

International Science Group

ISG-KONF.COM

INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE "INNOVATIVE TRENDS IN SCIENCE, PRACTICE AND EDUCATION"

> Munich, Germany February 22-25, 2022

ISBN 979-8-88526-758-8 DOI 10.46299/ISG.2022.I.VII

INNOVATIVE TRENDS IN SCIENCE, PRACTICE AND EDUCATION

Proceedings of the VII International Scientific and Practical Conference

Munich, Germany February 22 – 25, 2022

MULTIVARIABLE LINEAR REGRESSIONS OF MONTHLY MORTALITY VS WEATHER CONDITIONS IN ZAPORIZHZHIA REGION, UKRAINE, FROM JANUARY 2020 TO NOVEMBER 2021

Antypenko Lyudmyla

PhD of Pharmacy, Associate Professor Scientific freelancer

Antypenko Oleksii

PhD of Pharmacy, Associate Professor Department of Organic and Bioorganic Chemistry Zaporizhzhia State Medical University Ukraine

The study of the mortality data from Main Department of Statistics in the Zaporizhzhia region [1], shows the frightening positive trend of the death cases from Covid-19 (Figure 1).

Fig. 1. Number of death cases from COVID-19 in Zaporizhzhia region, Ukraine: U07.1 – clinically identified and confirmed by tests, U07.2 – clinically identified, but not confirmed by tests, from April 2020 till November 2021 [1]

Notably, the rapid increase from 208 cases to 1281 and 1487 deaths were shown during the last months of the 2021 Autumn (Fig.1).

In the previous study [2], the correlations between the accumulated monthly mortality data statistic reports and different weather conditions were analyzed. And now it was decided to analyze the exact monthly death cases and to calculate a multivariable linear regression [3] for each disease.

The dataset of monthly average 7 weather conditions (wind direction and speed, minimum, maximum, and average temperatures, rain precipitation, atmospheric pressure) in Zaporizhzhia from January 2020 till November 2021 [4], and also month number (1-12) and year (2020 - 1, 2021 - 2) were used as the independent variables. The individual month death cases were deducted from the sum of monthly cases reported at the website of the Main Department of Statistics in the Zaporizhzhia region [1], and were used as the dependent variables. The data were analyzed using the Statistical Package for the Social Sciences software (IBM® SPSS® for Windows, v.26.0, Inc, Chicago, IL). Multivariable linear regression statistics and forecast model were calculated with a confidence interval of 95%.

Hence, during the studied period the following diseases had the lowest number of death cases for the whole studied period: F10, D50–D89, O00–O99, F01–F99, X00–X09, and M00–M99 (from 5 to 42); Q00–Q99, P07–P96, L00–L98, E10–E14, E00–E89, W65–W74, and Y00–Y09 (from 65 to 148); B20–B24, N00–N99, K70, 45, A15–A19, V01–V99, and X40–X44 (from 201 to 515) (Fig. 2, Table 1). Unfortunately, each type of mortality was slowly increasing with time, but not perfectly linear.

Fig. 2. Low level of monthly mortality (about 1-35 cases) from diseases by international classification from January - December of 2020 till January - November of 2021

The moderate amount of deaths were caused by A00–B99, G00–G9, and X60–X84 (617-724); I42 (1226), K00–K92 and R00–R99 (2032-2175), and V01–Y89 (3060) (Fig. 3, Table 1). Among them, a positive trend of mortality with time was observed for K00–K92, and R00–R99.

MEDICAL SCIENCES INNOVATIVE TRENDS IN SCIENCE, PRACTICE AND EDUCATION

The constant high mortality in the studied period was observed due to: U00-U85 (6056), C00–C97 (8375), C00–D48 (8444), and I60–I69 (10182) (Fig. 4, Table 1). And the maximum was caused by diseases of the circulatory system, I00–I99 (36221), namely, coronary heart disease, I20–I25 (21774), increasing in the 10th-12th months. The rapid growth in COVID-19 (U00-U85) mortality is seen in the latest months.

Fig. 4. High level of monthly mortality (about 3-2400 cases) from diseases by international classification from January - December of 2020 till January - November of 2021

As the main step of study, in the Table 1, the calculated multivariable linear regression data towards 7 weather parameters mentioned above, and also year, and months order, can be found. The majority of the found regression coefficients are positive, and those, which are negative, all are insignificant.

Table 1

Multivariable linear regression results of monthly mortality *vs* 7 weather parameters, year, months in Zaporizhzhia region, Ukraine, from January 2020 till November 2021

Class	Disease	International classification of diseases (ICD)	Adjusted R ²	ANOVA, Sig.	
	Some infectious and parasitic diseases:	A00–B99	-0.061	0.579	
Ι	tuberculosis	A15–A19	0.336	0.091	
	human immunodeficiency virus (HIV) disease	B20–B24	-0.463	0.984	
т	Tumors:	C00–D48	0.472	0.327	
11	malignant tumors	C00–C97	0.124	0.303	
III	Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism	D50–D89	0.165	0.967	
IV	Endocrine diseases, eating disorders and metabolic disorders:	E00–E89	0.116	0.314	
	diabetes mellitus	E10–E14	0.514	0.235	
	Mental and behavioral disorders:	F01–F99	-0.227	0.816	
V	mental and behavioral disorders due to alcohol use	F10	-0.106	0.650	
VI	Diseases of the nervous system	G00–G98	0.064	0.387	
	Diseases of the circulatory system:	I00–I99	0.656	0.003	
IV	coronary heart disease	I20–I25	0.651	0.003	
IA	alcoholic cardiomyopathy	I42.6	0.429	0.043	
	cerebrovascular diseases	I60–I69	0.587	0.008	
V	Respiratory diseases:	J00–J98	0.547	0.013	
Λ	influenza and pneumonia	J10–J18	0.568	0.010	
VI	Digestive diseases:	K00–K92	0.478	0.027	
AI	alcoholic liver disease	K70	0.475	0.028	
XII	Diseases of the skin and subcutaneous tissue	L00–L98	0.202	0.208	
XIII	Diseases of the musculoskeletal system and connective tissue	M00–M99	0.098	0.339	
XIV	Diseases of the genitourinary system	N00–N98	-0.332	0.918	
XV	Pregnancy, childbirth and the postpartum period	000–099	-0.209	0.794	
XVI	Some conditions that occur in the perinatal period	P00–P96	0.231	0.177	
XVII	Congenital malformations, deformities and chromosomal abnormalities	Q00–Q99	0.037	0.429	

XVIII	Symptoms, signs and abnormalities found in clinical and laboratory studies are not classified in other headings	R00–R99	0.650	0.003
	External causes of death:	V01–Y89	-0.245	0.837
XX	traffic accidents	V01–V99	0.584	0.008
	accidental drowning and immersion in water	W65–W74	W65–W74 0.279	
	accidents caused by smoke, fire and flame	X00–X09	-0.013	0.506
	accidental poisoning caused by toxic substances (except alcohol)	X40–X44, X46–X49	-0.110	0.655
	accidental poisoning and alcohol exposure	X45	0.592	0.007
	intentional self-harm	X60–X84	-0.234	0.824
	the consequences of an attack to kill or injure	X85–X99, Y00–Y09	0.266	0.145
	Codes for special purposes	U00–U85	0.543	0.013
XXII	COVID-19, virus identified	U07.1	0.527	0.016
	COVID-19, virus unconfirmed	U07.2	0.787	0.000

Thus, among 37 calculated regressions, only 15 with significance ≤ 0.05 were chosen for further consideration (Table 2).

Table 2

The multivariable linear regression data for mortality cases *vs* 7 weather conditions, year and month's number with statistically significant adjusted R²

Shart digaaga		Adjust	ANO	VA	Cook's	Unstandardized B			
name	ICD	R^2	F	Sig.	dist.				
			_	~-8'		Sig. ≤ 0.05	sign	Sig.	
COVID-19, unconfirmed	U07.2	0.787	10.040	0.000	1.026	month	posit.	0.018	
Circulatory system	y I00–I99 0.656 5.666		0.003	0.812	-	-	-		
Coronary heart	Coronary heart I20–I25		5.566	0.003	0.633	-	-	-	
	R00–R99	0.650	5.545	0.003	0.868	t. min.	posit.	0.002	
Symptoms, signs						t. aver.	negat.	0.006	
abnormalities						year	posit.	0.009	
						t. max.	posit.	0.021	
Accidental poisoning and alcohol exposure	X45	0.592	4.545	0.007	1.571	wind direc.	negat.	0.042	
Cerebrovascular	I60–I69	0.587	4.471	0.008	0.874	-	-	-	
			4.427			year	negat.	0.001	
Traffic accidents	V01–V99	0.584		0.008	0.399	wind speed	negat.	0.008	
						t. min	posit.	0.048	

						t. average	negat.	0.052
Influenza and pneumonia	J10–J18	0.568	4.214	0.010	1.245	t. min.	posit.	0.044
Respiratory	J00–J98	0.547	3.955	0.013	1.271	t. min.	posit.	0.051
COVID-19, all	U00–U85	0.543	3.908	0.013	0.834	year	posit.	0.057
COVID-19, identified	U07.1	0.527	3.726	0.016	0.832	year	posit.	0.056
Digestive	K00-K92	0.478	3.241	0.027	1.256	-	-	-
Alcoholic liver	K70	0.475	3.213	0.028	0.511	rain precip.	negat.	0.029
Alcoholic cardiomyopathy	I42.6	0.429	2.835	0.043	1.295	-	_	-

MEDICAL SCIENCES INNOVATIVE TRENDS IN SCIENCE, PRACTICE AND EDUCATION

The significant contribution to mortality of the diseases mentioned in Table 2 was made by the weather factors in the following order of frequency: year, minimum, average and maximum temperatures, wind speed, month number, amount of rain, and wind direction. The increase in wind direction and speed, amount of rain and average temperature leads only to decrease in corresponding death cases (negative value of unstandardized B). And positive impact into the level of mortality was always seen by month number, minimum and maximum temperatures. Some death cases increased with years (R00–R99, U00–U85), and some reduced (V01–V99).

Atmospheric pressure had no influence on mortality rates. And for I00–I99, I20–I25, I60–I69, K00–K92, and I42.6 there was found no significant impact of weather conditions.

Also, only for 8 regressions, the Cook's distance was less than 1 [5]. Among which, calculated for variables "Symptoms, signs and abnormalities found in clinical and laboratory studies are not classified in other headings" (R00–R99) and "External causes of death: traffic accidents" (V01–V99), the maximum number of significant weather factors (4 for each) were found (Table 2). And, it was decided to study the first one in more detail considering COVID-19 consequences.

According to Table 3, the regression model adjusted R square has a moderate positive value of 0.650 with a high significance (.003). The strongest positive impact into the regression equation is calculated for minimum temperature (Part: 0.475), and strongest negative: respectively, for average temperature (Part: -0.417), than goes year order and maximum temperature with positive influence (Part: 0.385, 0.332).

Table 3

Regression statistics on R00-R99 death cases *versus* 7 weather conditions, year and month's number

				Model S	umma	rv ^b						
					Std. Error			Change Statistics				
Model	R	R^2		Adjusted	of t	the mate	R^2	F	1.01	df2	Sig. F	
				R^2	Estin		Change	Change	df1		Change	
1	.891 ^a	.793		.650	12.2	216	.793	5.545	9	13	.003	
^{a.} Pred	ictors: (Co	nstant), mon	th, year,	precipitatio	n, t. m	ax, v	vind direc	tion, win	d spee	d, atm.		
pressu	re, t. min, t	. average	-						-			
^{b.} Depe	endent Var	iable: R00–I	R99									
				Coeff	icient	5						
Unstandard Coeffic Standard. 95.0% Confidence Correlations												
л	Indal	Unstandard	a. Coejji	C. Coeffic.	+	Sia	Interval for B		C	orreiai	ions	
1	Iouei	R	Std Er	or Rota	ı	sig.	Lower	Upper	Zero-	Partial	Part	
		D	Sia. Err	or Dela			Bound	Bound	order	i arnai	Tun	
	(Constant)	-1298.933	1611.62	25	806	.435	-	2182.771				
1		12/01/00	101110		.000		4780.636					
	tavg	-30.141	9.111	-13.467	-	.006	-49.825	-10.457	.124	676	417	
		10.010	5.050	7 70 6	3.308	000	0.440	01 171	240	700	475	
	tmin	19.810	5.259	/./06	3.767	.002	8.449	31.1/1	.240	.722	.475	
	tmax	12.482	4./35	0.339	2.636	.021	2.252	22./13	.062	.590	.332	
	prcp	-2.339	2.641	130	893	.388	-8.064	3.340	.091	240	113	
	Walr	058	.085	110	082	.307	242	.120	299	180	080	
	wspu	.974	1.790	.120	.344	.393	-2.694	4.045	442	.149	.009	
	pres	1.538	1.370	.280	.002	.404	-2.047	4.705	.209	.232	.109	
	year	20.792	0.807	122	5.055	.009	0.087	2 560	.499	.040	.365	
	monui	805	1.550	Residual	J17 Stati	stics	-4.170	2.300	.405	142	005	
				Minimum	Mani	sucs	Magu	C ₄ J 1		ian	N	
Dradia	tod Voluo			54.82	122	$\frac{mm}{60}$	04 57	<i>Sia. 1</i>	<u>200</u>	1011	1V 22	
Std D	redicted Value	1110		2 160	132	.09 77	94.37	1	0.399		23	
Stu. 11 Standa	ard Error of	f Predicted V	/alue	5 236	10.6	570	7.874	1	737		23	
Adjust	ted Predicte	ed Value	anuc	60.50	152	35	95 31	1./3/		23		
Regidual				-15 474	197	. <u>99</u> /99	000	C	2.501 3 3 9 1		23	
Std R	esidual			-1 267	10.7	<u>))</u> 21	000	760			23	
Stud. 1	Residual		-1.598	1.9	99	- 022	1,060		23			
Delete	d Residual			-34.355	43.4	.99	749	1	9.268		23	
Stud. I	Deleted Re	sidual		-1.713	2.3	09	.003	1	.129		23	
Cook's	s Distance			.000	.86	58	.131		.217		23	
Center	ed Leveras	ve Value		.140	71	9	.391		.185		23	

All other weather conditions were insignificant in the regression (Table 3).

In the Residuals statistics (Table 3), their studied and standardized values not exceeded -3/3. And Cook's distance not exceeded 1, but was high -0.868.

Nevertheless, the accuracy of the regression model for R00-R99 estimation could be improved by selection of the most fitting independent variables [3].

Thus, only 4 significant variables: year, maximum, minimum and average temperatures were chosen for further calculations (Table 4).

Table 4

Regression statistics on R00-R99 death cases versus 3 weather conditions, and year

					Model	Summar	yb						
					• . 1	a		Change Statistics					
Model	R	R^2		R^2		Std. Error of the Estimate		R ² Change	F Change	dfl	df2	Sig. F Change	
1	.856 ^a	.732			673	11.821		.732	12.296	4	18	.000	
^{a.} Pred	ictors: (Co	nstant), year,	t. m	ax,	t. min, t. a	average [.]				•			
^{b.} Depe	endent Var	iable: R00–R	.99										
					Coe	efficients							
Standard 95.0%													
		Unstandard.	Coe	eff.	Sianaara.			Confi	dence	C	orrelat	ions	
Λ	Iodel				Coeff.	t	Sig	. Intervo	al for B				
		B	Sta	d.	Rota			Lower	Upper	Zero-	Partial	Part	
		Б	Err	or	Dela			Bound	Bound	order	i uniui	1 4/1	
	(Constant)	95.666	11.8	332		8.085	.00	0 70.807	120.524				
1	tavg	-26.107	7.854		-11.665	-3.324	.00	4-42.607	-9.606	.124	617	406	
	tmin	18.237	4.004		7.094	4.554	.00	0 9.825	26.650	.240	.732	.556	
	tmax	9.484	4.140		4.832	2.291	.03	4 .787	18.181	.062	.475	.280	
	year	14.507	5.14	40	.359	2.822	.01	1 3.708	25.306	.499	.554	.344	
					Residua	als Statist	tics						
				\boldsymbol{N}	linimum	Maximun	n	Mean	Std.	Devia	tion	Ν	
Predic	ted Value				55.17	134.17		94.57	17.674			23	
Std. Pı	redicted Va	alue			-2.229	2.241		.000		1.000		23	
Standa Value	rd Error of	f Predicted		3.628		9.019		5.394	1.160		23		
Adjust	ed Predicte	ed Value			57.22	136.18		94.88	17.956		23		
Residu	ıal			-	19.316	22.603		.000) 10.692			23	
Std. Residual					-1.634	1.912		.000	.905		23		
Stud. Residual				-1.717	2.125		011	1.005		23			
Deleted Residual -21.3					21.324	27.917		316	1	3.237		23	
Stud. I	Deleted Re	sidual			-1.825	2.386	5 .000 1.050			23			
Cook's	Distance				.001	.212		.047		.052		23	
Center	ed Leverag	ge Value		.051		.539		.174	.104		23		

Hence, the adjusted R^2 increased to 0.673 (F = 12.296, Sig. = .000), the Cook's distance decreased to 0.212. All regression coefficients were statistically significant (.000 - .034). Predicted and standardized residuals were between -3/3.

Visually, the standardized residuals were not perfectly but normally distributed, fit into plots, and correlated to predicted values (Fig. 5).

Thus, the multivariable linear regression model for monthly R00-R99 death cases is y = 95.666 - 26.107*average temperature in °C + 18.237*minimum temperature in °C + 9.484* maximum temperature in °C + 14.507*year number (2020 - 1, 2021 - 2, etc.) with SE of 11.832 (Table 4).

Fig. 5. Histograms, normal probability plots and scatterplots of R00-R99 multivariate linear regression models (to the right – vs 9 variables; to the left – vs 4 variables)

Besides, Winters' multiplicative model of forecasting was used for prediction of the next year mortality rate of R00-R99 (Table 5). The model's R^2 was found to be weak positive (0.243) and statistically significant (.007).

Table 5

Winters' multiplicative model statistics for monthly R00-R99 death cases

Model	Number of	Model Fit statistics	Lju	Ljung-Box Q(18)				
	Freuiciors	R ²	Statistics	DF	Sig.	Outliers		
R00-R99-Model_1	0	.243	31.800	15	.007	0		

At Figure 6, its weak positive trend can be seen for 2022 if nothing changes during this year towards such matters.

Fig. 6. Winters' multiplicative model forecast for R00-R99 death cases in 2022

Hence, analysis of the monthly mortality rate in Zaporizhzhia region, Ukraine, has shown that majority of diseases have positive trend with time. The multivariate linear regression models have found a significant impact of some weather parameters on the following illnesses: accidental poisoning and alcohol exposure, abnormalities, traffic accidents, influenza and pneumonia, respiratory, and alcoholic liver diseases.

And, unfortunately, COVID-19 mortality is still increasing with months as well as "Symptoms, signs and abnormalities found in clinical and laboratory studies". And for the latter regression equation is calculated and a weak positive growth of death cases is predicted for 2022.

References:

Демографічна 1. та соціальна статистика. Кількість померлих за Запорізькій області. (2022).Вилучено причинами смерті v 3: http://www.zp.ukrstat.gov.ua/index.php/statystychna-informatsiia/38-statistichnainformatsiya/arkhiv-statystychnoi-informatsii/demohrafichna-ta-sotsialnastatystyka/463-1-1-7

2. Antypenko, L. & Antypenko, O. Mortality in Zaporizhzhia region: trend of the 21 months of 2020 – 2021 and relationship with weather conditions. *Current issues of science, prospects and challenges: coll. of scientific papers «Scientia» with Proceedings of the I International Scientific and Theoretical Conference.* (Vol. 3, p. 44-50). December 17, 2021, Sydney, Australia, "European Scientific Platform". Retrieved from: https://www.researchgate.net/publication/357118729_Mortality _in_Zaporizhzhia_region_trend_of_the_21_months_of_2020_-_2021_

and_relationship_with_weather_conditions

3. *Applied Regression Analysis. Stepwise Regression.* (2018). Retrieved from: https://online.stat.psu.edu/stat462/node/196/

4. *Meteostat Zaporizhia*. (2022). Retrieved from: https://meteostat.net/en/place/3VM2UJ?t=2021-01-01/2021-10-01

5. Applied Regression Analysis. Identifying Influential Data Points. (2018). Retrieved from: https://online.stat.psu.edu/stat462/node/173/