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Abstract. In this article, we have analysed the studies that determined the iron-dependent regulated type of cell death,
ferroptosis, described the fundamental morphological and biochemical differences between various types of regulated
cell death, highlighted modern scientific achievements in understanding the features of the above-mentioned process,
described the clinical significance of ferroptosis in the general structure of morbidity and identified relevant issues for fur-
ther research. Conclusions. Numerous studies allowed identifying ferroptosis as a form of regulated cell death, initiated
by oxidative disturbances of the intracellular microenvironment, which is under the constitutive control of glutathione
peroxidase 4 and can be inhibited by iron chelators and lipophilic antioxidants. Ferroptosis can occur in two main ways:
external (transport) and internal (enzymatic). The external pathway is based on non-enzymatic reactions, such as the
iron-dependent Fenton reaction. The internal pathway is mediated by enzyme systems, including glutathione peroxidase
4 and lipoxygenase. Conducting clinical research will improve not only the understanding of the role of ferroptosis in the
pathogenesis of the course of diseases, but also reveal possible preventive strategies for the development of pathological

processes.
Keywords: ferroptosis; cell death; review

An excess of free reactive iron can cause various types
of cell death, including the recently recognized type — fer-
roptosis. The field of ferroptosis research has grown expo-
nentially over the past few years since the term was coined
in 2012.

The definition of ferroptosis as a separate form of cell
death was preceded by studies from 1955 [1] the stages of
which can be conventionally distinguished as:

1. The role of lipid peroxidation in cell death (1962—
2005).

11. The significance of cysteine deprivation for cell death
(1955-2005).

III. The role of glutathione peroxidase 4 in cell death
(1982—2003).

IV. Importance of polyunsaturated fatty acid peroxida-
tion for cell death (2006—2008).

Although the main molecular effector of the process
remains poorly understood, it is known that ferroptosis is
induced by the activation of iron-dependent lipid peroxi-

dation [2]. Significant progress has been made in analyzing
the mechanisms that lead to lipid peroxidation and how
antioxidant systems or stress proteins regulate ferroptosis.
Ferroptosis is a special variant of cell death in view of its im-
portant role in the initiation and development of diseases,
including inflammatory diseases, and the determination of
its inhibitors allows evaluating the preventive effect on ex-
perimental models of certain pathological processes, such
as cancer. However, some studies suggest that ferroptosis
may be a physiological process that occurs widely in the
body of mammals, rather than a pathological or organ-
specific one [3].

However, the scientific community today defines ferrop-
tosis as an iron-dependent programmed cell death pathway,
mainly due to redox imbalance, which has categorically
different biological and morphological characteristics com-
pared to other cell death patterns [4].

Given the fact that apoptosis was the first discovered and
studied mechanism of regulated cell death, necrosis and py-
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roptosis were recently distinguished alongside it [5]. Howev-
er, ferroptosis categorically differs from apoptosis, necrosis
and pyroptosis in terms of morphological and physiologi-
cal characteristics [S—14]. Currently, ferroptosis is classi-
fied by a number of mechanisms (necroptosis, pyroptosis,
NETosis, parthanatos), defined as “regulated necrosis” [15,
16]. Unlike apoptosis, which is characterized by cytoplasm
shrinkage, nuclear division, chromatin condensation, chro-
mosomal DNA division [8, 14] and the release of mitochon-
drial cytochrome C [15], and necrosis, which is characte-
rized by cytoplasmic granulation, swelling of organelles and
cells, loss of cell membrane integrity and, ultimately, lea-
kage of cellular contents [16], during ferroptosis, cell nuclei
remain intact, chromatin does not aggregate [17, 18], the
plasma membrane does not rupture, and contracting mi-
tochondria exhibit a greater inner membrane density while
the outer membrane ruptures. Ultrastructural analysis also
showed that the mitochondria of ferroptotic cells lose struc-
tural integrity and have a different morphological structure
(smaller size) [19], whereas mitochondria in apoptotic
cells are usually “bloated” [20]. Unlike apoptosis, ferrop-
tosis exhibits immunogenicity [21], as affected cells release
damage-associated molecular patterns and alarmins, which
enhance cell death and promote a number of reactions as-
sociated with inflammation [15, 22—24].

It was determined that the precursor to the understan-
ding of the process of ferroptosis was oxytosis, which had
several characteristics in common with the latter, such as:
the role of lipoxygenase, the production of reactive oxygen
species, and gene expression [25]. However, the discovery of
the compound erastin, which was able to initiate ferroptotic
cell death, played a significant role in identifying the mecha-
nism of ferroptosis [19]. Stockwell et al. (2017) research
[26] allowed identifying ferroptosis as a form of regulated
cell death, initiated by oxidative disturbances of the intra-
cellular microenvironment, which is under the constitutive
control of glutathione peroxidase 4 and can be inhibited by
iron chelators and lipophilic antioxidants [14]. Glutathione
peroxidase 4 is one of the central regulators of ferroptosis
[27]. Glutathione acts as a cofactor of glutathione peroxi-
dase 4 and maintains its level by exchanging glutamate and
cystine through the x ~antiporter system [26, 27]. Studies
of ferroptosis have shown the crucial role of mitochondria
in its occurrence through lipid metabolism, energy metabo-
lism, iron metabolism and other regulatory processes in mi-
tochondria [28]. The decreased reduction of lipid peroxides
caused by the inhibition of glutathione peroxidase 4, and in-
creased formation of lipid peroxides from arachidonoyl are
the two main pathways that lead to ferroptosis [3]. Further
studies showed that ferroptosis is mediated by mitochondri-
al voltage-dependent anion channels (VDACs), and eras-
tin-induced opening of VDAC2/3 leads to mitochondrial
iron uptake, reactive oxygen species formation, increased
mitochondrial potential, and oxidative stress-induced fer-
roptosis [6, 29]. Since this discovery, the complex interplay
between iron, cysteine and lipid metabolism has emerged
as an important regulator of ferroptosis [30], and a number
of its regulators have been identified. Other organelles be-
sides mitochondria are also involved in ferroptosis. Oxida-
tive stress associated with the endoplasmic reticulum, Golgi

stress-related lipid peroxidation, and lysosomal dysfunction
contribute to the induction of ferroptosis [31].

The most important biochemical features of ferroptosis
are increased levels of lipid hydroperoxides and concentra-
tions of ferrous ions (Fe?*), as ferroptotic cells produce an
excessive amount of reactive oxygen species, which initiates
lipid peroxidation through the Fenton reaction, and an en-
zymatic mechanism with the participation of lipoxygenase
[21]. The Fenton reaction partially explains the dependency
of ferroptosis on iron, as redox pools of iron can directly
catalyze the spread of lipid peroxidation with the synthesis
of pathological compounds that will induce the release of
cellular iron [1].

The genetic control system of ferroptosis is excellent
compared to other types of cell death. Six genes enco-
ding putative mitochondrial proteins, ribosomal protein
L8 (RPLS), iron-responsive element-binding protein 2
(IREB2), ATP synthase, citrate synthase (CS) proteins,
tetratricopeptide repeat domain 35 (TTC35) and acyl-CoA
synthetase family member 2 (ACSF2) were isolated. In ad-
dition, TFRC, ISCU, FTH1, and FTL are key ferroptosis
genes that control erastin sensitivity, iron uptake, metabo-
lism, and storage by influencing Fe?* levels [24]. Dixon et
al. (2012) identified the specific role of RPLS, IREB2,
ATP5G3, TTC35, CS, and ACSF2 in erastin-induced fer-
roptosis [19].

Translational and transcriptional regulation of iron ho-
meostasis provide an integrated network for determining
ferroptosis sensitivity [32]. The iron-dependent mechanism
of ferroptosis creates conditions for peroxidation of phos-
pholipid membranes rich in polyunsaturated fatty acids,
which leads to cell death. Understanding the mechanism of
lipid peroxidation emphasizes the important role of iron and
reactive oxygen species in ferroptosis. After all, iron is a re-
dox metal that participates in the formation of free radicals
and the spread of lipid peroxidation, and therefore, an in-
crease in its level can increase the vulnerability to ferroptosis
[33]. Inhibition of SLC7A11 and glutathione peroxidase 4
leads to accumulation of iron-dependent lipid peroxidation,
thus causing the death of ferroptotic cells. The specific iron-
dependent mechanisms of ferroptosis remain poorly under-
stood, but currently we can determine the unconditional
role of the following components of iron metabolism:

— iron chelators block the death of ferroptotic cells in
vitro and in vivo [19];

— an increase in cellular labile iron is usually observed
during the induction of ferroptosis [34];

— exogenic iron supplementation increases the
sensitivity of cells to inducers of ferroptosis (for example,
erastin) [19];

— an excess of heme and non-heme iron can directly
induce ferroptosis [35];

— several heme and non-heme iron-containing en-
zymes, such as ALOX, NOX and CYP, are responsible for
the process of lipid peroxidation [18, 19, 36—38];

— iron-mediated production of reactive oxygen species
via the Fenton reaction contributes to lipid peroxidation in
ferroptosis [24].

The transporter protein transferrin is necessary for the
induction of ferroptotic cell death. For example, cell death
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caused by amino acid deficiency takes the form of ferropto-
sis instead of apoptosis or necroptosis. This amino acid star-
vation-induced ferroptosis is likely a consequence of cystine
starvation and subsequent cellular depletion of GSH. A sub-
stance without macromolecules (for example, transferrin)
is unable to mimic ferroptosis-inducing activity, while the
addition of recombinant iron-saturated holotransferrin in-
duces cell death under the same conditions [39]. These fin-
dings indicate that transferrin is a key positive regulator of
the ferroptosis process [32].

Importantly, all aspects of iron metabolism, including
iron uptake, storage, export, and utilization, have important
regulatory effects on ferroptosis [2].

A common feature of ferroptosis is the iron-dependent
accumulation of lipid reactive oxygen species and subse-
quent depletion of phospholipids and polyunsaturated
fatty acids [40]. Chains of polyunsaturated fatty acids of
membrane lipids are more susceptible to both enzymatic
and non-enzymatic oxidation, which leads to their frag-
mentation [41]. In turn, reactive oxygen species include
singlet oxygen molecules and three types of free radicals:
hydroxyl radicals, superoxide anions and hydrogen per-
oxide. Reactive oxygen species regulate several cellular
functions at optimal concentrations and homeostatic ba-
lance. However, at critically high concentrations, reactive
oxygen species can cause DNA damage, protein denatu-
ration, and induce lipid peroxidation [42]. In this process,
catalyzed by iron and oxygen, membrane destruction and
cell death occur [21].

Today, ferroptosis is defined as a pathogenetic factor of
damage to the tissues of the brain, heart, liver, and renal tu-
bules, blood flow stoppage, sleep apnea, which developed
against the background of tissue ischemia/reperfusion [42].
Ferroptosis disrupts the normal immune response by Kkilling
T-lymphocytes, which has been proven in mice. The ferrop-
totic process is a companion of neurodegenerative diseases,
which is not surprising, since nerve cells are distinguished by
the maximum content of polyunsaturated fatty acids, and
some pathologies of the nervous system, including Alzhei-
mer’s, Parkinson’s and Huntington’s diseases, are due to
the inability to restore oxidized lipids. Some clinical studies
demonstrated an increased iron level in the brain of children
with severe ischemic-anoxic stroke [43]. In addition, it was
found that elevated level of iron against the background of
ischemia/perfusion is a mediator of tissue damage. In sup-
port of this scientific claim, reduction of brain damage in
response to iron chelation has been demonstrated in several
animal models [44].

Interestingly, recent studies have shown that ferroptosis
is also involved in the development of inflammatory bac-
terial diseases. Anthonymuthu T. et al. (2021) found that
Pseudomonas aeruginosa can cause ferroptosis in human
bronchial epithelial cells by generating lipoxygenase [45].
Observations are described on the role of Mycobacterium
tuberculosis in ferroptotic cell damage by inhibiting glutathi-
one peroxidase 4 [46]. Unlike immunologically silent cells
that undergo apoptosis, ferroptotic targets are inherently
more immunogenic because they release inflammatory cy-
tokines and damage-associated molecular patterns, skewing
the environment to a pro-inflammatory state [22].

Our study made it possible to analyze the likely role of
ferroptosis in the development of anemia of inflammation in
young children with acute inflammatory bacterial diseases
of the respiratory organs [47, 48].

However, we believe that it is wrong to perceive ferrop-
tosis exclusively as a pathological process. It is appropriate
to recall that ferroptosis was determined directly during re-
search aimed at the treatment of oncological diseases [19].
Modern data on its ability to inhibit the growth of tumors
allow expanding the understanding of the role of ferroptosis
in the body.

Therefore, the study of ferroptosis allows establishing a
new scientific platform, which can be aimed at studying the
clinical significance of ferroptosis in the development of a
number of pathological processes, determining new preven-
tive and treatment strategies for diseases, and answering the
following questions:

— The effect of ferroptosis on the inflammatory reaction
is not absolute; under what circumstances will the induction
of ferroptosis have a pro-inflammatory or anti-inflammato-
ry effect?

— Is it possible to determine the ways to regulate ferrop-
tosis, which will allow improving treatment tactics?

— Since ferroptosis is closely related to inflammation
and oncological process, does it play a role in inflammation-
mediated carcinogenesis?

Conclusions

1. Numerous studies allowed identifying ferroptosis as
a form of regulated cell death, initiated by oxidative dis-
turbances of the intracellular microenvironment, which is
under the constitutive control of glutathione peroxidase 4
and can be inhibited by iron chelators and lipophilic anti-
oxidants.

2. Ferroptosis can occur in two main ways: external
(transport) and internal (enzymatic). The external pathway
is based on non-enzymatic reactions, such as the iron-de-
pendent Fenton reaction. The internal pathway is mediated
by enzyme systems, including glutathione peroxidase 4 and
lipoxygenase.

3. Conducting clinical research will improve not only the
understanding of the role of ferroptosis in the pathogenesis
of the course of diseases, but also reveal possible preventive
strategies for the development of pathological processes.
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NexeHko IO.", Abartypos O.€.2, orpiHa A.O."

'3QropI3bKIN AEPIKABHU MEANYHWIA YHIBEOCUTET, M. 3QrOpKXKs], YKpQiHa
2AHIMNPOBChKNA AEPXKQABHUA MEANYHI YHIBEPCUTET, M. AHINPO, YkpaiHa

KAiHiYHe 3HaYeHHs deponTo3y K 3AAI303AAEXKHOT PEryAbOBAHOI 3ArMGeAi KAITUH
Y 30raAbHIN CTPYKTYPi 30XBOPIOBAHHS

Pe3tome. V wiit po6oTi My nmpoaHaizyBaau AOCTIIKEHHS, Y IKUX
OyJI0O BU3HAYEHO 3aJ1i303aJI€KHUI peryJboBaHUN TUIT KITITUHHOT
3arnbeni — deponTos, omucaayd MPUHLIUNOBI MopdoJoriuHi i
OioxiMiuHi BiIMiHHOCTiI Pi3HMX BapiaHTIB peryJbOBaHOI 3aruode-
JIi KJIITUH, BUCBITJIWIM Cy4acHi HAyKOBi JTOCSITHEHHS 1IOO PO3Yy-
MiHH$ BJIACTUBOCTEN Tepediry BUILEBKA3aHOTO MPOLIECY, ONKUCAIN
KJIiHIYHE 3HaUYeHHS (pepONTO3y B 3arajIbHill CTPYKTYpPi 3aXBOPIOBa-
HOCTI Ta BUSHAUUJIM aKTyalbHi MTUTAHHS MOAATBIINX JOCIiTXKEHb.
BucHoBku. YwuciaeHHI DOCTIIKEHHST H03BOJWIN inIeHTU(]IKYBaTH
deponTo3 sIK hopMy peryIboBaHOI KJIITUHHOI 3aruberti, iHiliiioBa-
Hy OKMCHIOBAJIbHUMU TIOPYLIEHHSIMU BHYTPILITHBbOKJIITUHHOTO Mi-
KPOOTOUEHHSI, 1110 3HAXOIUTHCS MMiJil KOHCTUTYTUBHUM KOHTPOJIEM

rJIyTaTioHnepoKcuaasu-4 i Moxe OyTH iHriboBaHa XeJaTopaMu 3a-
Jiza Ta JginodinbHUMU aHTUOKCUAAHTaMu. DeporTo3 Moxe OyTH
peaJti3oBaHMIf IBOMa OCHOBHUMMU NUISXaMU: 30BHIIIHIM (TpaH-
CITOPTHUM) Ta BHYTPillIHIM ((hepMeHTHMM). B OCHOBI 30BHIIIIHHOTO
LLJISIXY JiexkaTh HeepMEHTaTHMBHI peakllii, Taki sIK 3a1i303a1exxHa
peakuist @enToHa. BHyTpilnHiil nuisx BinOyBaeThes Mia nocepen-
HULITBOM (DePMEHTHUX CHUCTEM, IO BKJIIOUAIOTh [JIYTATiOHIIEPOK-
cunasy-4 ta ginokcureHasy. [IpoBeaeHHST KITiHIYHUX TOCITIIKEHb
JTI03BOJIUTH YIOCKOHAJIMTU HE JIUIE PO3YMiHHS poJii (eponTo3y B
raToreHesi nepeoiry 3axBopioBaHb, aje il BUSIBUTU MOXJIUBI Tpe-
BEHTUBHI CTpaTerTii 1[040 PO3BUTKY MATOJIOTiUHUX MPOLIECIB.
Ki1o4oBi ciioBa: deponTos; K1iTuHHA 3aTH6EIb; OIS
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