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Background: Heart failure is a pathophysiological state, which is still associated

with high morbidity and mortality despite established therapies. Diverse well-known

biomarkers fail to assess the variety of individual pathophysiology in the context of

heart failure.

Methods: An analysis of prospective, multimarker-specific therapeutic approaches to

heart failure based on studies in current literature was performed. A total of 159 screened

publications in the field of biomarkers in heart failure were hand-selected and found to

be eligible for this study by a team of experts.

Results: Established biomarkers of the inflammatory axis, matrix remodeling,

fibrosis and oxidative stress axis, as well as potential therapeutic interventions were

investigated. Interaction with end organs, such as cardio-hepatic, cardio-renal and

cardio-gastrointestinal interactions show the complexity of the syndrome and could be

of further therapeutic value. MicroRNAs are involved in a wide variety of physiologic and

pathophysiologic processes in heart failure and could be useful in diagnostic as well as

therapeutic setting.

Conclusion: Based on our analysis by a biomarker-driven approach in heart failure

therapy, patients could be treated more specifically in long term with a consideration

of different aspects of heart failure. New studies evaluating a multimarker – based

therapeutic approach could lead in a decrease in the morbidity and mortality of heart

failure patients.

Keywords: biomarkers, heart failure, cardiovascular medicine, targeted therapy, multimarker analysis

INTRODUCTION

Heart failure is a complex syndrome with major impact on public health. In the industrial world,
about one out of ten persons over 65 years old is affected. Despite cardio-protective treatment
with renin-angiotensin-aldosterone (RAAS) inhibitors, betablockers, neprilysin inhibitors and
cardiac resynchronization therapy, mortality and hospitalization rates remain high (1).
The wide introduction of implantable cardioverter defibrillators has minimized the risk
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of sudden cardiac death (2). Nevertheless, morbidity is persistent
at a high level, with one out of four patients being rehospitalized
within 30 days and almost half within 1 year of diagnosis (3, 4).

The best-studied biomarker in heart failure is B-type
natriuretic peptide (BNP), which is released in response to
increased left ventricular (LV) filling pressures and wall stress.
BNP is broadly used in the diagnosis of clinical heart failure (5).
Furthermore, BNP is used to guide the therapy of heart failure
and left ventricular dysfunction in daily routine (6).

The established biomarkers in heart failure fail to assess the
variety of pathophysiological processes relevant to the condition
of a heart failure patient (see Figure 1). Multi-marker analysis

FIGURE 1 | Pathophysiological processes relevant in heart failure and their

interaction with end organs. Inflammatory processes with following remodeling

and fibrosis, neuroendocrine activation, myocardial injury, oxidative stress and

myocardial stretch contribute to heart failure. Heart failure might cause damage

in end organs, but on the other hand failure of end organs induces heart failure.

provides both a more valid prognostic stratification, and better
evaluation of the patient’s response to a therapeutic intervention
(7). Due to emergence of more detailed information regarding
the complex pathophysiological background of heart failure, a
variety of biomarkers and new therapeutic interventions are
currently under investigation.

In the following review, we present a prospective multi-
marker-based therapeutic approach (Table 1) to themanagement
of heart failure with a potential to decrease the roughly
unchanged mortality and morbidity of heart failure.

An analysis of prospective, multimarker-specific therapeutic
approaches to heart failure based on studies in current literature
was performed. A total of 296 screened publications in the field of
biomarkers in heart failure were screened and 159 were found to
be eligible for this study due to the relevance of their contribution
to this topic by a team of experts (Figure 2).

BIOMARKERS OF THE
INFLAMMATORY/MATRIX
REMODELING/FIBROSIS AXIS

Inflammation
The role of inflammation in heart failure has been proposed
as levels of inflammatory cytokines including tumor necrosis
factor (TNF), interleukin (IL)-1β and IL-6 were found to be
elevated in heart failure. TNF and IL-6 serum levels correlate with
heart failure severity and prognosis. Elevated basal cytokine levels
might even predict future development of heart failure (8).

Renal failure, arterial hypertension, chronic obstructive
pulmonary disease (COPD), diabetes mellitus, metabolic
syndrome and myocyte injury following myocardial infarction
or viral infection are suspected to result in chronic inflammatory
processes, which may contribute to the ten percent increase
in heart failure incidence in the industrialized world (9).
Consequently, attention has focused on the role of inflammation
in heart failure, in particular due to an increasing number

TABLE 1 | Cardiac biomarkers, described in the report, and their diagnostic

function in the pathophysiology of heart failure.

Influence on heart failure Biomarker

Myocardial injury Troponin, H-FABP

Inflammation CRP, IL-6, TNF-α, IL-1-Beta,

Remodeling sST-2, Galectin,

Fibrosis TGF-ß

Mechanical stretch BNP, GDF-15

Neurohumoral Copeptin, Endothelin-1,

Oxidative stress Uric acid, Myeloperoxidase,

Micro RNA miR-18a-5p, miR-26b-5p,

miR-27a-3p, miR-30e-5p,

miR-106a-5p, miR-199a-3p,

miR-652-3p, miR-30c, miR-221,

miR-328, miR-375, miR-423,

miR-34a, miR-21-3p,miR-199,

miR-30a
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FIGURE 2 | Flowchart outlining the protocol adopted in this systematic review for literature selection.

of immunosuppressive therapeutic opportunities. Biomarkers,
identifying inflammatory processes in heart failure, are becoming
recognized as indicator of inappropriate immune response and
for potential therapeutic value (10).

CRP represents a composite heart failure biomarker, which
is a robust predictor of cardiovascular and non-cardiovascular
mortality. Interestingly, an increased hsCRP was associated
with a higher cardiovascular (CV) mortality irrespective of
the baseline ejection fraction (11). Non-immunosuppressive
therapies, including β-blockade, renin-angiotensin antagonists
and statins had modest effect on reducing CRP levels (12). CRP,
as an acute phase protein synthesized by hepatocytes, is induced
by IL-6 signaling which itself is activated by an up-regulation
of IL-1 β and TNF (13). This signal cascade offers further
therapeutic possibilities.

Consequently, IL-1 β, as a biomarker and respective signal
point with a potential of targeted heart failure therapy, is gaining
attention. In animal models, a direct influence of IL-1β injection
on systolic function was shown as well as on diastolic function
(14). In acute heart failure, IL-1β could identify patients with high
1-year mortality (15). These results are hypothesis generating.
Whether biomarker-guided therapy is beneficial requires further
studies, especially after well-established biomarkers, including
NT-pro-BNP, have failed to improve therapy results. However,
an 84% reduction in CRP levels was seen in an initial open
label-study with Anakinra therapy in seven patients with
acute heart failure (16). These promising results led to the
first randomized controlled trial (RCT) with Anakinra in 30
patients with acute heart failure, in which Anakinra again
proved to reduce inflammatory response (17). In a separate
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study of 60 patients with acute heart failure, Anakinra was
started 2 weeks after discharge and continued for 12 weeks,
and improved peak oxygen consumption, quality- of-life, and
NT-pro-BNP levels (18). These results were partly reproduced
in an RCT in 30 patients with heart failure with preserved
ejection fraction (HFpEF), in which significant improvement in
quality-of-life, treadmill exercise time, and a reduction in NT-
pro-BNP levels were seen, yet here no significant changes in
oxygen consumption were observed (19). The negative results
in oxygen consumption, however, may perhaps be attributed to
low cardiorespiratory fitness in patients with HFpEF, commonly
associated with severe obesity. A recently published trial of 10,061
patients with heart failure under treatment with Canakinumab
showed a significant reduction in the composite endpoint
of hospitalization for heart failure and heart failure related
mortality (20).

Heart failure leads to sympathetic activation, which is coupled
with an elevated pro-inflammatory cytokine profile. Given
the evidence that the pro-inflammatory cytokine TNFα and
soluble TNF receptors correlate with mortality in heart failure,
it is thought that targeting this mediator may be beneficial
in stopping heart failure deterioration (21). The randomized-
multicenter clinical trials RENAISSANCE and RECOVER used
the genetically engineered humanized TNF receptor Etanercept
to neutralize TNFα in patients with chronic heart failure (22).
Surprisingly, patients with heart failure on Etanercept had a
worse prognosis compared to placebo in the RENAISSANCE
trial. Moreover, a worsening of heart failure was documented in
the ATTACH study using infliximab therapy (23). Pentoxifylline,
a promising immunomodulatory therapy, also inhibits TNFα and
furthermore reduces programmed cell death inmultiple cell types
by downregulating the expression of the apoptosis-signaling
surface receptor Fas/APO-1 (24, 25). A meta-analysis of six
studies in patients with heart failure treated with pentoxifylline
showed a 4-fold reduction in mortality, leading to optimism with
respect to this therapy (26).

Another interesting strategy is the application of intravenous
immunoglobulin (IVIG) which proves to influence cytokine
production in T-cells and monocyte/macrophage both in in-
vitro and in-vivo studies (27, 28). In a placebo-controlled
clinical trial in forty patients with chronic heart failure using
intravenous immunoglobulin (IVIG), a significant improvement
of left ventricular ejection fraction and a reduction of N-terminal
pro–atrial natriuretic peptide was demonstrated (29).

CARDIAC REMODELING

Cardiac remodeling is characterized by cellular and interstitial
changes, usually in response to acute or chronic damage,
consequently leading to changes in size, mass and function
as well as geometry of the heart (30–33). In response to
these mechanisms, the cardiac function decreases. Cardiac
remodeling is usually induced by myocardial damage as
for example in the context of myocardial infarction (34).
However, also chronic inflammatory or subclinical ischemic
processes as well as increased cardiac strain can lead to cellular

and interstitial changes (9). Furthermore, remodeling is also
promoted by an imbalance of metabolic pathways as for example
in the leptin-neprilysin-aldosterone axis (35). Nevertheless,
the stratification of the processes mentioned above remains
challenging because the established cardiovascular biomarkers
troponin and natriuretic peptides are not well suited to reflect
the extent of cardiac remodeling. In this respect, novel cardiac
biomarkers represent promising new modalities to further refine
diagnosis and therapy monitoring.

Here, sST2, GDF-15 should be covered pars pro toto, as
they represent some of the most established markers in the
field. sST2 represents a marker predominantly used in the field
of heart failure, where it was shown to independently predict
mortality and hospitalization in acute or chronic heart failure
(36, 37). There are two known isoforms of ST2, a soluble form
(sST2) and a membrane bound form (ST2L). Through binding
of IL-33, the only known ligand for ST2, cardio-protective
effects can be mediated through the ST2L receptor (38). ST2L
also enhances the functions of T-cells, mast cells and cells of
the innate lymphoid type (39). On the other hand, sST2 acts
as a decoy receptor for IL-33, thus preventing its potential
beneficial effects resulting inmyocardial hypertrophy and cardiac
remodeling. Thus, sST2 was shown to be a strong predictor
for mortality in acute heart failure at admission but also at
discharge (40). Furthermore, with respect to chronic heart failure,
a meta-analysis including over 6,000 patients was able to show
that sST2 predicts all-cause mortality as well as cardiovascular
mortality. A cut-off for sST2 below 35-ng/ml was associated with
a significant improvement in chronic heart failure, regardless of
clinical presentation (41). Furthermore, sST2 was also shown
to be elevated in acute coronary syndrome, correlating with
mortality rates after myocardial infarction (42–44). Given its
pathophysiological background, elevated levels of sST2 were also
reported in pulmonary hypertension as well as in peripheral
artery disease (45, 46).

The cytokine GDF-15 is involved in the regulation of
inflammation and fibrosis, and is expressed in most organ
systems. Furthermore, GDF-15 is also involved in apoptotic
processes. The secretion of GDF-15 is upregulated in response to
organ damage. With respect to the cardiovascular system, GDF-
15 induces cardio-protective effects through different cellular
signaling pathways, interacting with ALK 1–7 and Smad-
receptors, as well as the epidermal growth factor receptor
(EGFR) and NF-κB/JNK/caspase-3 pathway (47). Elevated levels
of GDF-15 have been reported in heart failure patients with
an impact on mortality rates in heart failure with reduced
and preserved ejection fraction (48). Furthermore, GDF-15
is also an independent marker of all-cause mortality and
cardiovascular events in patients with coronary artery disease
(49). Apart from cardiovascular disease entities, a predictive
value of GDF-15 was also reported for other disease entities,
with a focus on diabetes, malignancies and chronic kidney
disease (50).

Thus, when considering different pathophysiological
processes involved in cardiac remodeling, such as inflammation,
increased cardiac strain and oxidative stress, the novel cardiac
biomarkers sST2 and GDF-15 are a promising for a more
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sophisticated assessment of cardiac remodeling (51). Their
reduced cardiac specificity and involvement in numerous organ
systems, initially deemed a disadvantage, may turn out to be a
strength with respect to their prognostic value.

CARDIAC FIBROSIS

Most etiologies of heart disease cause a pathological myocardial
remodeling resulting in a cardiac fibrosis (52). In contrast to
other organs, the heart has restricted regenerative ability after
damage. Physiologically, fibrotic processes serve to preserve
the structure integrity and pressure-generating capacity of
the heart. Otherwise a myocardial dysfunction or rupture
might result (34, 53). Unlike pathological remodeling within
the context of chronic cardiac inflammation processes, the
excessive deposition of extracellular matrix results in deformed
organ structure and an impairment of cardiac function (54).
Fibrogenesis increases ventricular stiffness and can lead to
contractile dysfunction. An excess of extracellularmatrix worsens
mechanical-electric coupling of cardiomyocytes with an impact
on cardiac contraction and an increased risk of arrhythmogenesis
and mortality (55, 56).

Transforming Growth Factor β 1 (TGF-β1) is perhaps the
most extensively studied biomarker of fibroblast activation and is
known to have an impact on fibrotic processes in many organs.
TGF-β1 is initially released in a complex with latent TGF-β
binding proteins that inhibit its activity. It can be activated by
proteolytic cleavage, and by binding to an activin receptor-like
kinase (ALK 5), it is able to activate pro-fibrotic genes (57).
This process is called the canonical pathway (58). Inhibitors
of the TGF-β receptor ALK5 are under analysis as presumed
antifibrotic targets. ALK5 inhibitors can reduce TGF-β activity,
rescuing cardiac dysfunction and facilitating the remodeling after
a myocardial infarction (59). While inhibition of the canonical
TGF-β signaling pathway seems promising, this concept needs
further studies and refinements before it has an impact on

clinical routine. TGF-β can also induce non-canonical signaling
that involves severalmitogen-activated protein kinases (MAPKs).
This pathway activates TGF-β activated kinase (TAK) 1, which
results in a pathological cardiac remodeling and consequently in
heart failure (60). Supposedly, the non-canonical pathway may
be the dominant process in cardiac fibrosis. Investigations to
prevent this non-canonical signaling seem to be more promising
for the treatment of cardiac fibrosis and heart failure. TAK1
might serve as a viable therapeutic target. Furthermore, the
inhibition of p38 is being actively investigated for its antifibrotic
potential (61).

In the SOLSTICE Phase II trial, patients after a non – ST
segment elevation myocardial infarction received the p38
inhibitor losmapimod without observation of major side
effects. Although infarct size was non-significantly reduced,
patients with intake of losmapimod experienced fewer
cardiac events, such as heart failure. These findings provide
hope for the therapeutic potential of losmapimod and
resulted in the enrollment for the phase III LATITUDE-
TIMI 60 trial. The primary endpoint, including a significant
reduction of cardiovascular death, remained unmet, but in
patients with a STEMI with higher age, elevated hs-CRP or
chronic kidney disease, the risk of heart failure tended to be
reduced (62, 63). Further studies evaluating the antifibrotic
effects of p38 on negative cardiac outcomes are warranted
(see Figure 3).

BIOMARKERS OF THE OXIDATIVE STRESS
AXIS

Oxidative stress is involved in the development and progression
of heart failure. Oxidative stress is defined as dysregulation
between the production of reactive oxygen species (ROS)
and the endogenous antioxidant defense mechanism system.
ROS production is primarily caused by mitochondria, NADPH
oxidases, xanthin oxidase and nitric oxide synthase, whereas the

FIGURE 3 | Biomarkers and therapy options in the inflammatory/matrix remodeling/fibrosis axis. Hypertension, obesity and myocyte injury cause inflammatory

processes with following remodeling and fibrosis as an end result. Inflammatory markers are important for the detection and antibodies, including Canakinumab and

Anakinra are prospective therapy options. sST-2 and Galectin indicate remodeling processes. The most important marker of cardiac fibrosis is TGF-ß. Losmapimod

and ALK5 inhibitors are the most promising therapeutic interventions.
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most important endogenous antioxidant defense mechanisms
include superoxide dismutase (SOD), catalase, glutathione
peroxidase (GPx), nicotinamide adenine dinucleotide (NAD+)
and glutathione (64). Under pathological conditions, the electron
transport chain of the mitochondria provokes the formation of
large quantities of superoxide.

ROS production is enhanced in pathologic stimuli resulting
from mechanical stretch, neurohumoral or inflammatory
activation, andmyocyte injury (65). Excess of ROS causes cellular
dysfunction, protein and lipid peroxidation, DNA damage, and
eventually leads to irreversible cell death. Furthermore, ROSC
leads to maladaptive myocardial remodeling with subsequent
myocardial fibrosis and to impairment of the electrophysiological
and contractile apparatus by modification of crucial proteins in
the process of excitation (66).

In acute myocardial infarction, leucocytes release
myeloperoxidase (MPO), resulting in the generation of oxidizing
species (67, 68). In epidemiological studies, a correlation of
elevated MPO in chronic heart failure (CHF) was demonstrated
even after adjustment for B-type natriuretic peptide (pBNP) or
age (69). MPO in combination with CRP and pBNP showed a
better rate of detection of left ventricular dysfunction than pBNP
alone in a prospective study with 1,360 patients (70). However,
there was no significant difference of MPO level in the setting of
acute dyspnea in 667 patients with either acute heart failure or
other non-cardiac dyspnea (71).

Furthermore, in a different prospective study evaluating in
412 patients with acute on chronic heart failure, the diagnostic
accuracy of MPO could not be proven and showed no correlation
with 1-year mortality (72).

Small trials stated the beneficial effect on improved
myocardial function, peripheral vasodilatation capacity,
reduced BNP and increased LV ejection fraction. In a larger trial

enrolling 405 patients, oxypurinol in general failed to improve
the clinical status, but in the subset of patients with elevated
uric acid, oxypurinol improved the symptoms of heart failure.
This study highlights the need for a careful selection of patients
potentially benefitting from anti-oxidative therapy.

The more extensively studied antioxidative stress therapy
in patients with heart failure is the inhibition of xanthin
oxidase using allopurinol or oxypurinol. Uric acid, produced
by xanthin oxidase (XO) and representative for the activation
of the enzyme XO has pro- and antioxidant effects (73, 74).
Several studies investigated the correlation of uric acid and
cardiovascular mortality. While in the majority of the studies,
correlation between cardiovascular mortality or incidence of
heart failure with uric acid level was significant, the Framingham
Heart Study could not show any significant correlation (75).
Interestingly, a systemic review and meta-analysis of eight
studies evaluating the effect of xanthin oxidase inhibitors in
cardiovascular diseases did not show a significant reduction in
mortality compared to placebo (76). However, in a subgroup-
analysis of patients with normal or mildly impaired kidney
function, a significant reduction of all-cause mortality in heart
failure was observed (77). This might reflect the problem of
various mechanisms resulting in an elevation of uric acid
(see Figures 4 and 5).

Taking this problem into account, selecting patients with
elevated uric acid due to chronic inflammation rather than
kidney failure might result in significant reduction of mortality.
This thesis is supported by large trials showing a significant
reduction of all-cause mortality in heart failure patients with
a glomerular filtration rate ≥30 ml/min/1.73 m2 (78, 79). In
trials investigating the antioxidative effect of vitamin A, C, E and
folic acid, all failed to demonstrate a reduction in outcomes or
progression of CV disease (80).

FIGURE 4 | Biomarkers and potential therapy options of the oxidative stress axis. Existing heart failure, mechanical stretch, neurohumoral activation and inflammatory

processes induce the excess of oxidative stress. Oxidative stress itself causes cardiac fibrosis and myocardial injury. The best investigated biomarkers, indicating an

excess of oxidative stress, are uric acid and myeloperoxidase. Oxypurinol, Allopurinol, N-Acetylcystein and Vitamin A,C,E are the most promising therapeutic

approaches.
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FIGURE 5 | Cardio-renal interaction. Heart failure can cause renal hypoperfusion, increased vascular resistance and therefore results in an impairment of renal function.

Unlike, chronic kidney disease may cause volume overload and results in a myocardial stretch. Uremic toxins provoke inflammatory processes and are reported to

worsen heart failure. Oxidative stress, inflammatory processes and neurohumoral activation may independently by its origin impair cardiac and renal function.

N-Acetylcysteine (NAC) is a thiol-containing antioxidant
with the capacity to regenerate intracellular antioxidant pools.
The NACIAM (NAC in Acute Myocardial Infarction) trial,
which examines the use of high dose NAC in combination
with low-dose nitroglycerin in ST-segment elevation myocardial
infarction patients after percutaneous coronary intervention, also
demonstrated that the combined use of NAC and nitroglycerin
might significantly lower infarct size and increase myocardial
salvage with a consequent less severe following heart failure (81).

Endogenous antioxidant therapy trials seem to have a
promising future in the treatment of heart failure, but are still
in an experimental phase (82).

MICRORNAS IN HEART FAILURE (HF)

Since their discovery in 1993 by Lee et al. (83), microRNAs
(miRNAs) have gained increasing attention by the scientific
community due to their diagnostic and therapeutic potential
in various disease entities. MiRNAs are a class of small (19–
24 nucleotides) ribonucleic acids (RNAs) with a paramount
role in posttranslational gene silencing (PTGS). After enzymatic
processing, the mature miRNA binds to RNA-induced silencing
complexes (RISC), which then binds complementary messenger
RNAs (mRNAs), thusly preventing protein synthesis (84, 85).
MiRNAs can be found in all eukaryotic organisms and are
probably involved in the regulation of a wide variety of
physiologic and pathophysiologic processes (86). In fact, recent

studies suggest that a variety of miRNAs play a role in
pathophysiologic processes involved in the development and
progression of heart failure (HF), such as cardiac remodeling,
inflammation or myocardial fibrosis (87–89). Furthermore,
miRNAs have been identified as useful additive diagnostic
biomarkers in patients with cardiovascular diseases which could
add discriminative value to established and commonly used
biomarkers (90–92). Hence, the diagnostic and therapeutic
potential of miRNAs in patients with HF is of scientific interest,
and why it will be discussed briefly in the following.

Diagnostics
Several studies have investigated expressed miRNA
concentrations in patients with acute and chronic heart
failure (93–95). For example, a recent study by Ovchinnikova
et al. investigated the miRNA expression patterns of patients
with acute heart failure (AHF) and chronic heart failure (CHF)
and compared them with the patterns of patients with chronic
obstructive pulmonary disease (COPD) and healthy controls.
Interestingly, the authors could discriminate a panel of seven
downregulated miRNAs in patients with AHF (miR-18a-5p,
miR-26b-5p, miR-27a-3p, miR-30e-5p, miR-106a-5p, miR-199a-
3p, and miR-652-3p), which were also associated with adverse
outcomes, while there was no difference in miRNA expression
between patients with COPD and healthy controls (96).

Besides, miRNAs could also be useful in differentiating
heart failure with preserved ejection fraction (HFpEF) from
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heart failure with reduced ejection fraction (HFrEF). Hence,
Watson et al. recently found that serum levels of miR-30c,
miR-221, miR-328, and miR-375 could adequately discriminate
HFpEF from HFrEF, especially when combined with the plasma
concentrations of BNP (97).

In particular, miRNAs have a potential to distinguish heart
failure of different etiologies and therefore, play an essential
role on long term prognosis. Circulating levels of miR-423 and
miR-34a were reported to be higher in patients with ischemic
cardiomyopathy, whereas expression levels of miR-21-3p, miR-
199 and miR-30a were rather elevated in the non-ischemic heart
failure cohort. Furthermore, miR-423 is associated with a poorer
prognosis in patients with acute HF (98).

Similarly, miR-29a was found to be significantly upregulated
in patients with hypertrophic cardiomyopathy (99) and it could
also discriminate hypertrophic obstructive cardiomyopathy
(HOCM) from hypertrophic non-obstructive cardiomyopathy
(HNCM) and aortic stenosis in a recent study (100). Based
on these findings, miRNA-panels could be a useful additive
diagnostic approach in the future and could facilitate diagnosis
and risk stratification in patients with HF.

However, miRNAs have not only been investigated for
their diagnostic utility in various disease entities, including
cardiovascular diseases. In fact, several miRNAs have already
been applied therapeutically in different diseases in humans, for
example in patients with hepatitis C virus (HCV) or oncological
diseases (101, 102). Regarding the known pathophysiologic
processes underlying the development and progression of HF,
miRNAs also may find therapeutic use in affected patients.

Therapeutics
Inflammation and cardiac fibrosis are key features of cardiac
remodeling, which is itself crucial for the pathogenesis and
progression of HF. Recent evidence suggests, that inflammation
and fibrosis are potentially reversible, rendering them interesting
targets for novel therapeutic approaches in the management
of HF. In fact, several miRNAs are known to interact with
inflammatory, fibrotic and apoptotic pathways. For example,
miR-21 was found to enhancemyocardial fibrosis by targeting the
extracellular signal-regulated kinase (ERK)–mitogen-activated
protein (MAP) kinase pathway via sprouty homolog 1 (SPRY1)
(103) and the phosphatase and tensin homolog (PTEN)–
AKT phosphorylation-dependent pathway (104). Interestingly,
silencing of miR-21 significantly ameliorated cardiac fibrosis
and cardiac dysfunction in two recent animal models (105).
Besides reducing myocardial fibrosis, silencing of miR-21
was also found to reduce the expression of the miRNA of
RORγt, a crucial factor of T-cell development, thus decreasing
myocardial inflammation in an animal model of CVB3-induced
myocarditis (106). In contrast, miR-29b was recently found
to be downregulated in mice with myocardial fibrosis, and
overexpression led to an attenuation of fibrosis and cardiac
dysfunction via the transforming growth factor (TGF)-β/Smad3
signaling pathway (107).

Based on the findings of recent animal models, various
miRNAs could represent attractive targets for innovative
therapeutic approaches in patients with HF, for example silencing

of miR-21 or substitution of miR-29b. In fact, several phase 1 and
2 trials are currently being conducted in humans, investigating
the application of miRNA-based therapies (108). The most
advanced of these is miravirsen, a subcutaneously administered
antagonist of miR-122, which is currently under investigation in
patients with chronic hepatitis C and shows promising results
with no relevant adverse effects.With the advent ofmiRNA-based
therapies in humans, potential applications for the management
of acute and chronic heart failure may arise. However, whether
these approaches will impact our clinical practice in the future
remains to be elucidated in large endpoint trials.

INTERACTION WITH END ORGANS

Cardio-Renal Interaction
Approximately 50% of patients with chronic heart failure
have a chronic kidney disease (CKD) and 33–56% of HF
patients have impaired renal function. CKD is associated
with high mortality in patients with heart failure. Due to
pathophysiological processes and interactions with each other,
dysfunction of one organ may induce pathology in the other
one (109). The most studied biomarker in cardio-renal syndrome
is B-type natriuretic peptide, which only represents a single
pathophysiological pathway in heart failure and is influenced
by numerous factors, including renal function, aging, obesity,
anemia, sepsis, hypertension, atrial fibrillation, diabetes mellitus,
liver cirrhosis and cancer chemotherapy. Since the publication
of the heart failure AHA guidelines 2013, the role of ST-2 and
galectin in cardio-renal interaction in the context of heart failure
has been evaluated. Especially in the presence of a CKD, ST-
2 is of great interest. ST-2 is the biomarker least influenced
by renal function. Besides the predictive role of Galectin-3
in heart failure in terms of morbidity and mortality, it may
be causally involved in mechanisms of tubulointerstitial renal
fibrosis and CKD progression. Its valuable predictive character is
well associated with incident renal outcomes and improves risk
prediction in incident CKD. Fibroblast growth factor-23 is an
interesting biomarker for an expected decline of CDK and heart
failure. FGF-23 is involved in the body’s regulation of calcium-
phosphate metabolism. FGF-23 level increases with decline of
renal function. By an increase of renal phosphate excretion by
FGF-23, circulating calcitriol levels are decreased, leading to
secondary hyperparathyroidism (110, 111).

Cardio-Hepatic Interaction
Impairment of cardiac function may result in hepatic failure
and vice versa. HF induces liver hypoperfusion and hepatic
congestion. In cirrhotic cardiomyopathy, proinflammatory
conditions cause cardiac injury and a shift in myosin heavy chain
subtype a to the weaker b isoform (112). Furthermore, liver-
derived toxic factors cause circulatory abnormalities by arterial
dilation and hyperdynamic circulation. Further progression
of liver failure with concomitant arterial dilatation results
in an exhausting of cardiac systolic reserve. Therefore, the
heart is unable to further increase cardiac output and the
resulting underfilling in the arterial system decreases the
effective circulatory volume (113). In the CHARM trial,
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bilirubin was proven as a prognostic marker of worsening
cardiovascular outcome and all-cause mortality. Similarly,
increased transaminases, Gamma-glutamyl transferase (GGT)
and alkaline phosphatase level (ALP) demonstrated increased
mortality in patients with an advanced heart failure (114).
Hypoalbuminemia is common in one in four heart failure
patients, caused by systemic inflammation and a catabolic
state along with hepatic impairment. In the Everest trial,
low albumin was markedly associated with increased all-cause
mortality and cardiovascular mortality, as well as frequency of
re-hospitalization (115). Liver X receptors (LXRs), including
LXRa and LXRb, are of great therapeutic interest because
of their role as mediators of lipid and glucose metabolism,
cholesterol homeostasis, and inflammation. Elevated cellular
levels of cholesterol stimulate transcriptional activity of LXRs
(116) and therefore, compensate reverse cholesterol transport,
prevent diabetes-induced inflammation, and hamper pro-
inflammatory macrophages (117). Effects of LXR on the cardiac
system implement the decrease of cardiomyocyte hypertrophy,
cardiomyocyte loss, and fibrotic remodeling. LXRs also promote
angiogenesis within the myocardium and increase the capacity
for glucose uptake and utilization (118). Altered LXR signaling
pathways are associated with co-morbidities in heart failure,
including atherosclerosis, hypertension, diabetes, obesity and
chronic kidney disease (119).

Cardiac-Gastrointestinal Interaction
Chronic heart failure induces a depletion of bacterial richness,
in particular of butyrate-producing bacteria. Butyrate causes
local anti-inflammatory effects in the intestinal mucosa and
activates regulatory T cells (120). In patients with heart
failure, the mucosal barrier is harmed by intestinal ischemia
and thus, toxic, gut-derived metabolites may be released into
systemic circulation (121). Trimethylamine (TMA) is an organic
metabolite produced by gut microbiota. TMA is rapidly oxidized
into trimethylamine N-oxide (TMAO) by flavin monooxygenase
(FMO) enzymes in the liver and set free into the circulation.
Although high TMAO levels are reported to be related with
poor prognosis in HF, further studies evaluating the generation
and metabolism of TMAO are needed (122). Gut dysbiosis
has an impact on the progression of HF and chronic kidney
disease. Therefore, prebiotics, probiotics and diet modification
could be of prospective therapeutic benefit (123). The GutHeart
study randomizes 150 patients with stable HF to receive either
rifaximin, the probiotic yeast Saccharomyces boulardii, or no
treatment (control group) for 3 months (124).

“OUT OF THE BOX” BIOMARKERS

Tumor Markers
Numerous studies evaluating tumor markers in heart failure have
been conducted. To date, CA 125 seems to be themost promising.
Several studies found a significant correlation between CA 125
and the different stages of heart failure in different populations,
both in chronic and acute heart failure (125). The correlation
was consistent throughout various underlying causes, such as
hypertrophic cardiomyopathy (HCM) or mitral stenosis (126).

Higher values of CA 125 were observed in patients with pleural
or pericardial effusion (127). Furthermore, there was a significant
relationship between CA 125 and NT-proBNP (128). CA 125
correlates with TNF-Alpha, IL-6 and IL-10 and therefore is the
only tumor marker found to be closely related to the cytokine
system (129). CA 125 could provide additional value in treatment
guidance. Higher CA 125 levels in heart failure patients are
predictive for more deaths and rehospitalizations (130) and a
combination of BNP and CA 125 improves risk stratification at
6 months (131). Thus, the marker shows potential to influence
medical therapy (132). Other tumor markers such as CEA, AFP,
CA 15-3, CA 19-9, CA 724, NSE, and CYFRA 21-1 failed to
provide promising results (133).

Osteopontin
Myocardial expression of extracellular matrix osteopontin is
associated with cardiac hypertrophy and is increased after
development of heart failure (134, 135) in both ischemic and
dilated cardiomyopathy (136). The expression of osteopontin
increases with the severity of heart failure and seems to be amajor
regulator of myocardial remodeling where it potentiates galectin-
3 up-regulation and secretion (137). After heart transplantation
(HTX), osteopontin plasma levels decrease significantly, whereas
those results were not observed in patients receiving left
ventricular assist device (LVAD) support (138). Osteopontin
improves diagnostic accuracy for acute congestive heart failure
when combined with NT-proBNP, but is also an independent
predictor of death and provides higher prognostic value of
acute heart failure rehospitalizations than NT-proBNP (139).
In a multi-marker analysis from 2017, only osteopontin and
neuropilin predicted outcome in heart failure patients with
preserved ejection fraction (HFpEF) (140).

Neuropilin-1
Neuropilin-1 is a cell surface receptor that binds vascular
endothelial growth factor and therefore serves as a marker
of angiogenesis. In a multi-marker analysis in patients with
HfpEF, Neuropilin served as only one of two biomarkers with
independent prediction of outcome (141). In vivo studies in
knockout mice suggest a cardio-protective role of neuropilin, as
the animals developed higher rates of cardiomyopathy and heart
failure compared to the controls (142).

Endothelin-1
Plasma endothelin-1 is a powerful vasoconstrictor and has
positive inotropic effects. It is produced by the vascular
endothelium and cardiac myocytes and is elevated in congestive
heart failure. The degree of plasma elevation correlates with the
severity of heart failure (143). Administration of an endothelin-
1 antagonist (Bosentan) reduces blood pressure, pulmonary
artery pressure, pulmonary artery wedge pressure and right
atrial pressure (144). Long-term treatment greatly improved
the survival of rats with chronic heart failure (33). However,
treatment in humans showed no beneficial effect as demonstrated
in the ENABLE study, which included more than 1,600 patients
over the follow-up of 9 months. Additionally, the treatment with
Bosentan in HFpEF failed to show beneficial effects (145). Side
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effects, such as fluid retention was increased in the first 2–4 weeks
in the Bosentan group (146).

Circulating Endothelial Progenitor Cells
With Angiopoetic Phenotypes
Endothelial progenitor cells (EPCs) originated from the bone
marrow-derived cells have previously found as powerful
endogenous contributor of vascular wall maintenance
and the endothelium integrity (147). EPCs play a pivotal
role in the vasculogenesis, neovascularization, supporting
endothelial function, tissue procetion and vascular repair
(148). Normally, pro-inflammatory cytokines and growth
factors contribute to increase the number of EPCs with
angiopoetic phenotypes in the circulation and thereby
tissue reparation is supported. Numerous CV conditions,
such as HF, as well as diabetes mellitus, chronic kidney
disease were associated with EPCs dysfunction due to
several causes, i.e., exhausting endothelial precursor pool,
cytokine-induce apoptosis, epigenetic impact, and insulin
resistance. Recent studies have shown that development of
HF and occurrence of HF-related clinical outcomes were
related to lowered number and weak function and survival
of circulating EPCs (149, 150). Several phenotypes of EPCs
(CD45dimCD34+, CD45dimCD34+CD133+, CD45dimCD
34+CD133+VEGFR+, CD45dimCD34+CD133+Tei2+) have
demonstrated additional prognostic information about mortality
andHF-related admission regardless of serum levels of numerous
biomarkers (NT-proBNP, galectin-3, hs-CRP, osteoprotegerin,
osteopontin) and co-morbidities including diabetes mellitus,
abdominal obesity and chronic renal disease (150, 151). Thus,
it has been expected that they could possible utilize as target for
the HF therapy (152).

There is a large number of evidence of the fact that
ARBs, ARNI, mineralocorticoid antagonists have yielded
remarkable impact on the clinical outcomes among HFrEF
and HFpEF patients through prevention of adverse cardiac
remodeling and improving endothelial function in close
connection with an increase in the viability and the number of
circulating EPCs (153, 154). Perhaps, continuous monitoring
for EPCs function and number could be promising biomarker-
guided therapy for HF patients with respect to daily dose

adjustment of the drugs. Although these findings appear
to be intriguing, the molecular mechanisms underlying
improvement of HF outcomes intimately related to attenuation
of EPCs dysfunction is unclear and whether targeting EPCs
count and function is a feasible strategy for ameliorating
HF development and progression remains uncertain, while
it is promising.

CONCLUSION

Multi-marker analysis can provide valuable information about
the predominant processes in the complex, multifunctional and
individual pathophysiology of heart failure. Biomarker-based
therapy has the potential for providing prospective heart failure
patients with tailored treatments adapted to the multi-faceted
aspects of heart failure. Introduction of a new multi-marker-
based therapeutic approach and resulting therapies as currently
being investigated in clinical studies may offer new disease
management options to potentially decrease the morbidity and
mortality of HF patients.

LIMITATIONS

The lack of cardiac specifity is of major limitation. The
variability of serum biomarkers is influenced by age, sex, co –
morbidities and renal failure. Therefore, multimarker panels are
recommended to improve prognostic utility.

Intraindividual variation of serum marker is of further
diagnostic limitation (155). Environmental circumstances,
including height, are reported to have an influence on sST2,
suPAR, H-FABP and GDF-15 levels (156). Furthermore,
intensive physical exercise is reported to influence cardiac
biomarkers (157, 158).
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