Jnternational Science Group ISG-КОNF.COM

MEDICAL THEORY

MONOGRAPH

DOI 10.46299/ISG.2020.MONO.MED.II ISBN 978-1-64945-869-8 BOSTON (USA) – 2020 ISBN - 978-1-64945-869-8 DOI- 10.46299/isg.2020.MONO.MED.II

Medical theory

Collective monograph

Boston 2020

Library of Congress Cataloging-in-Publication Data ISBN - 978-1-64945-869-8 DOI - 10.46299/isg.2020.MONO.MED.II

Authors -Rusnak Ilona, Kulachek Veronika . Kulachek Yaroslav, Bulavenko Olga, Muntian Olga, Muntian Maksym, Yarovenko Anatolii. Vydyborets Shcherbinska O., Slabkii Н., Andriiaka Artem, Stanislav, Gryshchenko Viktoria, Borisenko Nataliya, Bushueva Inna, Gubenko Inna, Borisyuk Irina. Valivodz Irina, Vyshnytska Iryna, Unhurian Liana. Bieliaieva Oksana, Pietkova Iryna.

> Published by Primedia eLaunch https://primediaelaunch.com/

Text Copyright © 2020 by the International Science Group(isg-konf.com) and authors.

Illustrations © 2020 by the International Science Group and authors.

Cover design: International Science Group(isg-konf.com). ©

Cover art: International Science Group(isg-konf.com). ©

All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, distributed, or transmitted, in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. The content and reliability of the articles are the responsibility of the authors. When using and borrowing materials reference to the publication is required.

Collection of scientific articles published is the scientific and practical publication, which contains scientific articles of students, graduate students, Candidates and Doctors of Sciences, research workers and practitioners from Europe and Ukraine. The articles contain the study, reflecting the processes and changes in the structure of modern science.

The recommended citation for this publication is:

Medical theory: collective monograph / Bulavenko Olga, Muntian Olga, Muntian Maksym, Yarovenko Anatolii, – etc. – International Science Group. – Boston : Primedia eLaunch, 2020. 84 p. Available at : DOI : 10.46299/isg.2020.MONO.MED.II

TABLE OF CONTENTS

	IABLE OF CONTENTS	1
1	SECTION 1. OBSTETRICS AND GYNECOLOGY	5
1.1	Bulavenko Olga, Muntian Olga, Muntian Maksym, Yarovenko	5
	Anatolii	
	Designing of specialized support systems for making a medical	
	decision for diagnosis and predicting the risk of implantation	
	pathology developing	
1.2	Shcherbinska O., Slabkii H.	11
	Features of the obstetrical and gynecological care system for adult	
	female population in Ukraine	
2	SECTION 2. MEDICAL BUSSINES	20
2.1	Andriiaka Artem, Vydyborets Stanislav	20
	Pathophysiological mechanisms of the formation of metabolic	
	disorders in anemia of malignant neoplasm	
2.2	Gryshchenko Viktoria	38
	Pro- and antioxidant processes in the body under experimental	
	enteropathology, their correction	
2.3	Rusnak Ilona, Kulachek Veronika, Kulachek Yaroslav	43
	Choice of water for body health	
3	SECTION 3. PHARMACY	47
3.1	Borisenko Nataliya, Bushueva Inna, Gubenko Inna	47
	The design of immunostimulants and adjuvants used for the treatment	
	and prevention of animal diseases	
3.2	Borisyuk Irina, Valivodz Irina	51
	Biopharmaceutical classification system as a tool for drug	
	development	
L		

3.3	Vyshnytska Iryna, Unhurian Liana, Bieliaieva Oksana, Pietkova Iryna	
	Comorbidities as factors influencing choice of drug in arterial	
	hypertension therapy	
	REFERENCE	76

SECTION 3. PHARMACY

3.1 The design of immunostimulants and adjuvants used for the treatment and prevention of animal diseases

The problem of stimulation of immunogenesis in veterinary practice is relevant and has attracted the attention of immunologists. Currently, the scientists of many countries carried out extensive work on the design of Immunostimulants and adjuvants used in conjunction with vaccines for the treatment and prevention of animal diseases. More than 100 years is the search for compounds that would affect the formation of antibodies and contributed to the emergence of immune responses. With this goal constantly develop new and more effective biological, chemical and physical adjuvants and adjuvants.

Currently, a large number of substances which are able to exert adjuvant effect on various antigens. As adjuvants are used killed microorganisms (mycobacteria, corynebacteria, Nocardia, etc.), organic substances (bacterial polysaccharides and lipopolysaccharides, lecithin, cholesterol, lanolin, agar, glycerin, gelatin, starch, pectin, protamines, etc.), inorganic substances (aluminium hydroxide, aluminum phosphate, calcium chloride, calcium phosphate, iron hydroxide, ammonialyase alum, mineral oil, etc.), synthetic substances (nucleotides, polyanion, etc.). In addition to simple adjuvants, use complex, representing a mixture of lipids with mineral sorbents, oil with lipopolysaccharides and emulsifiers, micro-organisms from oils and other substances. The following is a classification of adjuvants on physicochemical and biological properties (tabl. 1) [56, 57].

Table 1

Classification of adjuvants

Adjuvant	Adjuvant Characteristics	Advantages / Disadvantages
----------	--------------------------	----------------------------

Group		
1	2	3
Mineral	The adjuvant properties of such	The disadvantage of these
adjuvants	inorganic substances as aluminum	adjuvants is that aluminum
	hydroxide gel (GOA), aluminum	salts, due to the formation of
	phosphate, calcium phosphate,	small granulomas in which the
	silicon dioxide, and others have	adsorbed antigen is retained,
	been widely studied [2]. Mineral	can trigger inflammatory
	adjuvants can provide a longer	reactions.
	process for the receipt of antigens	
	(depositing effect).	
Oil adjuvants	Type of adjuvants based on	The positive effect of
	mineral oils. Such preparations are	vaccination is achieved by the
	droplets of water with an antigen	fact that mineral oil is not
	dissolved in them, which are in the	metabolized, due to which
	oil phase. This type of emulsion is	drops of the emulsion with the
	called water in oil. The oil used is	antigen inside them are kept at
	highly purified liquid paraffin. In	the injection site for a long time
	addition to oil, an emulsifier must	[58].
	be present to stabilize the mixture.	
	The opposite type of emulsion -	
	"oil in water" is a microdroplet of	
	oil in water, stabilized by	
	hydrophilic emulsifiers. This type	
	of emulsion provides a high level	
	of antigen presentation and	
	moderate antigen recognition, goes	
	well with lipophilic	
	immunomodulators [53].	

1	2	3
Natural	Many natural compounds of	The use of chitosan as an
adjuvants	various origin have an adjuvant	adjuvant allows you to get an
	effect: proteins, glycoproteins,	immune response to the
	peptides, polysaccharides, etc. The	introduced antigens at or above
	peculiarity of this group of	the immune response using
	adjuvants is that they do not create	known oil and mineral
	an antigen depot in the body and	adjuvants, which indicates the
	directly stimulate the production of	promise of further research in
	antibodies. In recent years,	this direction [55].
	scientists from various countries	
	conducted a series of studies on the	
	use of chitosan and its derivatives	
	as part of veterinary vaccines as an	
	adjuvant. A number of works have	
	been carried out by foreign	
	scientists on the inclusion of	
	chitosan modifiers as adjuvants in	
	vaccines against listeriosis,	
	pseudomonosis, brucellosis, foot	
	and mouth disease, influenza and	
	other infections	
Synthetic	Muramyl dipeptide derivatives	Its advantage is the relative
adjuvants	(MDP) are most commonly used.	non-toxicity and the
	Muramyldipeptide promotes the	manifestation of the adjuvant
	production of antibodies to	action in both oil and water
	synthetic antigens. Due to its	solutions.
	toxicity, the efforts of researchers	

	are aimed at obtaining synthetic	
	analogues [2]. An example of such	
	analogs is N-acetyl-muramyl-L-	
	alanine-D-isoglutamine, which has	
	similar efficacy.	
Surfactant	Saponin and Iskom are	The resulting complexes
Adjuvants	immunomodulators capable of	have a higher immunogenicity
and Searches	stimulating Th 1 and Th 2 immune	than the original proteins.
	responses. The vaccine adjuvants	Since ISCOM are
	mainly use partially purified or	microparticles, they are easily
	specific fractions of QS 21 or	absorbed by macrophages,
	ISCOPREP saponin. Saponin	where they are processed and
	causes tissue damage and thereby	presented [53].
	contributes to antigen retention at	
	the injection site [54].	
Liposomes	Microscopic structures	Liposomes carry out
	consisting of several concentric	directed transport of antigen to
	lipid bimembrane structures	the cells of the
	surrounded by water. They are	reticuloendothelial system.
	vesicles that are able to encapsulate	Numerous studies have proved
	an antigen and act as a means of	the ability to use liposomes not
	delivery [58].	only as carriers, but also as an
		immunomodulator, having
		discovered the
		immunomodulating properties
		of liposomes themselves.

At present, special attention is paid to environmentally friendly drugs – immunostimulant. Feature of immunostimulating drugs is their high biological activity aimed at enhancing immunity and metabolic processes in animals, causing the animal organism itself gets rid of parasites. In addition, Immunostimulants favorably to Anthelmintics those that do not have side effects, do not accumulate in organs and tissues of the animal and not cause addiction from the parasites and do not pollute the environment. Thus, the correct application of immunostimulatory drugs not only safe, but is an highly effective method of prevention and treatment of animal diseases and maintenance of their resistance to highlevel.

Today, there is a large selection of new commercial ready-made adjuvant and immunostimulating products, which are also at the development and testing stage, designed for different types of animals, aimed at initiating various types of immune responses, combining different levels of efficacy and safety indicators. Therefore, studies on the inclusion of various types of adjuvants in the composition of inactivated vaccines, as well as on the use of immunostimulants, are very relevant, they are conducted by most European companies involved in the production of biological products for veterinary medicine.

3.2 Biopharmaceutical classification system as a tool for drug development

With the growth of the pharmaceutical market and the level of drug consumption, the quality of medicines is an important aspect of effective care. Generics occupy a significant share in the growing market of medicines. Typically, generics have a lower cost. This is due to the lack of expenditure of companies of generic manufacturers to develop and study the original structure of the drug and conduct expensive clinical trials, as well as the much lower cost of bringing the replicated drug to market.

Biopharmaceutical studies are aimed at studying the relationship between medicine as a chemical system and macroorganism as a biological system. The aim of these studies is to find ways to increase the therapeutic activity of drugs and reduce their side effect, taking into account pharmaceutical factors. The term "pharmaceutical factors" was widely used when experimental data on the significant

51