released from skeletal muscle, and
skeletal muscle dysfunction (rather than loss of skele-
tal muscle mass) in HF patients may explain lowered
levels of circulating BDNF inHFrEF. However, it does
not determine declining levels of the peptide in post-
STEMI patients with adverse cardiac remodeling, HF
with preserved EF, nor recurrent CV events38–41.
Whether BDNF production is under control by my-
ocardial function and exercise is not well-understood.
In this context, lowered levels of BDNF have been
ensured by SNP in the 66ValMet BDNF gene, which
controls synthesis of the peptide 42.
Previous animals and clinical trials have revealed that
the BDNF levels weremodulated by BDNF gene poly-
morphism and that CV actions of circulating BDNF
likely correspond to this SNP43,44. Moreover, low
circulating levels of BDNF were associated with ad-
verse cardiac remodeling after STEMI and higher lev-
els of NTproBNP45. Nevertheless, there are inves-
tigations that have yielded no close association be-
tween the genetic variants of BDNF and the serum
levels of this peptide 43,45. There is a hypothesis that
the BDNFVal66Met genotype can affect cardiac func-
tion and CV risk through other mechanisms. We
found an association between circulating levels ofNT-
proBNP and BDNF gene polymorphism; however,
there is no plausible evidence for the interrelation be-
tween BDNF gene polymorphism and cardiac func-
tion, severity of atherosclerosis, and CV risk factors
(not including T2DM). Importantly, previous clinical
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Table 6: Determination of genetic model variant

ValVal ValMet MetMet

Patients who met MACEs (n = 61) 42 14 5

Patients who did not meet MACEs (n = 195) 148 44 3

OR1 1.12 - -

OR2 5.23 - -

Notes: OR1 = oddMm / oddMM; OR2 = oddmm / oddMm.

Figure 2: Kaplan-Meier curve accumulation of combined end point after 6 month observation depend-
ing on polymorphism Val66Met in BDNF gene. Notes: 1st group: genotype 66ValVal, 2nd group: 66Val-
Met+66MetMet.

studies have shown associations between metabolic
disease (such as morbid obesity and T2DM) and cir-
culating levels of the BDNF, but not with the BDNF
gene polymorphism46,47. Some researchers have pro-
posed that adipocytokines can be triggers for the de-
cline of BDNF levels, but BDNF Val66Met polymor-
phism has shown no significant association with cir-
culating levels of leptin 47. However, in our investiga-
tions, patients whowere enrolled in these studies were
not qualified as those having stable CAD or STEMI.
We suggest that BDNF gene polymorphism is an
independent factor contributing to MACEs and re-
admission to the hospital through altered cardiopro-
tective effect. Since BDNF specifically binds to the
tropomyosin-related kinase receptor B, it acts asmod-
ulator of various intracellular signaling pathways (e.g.
Akt pathway, transforming growth factor-beta/ Smad
pathway), which suppress inflammation and oxida-
tive stress, upregulate the viability of ischemic tis-

sue, promote differentiation of endothelial progeni-
tor cells, and initiate neovascularization and angio-
genesis in response to hypoxic and ischemia stim-
uli48–51. Interestingly, the predictive values for both
the BDNF Val66Met gene polymorphism and serum
levels of NT-proBNPwere almost similar after adjust-
ment for severity of atherosclerosis and STEMI. Al-
though the results of the study demonstrated that the
BDNF Val66Met gene polymorphism predicted the
combined endpoint in post-STEMI patients, there is
no explanation for the exact molecular mechanisms
which support this effect. We believe this fact is re-
quired to be investigated in the future to clearly un-
derstand primary ways that BDNF Val66Met gene
polymorphism affects the clinical outcomes of post-
STEMI patients after successful PPCI.
Our study had several limitations. The first limita-
tion was associated with the small sample size, it is
important to calculate sample size such that the sta-
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tistical difference between both cohorts can be dis-
cerned. However, a large clinical study is required to
obtain more information regarding the BDNF gene
polymorphism as a predictor for poor clinical out-
comes in post-STEMI patients. The second limita-
tion is the lack of optical coherent tomography to rule
in correct expanding of stents. The third limitation
relates to respectively lowered number of secondary
endpoints including hospitalization due to HF, recur-
rent unstable angina, and STEMI and PPCI. We did
not perform analysis of secondary endpoint accumu-
lation.

CONCLUSION
We found that 66ValMet + 66MetMet BDNF gene
polymorphisms independently predicts the combined
6-month endpoint in post-STEMI patients after treat-
ment with PPCI.

ABBREVIATIONS
ACEI: angiotensin-converting enzyme inhibitor
ARBs: angiotensin-II receptor antagonist
BDNF: brain-derived neurotrophic factor
BMI: body mass index
BP: blood pressure
CI: confidence interval
CV: cardiovascular
EF: ejection fraction
GFR: glomerular filtration rate
HCE: hypercholesterolemia
HDL: high-density lipoprotein
HF: heart failure
HR: heat rate
LAD: left atrium diameter
LAV: left atrium volume
LDL: low-density lipoprotein
LV: left ventricular
LVEDV: left ventricuar end diastolic volume
LVEF: left ventricular ejection fraction
LVESV: left ventricular end systolic volume
MACEs: major cardiovascular events
MCRA: mineralocorticoid receptor antagonist
OR: odds ratio
PPCI: primary percutaneous coronary intervention
STEMI: ST-segment elevation myocardial infarction
T2DM: type 2 diabetes mellitus
TG: triglycerides
Tn: cardiac troponin
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