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Biomarkers in Heart Failure: From Research to Clinical 
Practice
Alexander E. Berezin , M.D., Ph.D. and Alexander A. Berezin , M.D.
Internal Medicine Department, Zaporozhye Medical Academy of Postgraduate Education, Zaporozhye, Ukraine

The aim of this narrative review is to summarize contemporary evidence on the use of cir-
culating cardiac biomarkers of heart failure (HF) and to identify a promising biomarker 
model for clinical use in personalized point-of-care HF management. We discuss the re-
ported biomarkers of HF classified into clusters, including myocardial stretch and biome-
chanical stress; cardiac myocyte injury; systemic, adipocyte tissue, and microvascular in-
flammation; cardiac fibrosis and matrix remodeling; neurohumoral activation and oxidative 
stress; impaired endothelial function and integrity; and renal and skeletal muscle dysfunc-
tion. We focus on the benefits and drawbacks of biomarker-guided assistance in daily 
clinical management of patients with HF. In addition, we provide clear information on the 
role of alternative biomarkers and future directions with the aim of improving the predic-
tive ability and reproducibility of multiple biomarker models and advancing genomic, tran-
scriptomic, proteomic, and metabolomic evaluations. 
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INTRODUCTION

Heart failure (HF) remains the leading cause of premature death 

in patients with established cardiovascular disease (CVD) world-

wide, regardless of the specific clinical phenotype [1]. Although 

the prevalence of HF with reduced ejection fraction (HFrEF) has 

stabilized in the majority of developed Western countries and 

has even decreased in some populations, an increasing preva-

lence of HF with preserved (HFpEF) and HF with mildly reduced 

ejection fraction (HFmrEF) has been found in both developed 

and developing countries [2]. This alarming opposite trend in 

the prevalence of different HF phenotypes may be a result of an 

increase in the occurrence of conventional CV risk factors, in-

cluding hypertension, abdominal obesity, dyslipidemia, and dia-

betes mellitus, in relatively young individuals [3]. Another expla-

nation is the affordability of medical care and continuously in-

creasing economic burden on patients and the medical care 

system [4]. However, the reduction in mortality among HF pa-

tients with different HF phenotypes is regarded to be occurring 

at a less rapid pace than expected, thus pointing to an era of 

endless HF epidemic [5]. A recent systematic review established 

that the estimated prevalence of preclinical stages of HF (stages 
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A and B) reached up to 43% among high-risk patients with hy-

pertension and in men [6]. The 7-year risk of incidence of symp-

tomatic HF (stages C and D) and all-cause mortality reached up 

to 9.8% and 5.4%, respectively [6]. Early diagnosis and inter-

vention are considered to slow or even stop the progression of 

HF from the asymptomatic to symptomatic stages. In this regard, 

HF management requires a clear understanding of screening, 

risk stratification, diagnostic algorithms, and personalized point-

of-care (POC) strategies informed by validated and evidence-based 

models [7]. 

 Biomarker-guided management of HF as part of the POC HF 

platform, comprising personal consultation, optimal comorbidity 

care, and concise HF diagnostic and treatment algorithms, seems 

to be a promising strategy as well as an effective tool that has 

been partially implemented in current HF guidelines [8]. The 

new 2021 guidelines of the European Society of Cardiology (ESC) 

for the diagnosis and treatment of acute and chronic HF and 

the 2022 American Heart Association/American College of Car-

diology/Heart Failure Society of America (AHA/ACC/HFSA) guide-

lines report strong agreement in the use of natriuretic peptides 

(NPs) in the diagnosis, prediction, and management of HF, al-

though only the 2022 AHA/ACC/HFSA guidelines provide alter-

native biomarkers (galectin-3, soluble suppressor tumorigenis-

ity-2) for risk stratification and prediction of outcomes [9, 10]. 

Findings regarding alternative biomarkers are highly conflicting, 

reflecting several stages of natural HF evolution that may be use-

ful in risk stratification and management of different phenotypes 

of HF. 

 The purpose of this narrative review is to elucidate the con-

temporary evidence regarding the use of circulating cardiac bio-

markers in HF and to evaluate a promising biomarker model in 

the POC management of HF.

NATURAL EVOLUTION OF HF AND 
CIRCULATING CARDIAC BIOMARKERS

Recognition of the utility of biological indicators to reflect certain 

pathogenic processes contributing to the natural evolution of HF 

has become widespread in the current century [11]. However, 

the clinical utility of biomarkers may be overvalued given the 

complexity of the pathogenesis of HF, which frequently relates 

to its etiology (primary ischemic/non-ischemic), initial direct cause, 

and phenotype [12]. Moreover, an overlap between various pre-

existing comorbidities (chronic kidney disease, diabetes melli-

tus, and chronic obstructive pulmonary disease), conventional 

cardiovascular risk factors (hypertension, dyslipidemia, smok-

ing, and obesity), age- and gender-related conditions, and pro-

file of complications deeply interfere with the natural evolution 

of HF, transition of its phenotypes, and the therapeutic response 

[13]. For instance, ischemia/necrosis due to acute myocardial 

infarction leads to cardiac myocyte loss, whereas expanding fi-

brosis, cardiac hypertrophy, and microvascular complications 

play a pivotal role in the progression of adverse cardiac remod-

eling and development of HF, referred to as the HFrEF/HFmrEF 

phenotype rather than the HFpEF phenotype. In contrast, HF-

pEF is a result of cardiac hypertrophy, myocardial fibrosis, dis-

proportional changes in the space architecture of the cavities, 

and cardiac arrhythmias [14]. There is also strong evidence that 

a signature of the complication profile or comorbidities may rep-

licate their impact on HF progression [15]. 

 One of the most illustrative examples is the occurrence of atrial 

fibrillation during the clinical course of HFpEF, which is regarded 

as the most powerful predictor of the transformation into HFrEF 

and an increased risk of poor outcomes [16]. The next example 

includes type 2 diabetes mellitus (T2DM), which was found to 

be either a common risk factor for HFpEF or a consequence of 

its natural progression [17]. Regardless of its onset, T2DM has 

a negative impact on premature death through a large number 

of pathogenetic pathways interfering with adverse cardiac re-

modeling, such as microvascular inflammation, accelerating 

atherosclerosis, impaired ability of endogenous repair, oxidative 

stress and mitochondrial dysfunction, neurohumoral activation, 

and target organ damage (diabetes-induced nephropathy, skel-

etal myopathy, adipose tissue dysfunction, and angiopathy) [18]. 

 The early hypothesis of the linear evolution of HF from HFpEF 

to HFrEF is considered unrealistic because each HF phenotype 

demonstrates a unique logical trend of its progression and trans-

formation into other phenotypes from the impact of the disease 

itself or the therapy [19]. Previous clinical studies have shown 

that the mortality rate in patients with HF seems to invariantly 

correspond to the HF phenotype, but there was no significant 

difference in CV mortality and HF hospitalization between pa-

tients with HFrEF and HFpEF [20]. These parameters in patients 

with HFmrEF are also regarded to have been nearly similar to 

those in patients with HFrEF, but not to those in patients who 

demonstrated a trend of improving left ventricular ejection frac-

tion (LVEF) over time [21].

 These findings indicate that potential biomarkers could con-

tribute to the diagnosis and treatment of HF in connection with 

numerous mutually corresponding factors that are involved in 

the pathogenesis of different phenotypes of HF. These concep-

tual clusters of cumulative pathogenetic factors include myocar-
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dial stretch and biomechanical stress; cardiac myocyte injury; 

systemic, adipocyte tissue, and microvascular inflammation; car-

diac fibrosis and matrix remodeling; neurohumoral activation 

and oxidative stress; impaired endothelial function and integrity; 

and renal and skeletal muscle dysfunction (Fig. 1).

 The number of potential circulating biomarkers reflecting these 

relationships among clusters has exponentially increased over 

the last two decades [22]. Although each biomarker should ide-

ally correspond to a single point of HF pathogenesis, in reality, 

receiving an exact clinical interpretation of peak concentrations 

is challenging due to the changes seen in the majority of current 

biomarkers due to wide overlap with conceptual clusters. How-

ever, these biomarkers do not exhibit predictive ability accurate 

enough to aid in the management of any phenotypes of HF.

NATRIURETIC PEPTIDES

The first molecules recognized as powerful tools to manage HF 

are NPs, which continue to be emphasized in current HF guide-

lines [9, 10]. NPs are referred to as circulating cardiac biomark-

ers of myocardial stretch and biomechanical stress and mainly 

include several types of molecules, such as brain natriuretic pep-

tide (BNP), N-terminal brain natriuretic pro-peptide (NT-proBNP), 

and mid-regional atrial natriuretic pro-peptide (MR-proANP), 

along with other subsets of NPs, such as C-type NP [9]. Stretch-

ing of the myocardium, elevated intracardiac filling pressures, 

increased intracardiac volumes, and fluid overload are consid-

ered the most influential factors for the synthesis and release of 

NPs. However, other causes, including systemic inflammatory 

reaction, myocardial ischemia and necrosis, hypoxia, brain trauma, 

infections, and adipose tissue dysfunction, are considered to be 

involved in the production, secretion, clearance, and bioavail-

ability of NPs [23]. According to well-established classic consid-

erations, NPs are defined as physiological antagonists of the sym-

pathetic nervous system and renin-angiotensin-aldosterone sys-

tems, with primary biological roles of diuresis/water uresis, elec-

trolyte homeostasis, fluid retention, blood pressure, and vasodi-

lation [23, 24]. A broad spectrum of pleiotropic effects of NPs 

on target tissues has been described, including anti-prolifera-

tive, anti-apoptotic, anti-inflammatory, tissue-protective, and an-

giopoietic capabilities [24]. 

 Although NPs have higher negative than positive diagnostic 

value for HF in the general population, there are different cut-off 

points for NPs in numerous populations, including patients of 

older/senior age, female sex, and residents of nursing homes 

[25]. Moreover, there is a wide spectrum of CV (atrial fibrillation/

flutter, acute coronary syndrome/myocardial infarction, hyper-

tension, cardiac hypertrophy, acute pulmonary embolism, and 

valvular heart disease) and non-CV (shock, obesity, diabetes 

mellitus, pneumonia, chronic obstructive pulmonary disease, 

Fig. 1. Circulating biomarkers of the most important conceptual clusters influencing the natural evolution of heart failure (HF).
Abbreviations: BDNF, brain-derived neurotrophic factor; hs-cTn, high-sensitivity cardiac troponins; H-FABP, heart-type fatty acid-binding protein; FGF, fibro-
blast growth factor; Gal3, galectin-3; GDF, growth differentiation factor; GSTP1, glutathione transferase P1; IL, interleukin; KIM-1, kidney injury molecule-1; 
MR-proANP, mid-regional atrial natriuretic pro-peptide; MR-proADM, mid-regional pro-adrenomedullin; MPO, myeloperoxidase; sST2, soluble isoform of sup-
pression of tumorigenicity 2; 8-OHdG, 8-hydroxy-2´-deoxyguanosine; NT-proBNP, N-terminal brain natriuretic pro-peptide; NGAL, neutrophil gelatinase-as-
sociated lipocalin; PICP, procollagen type I carboxyterminal peptide; PIIINP, pro-collagen type III aminoterminal peptide; PICP/PIIINP; MMP-9, matrix metal-
loproteinase 9; TIMP-1, tissue inhibitor of matrix metalloproteinase; TNF, tumor necrosis factor; Trx1, thioredoxin 1. 

Biomarkers of myocardial stretch & biomechanical stress
Natriuretic peptides (BNP, NT-proBNP, MR-proANP)

Biomarkers of cardiac injury & damage
hs-cTn, H-FABP, GSTP1

Biomarkers of systemic, microvascular, adipose tissue 
inflammation & oxidative stress

Ceruloplasmin, TNF-alpha, MPO, 8-OHdG, Trx1, hs-CRP, GDF15, 
adiponectin, fetuin, visfatin, leptin, resistin, chemerin.

Cardiac stretching  
& biomechanical 

impairment

Neurohumoral  
activation

Target organ 
damage

Extracellular matrix 
remodeling & 

fibrosis

Inflammatory  
& immune 
response

Cardiac 
myocyte 
injury

Biomarkers of neurohumoral activation
Aldosterone, adrenomedullin, MR-proADM, copeptin, endothelin-1

Renal & skeletal muscles dysfunctions
NGAL, KIM-1, CA125, apelin, irisin, myostatin, BDNF,  
   IL-15, FGF-21, GDF-11

Biomarkers of extracellular matrix remodeling,  
   collagen turnover & fibrosis
sST2, Gal3, PICP, PIIINP, PICP/PIIINP, osteonectin, 
osteoprotegerin, osteopontin, MMP-9, TIMP-1
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and sepsis) conditions that may modify the circulating concen-

trations of NPs, regardless of the presence of HF. Aortic steno-

sis, atrial fibrillation, acute pulmonary embolism, or severe pul-

monary hypertension interfere with increasing NP concentra-

tions, whereas other conditions such as obesity are associated 

with reduced NP concentrations.

 Although BNP, NT-proBNP, and MR-proANP show compara-

ble diagnostic and prognostic accuracy, all of these factors often 

lead to underdiagnosis or misdiagnosis of HF; therefore, differ-

ent cut-off points of NPs should be determined for diagnostic 

purposes (Table 1). NT-proBNP concentrations are more closely 

related to age, sex, and renal clearance than BNP and MR-pro-

ANP concentrations, and age-dependent cut-offs to rule-in HF 

are preferred over NT-proBNP. MR-proANP did not exhibit a 

significant correlation with gender and age in patients with acute 

and chronic HF [26, 27], but was prominently associated with 

newly diagnosed acute HF [28]. NT-proBNP showed higher di-

agnostic accuracy of asymptomatic cardiac dysfunction than 

MR-proANP in older people with multiple risk factors for HF (di-

abetes mellitus, chronic kidney disease, vascular disease, atrial 

fibrillation, and hypertension) [29, 30]. In this context, the diag-

nostic accuracy of NPs is considered to increase through a se-

rial evaluation of NP concentrations.

 It remains unclear whether this approach is useful for all phe-

notypes of HF because fluid accumulation in the pleural space 

is regarded a common sign of acute/acutely decompensated 

HFrEF and HFmrEF [31]. Implementation of angiotensin recep-

tor neprilysin inhibitors (ARNIs) as a component of the optimal 

strategy of HFrEF care put into question the use of BNP for se-

rial measures, highlighting the value of NT-proBNP in POC ther-

apy of HF [32]. NPs have been thoroughly evaluated as promis-

ing surrogate indicators of the risk of HF progression and com-

pensation, along with a prediction of the response to guide-based 

HF therapy [33]. Although NP-guided management of HF has 

been assessed in numerous clinical trials and rigorously evalu-

ated in several meta-analyses, its role in improving clinical out-

comes in HF patients with different phenotypes remains contro-

versial [34, 35]. The predictive abilities of peak concentrations 

and even a trend of NPs in ambulatory follow-up have been found 

to be sufficiently reliable and accurate for all-cause mortality [36]. 

 There is serious concern about the strict resemblance of NP 

predictive values among patients with HFrEF/HFmrEF to those 

with HFpEF [37]. The DIAST-CHF trial revealed that NT-proBNP 

was a better predictor of incident atrial fibrillation than HF among 

stable outpatients with CV risk factors [38]. Importantly, clinical 

use of NPs has a well-established economic benefit when com-

pared with other cardiac and non-cardiac biomarkers. There-

fore, POC management of HF based on NP measures seems to 

be the most cost-effective strategy [39, 40]. There is strong evi-

dence that integration of NP in the optimal guide-based man-

agement of HF may help cardiologists to (1) detect high-risk HF 

patients, (2) recognize whether these patients are in a stable 

condition or if there is a tendency to progress toward decom-

pensated HF, (3) optimize HF management, (4) improve prog-

nosis assessment, (5) reduce all-cause and HF-related mortality 

and re-admission to hospital, and (6) save costs per year of life. 

All of these benefits of various NPs along with some disadvan-

tages are summarized in Table 2.

Table 1. Recommended NP cut-offs for acute HF diagnosis*

Cut-off to make a decision

Cut-off points

BNP, pg/mL NT-proBNP, pg/mL MR-proANP, pmol/L

All ages Aged <50 yr Aged 50–75 yr Aged >75 yr All ages

Acute/acutely decompensated HF

   Rule out HF <100 <300 <300 <300 <40

   Mild probability (“grey” zone) 100–400 300–450 300–900 300–1,800 40–120

   Rule in HF >400 >450 >900 >1,800 >120

Stable HF

   Rule out HF <35 <125 <125 ≥125 <40

   Mild probability (“grey” zone) 35–150 125–600 125–600 125–600 40–120

   Rule in HF >150 >600 >600 >600 >120

*Data were obtained from references [25-29].
Abbreviations: NP, natriuretic peptide; HF, heart failure; BNP, brain natriuretic peptide; NT-proBNP, N-terminal pro-B-type natriuretic peptide; MR-pro-ANP, 
mid-regional pro-atrial natriuretic peptide.
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BIOMARKERS OF CARDIAC MYOCYTE INJURY

Cardiac troponins
Although the implementation of high-sensitivity (hs) analytical 

methods to detect circulating cardiac troponins (cTn) I and T 

resulted in sufficient improvement in diagnostic accuracy in the 

setting of myocardial necrosis for acute coronary syndromes 

(ACS) and acute myocardial infarction (AMI) [41], the changes 

in even very low concentrations of these biomarkers in acute/

acutely decompensated HF patients enable their use as predic-

tive indicators of all-cause and CV mortality [42]. There is a large 

amount of evidence showing that the measurement of hs-cTn 

concentrations can be a powerful tool for predicting the occur-

rence of systolic and diastolic cardiac dysfunction and clinical 

conditions at high risk for developing HF, including aortic steno-

sis, stable coronary artery disease, and cardiac hypertrophy [43]. 

 Clinical studies and numerous meta-analyses have shown 

that elevated baseline concentrations of hs-cTns allow cardiolo-

gists to effectively stratify chronic HF patients at a higher risk of 

CV mortality and poor CV outcomes, regardless of HF pheno-

types and NP concentrations [44, 45]. HFrEF patients with the 

most elevated hs-cTnT concentrations, which were 3–5-fold higher 

than those of patients with normal biomarker concentrations, 

demonstrated increased risks of CV death and HF hospitaliza-

tion [46]. A model including hs-cTnT and hs-cTnI along with 

NT-proBNP and clinical features significantly improved the risk 

prediction of clinical outcomes in patients with acute and chronic 

HF, regardless of etiology, phenotype, and presence of renal dys-

function [47, 48]. The newly updated four-pillar strategy of HFrEF 

management was found to significantly reduce the concentrations 

of hs-cTnT in connection with improved survival, but SGLT2 in-

hibitors (mainly empagliflozin and dapagliflozin) exerted favor-

Table 2. Advantages and disadvantages of current biomarkers in HF

Biomarker
Correspondence to basic 

pathophysiological 
mechanism/triggers

Current role in HF Advantages Disadvantages

NPs Biomechanical stress, ischemia/
necrosis/reperfusion damage, 
fluid overload

Rule out HF.
Risk stratification of HF.
Prediction of all-cause and CV 

mortality.
POC management.

Independent predictor of high risk of HF, HF 
occurrence and progression, HF outcomes 
and death.

Available for POC management and 
consequent measures in follow-up.

Cost-effective diagnostic workup of newly 
suspected HF

Respectively high biological variability.
Renal clearance.
Different cut-off points for various HF 

populations depending on CV risk 
factor presentation, age, and gender.

Dependence of diagnostic reliability from 
co-existing CV and non-CV conditions

hs-cTn Myocardial necrosis Prediction of HF occurrence.
Prediction of all-cause and CV 

mortality.

Independent predictor of poor clinical 
outcomes.

Available for continuous monitoring.
Able to improve predictive value of NPs.
Available for multiple-marker strategy for risk 

stratification.

No relation between an effect of OGBM 
and changes of hs-cTn.

Optimal plasma cut-off point under 
question.

Gender-specific effects.

H-FABP Myocardial necrosis Independent predictor of all-
cause and CV mortality.

Peak concentrations independently predict HF 
occurrence.

No strong evidence in large clinical 
trials.

GSTP1 Myocardial necrosis, 
inflammation, apoptosis

Independent predictor of ACR. Peak concentrations independently associated 
with susceptibility of cardiac dysfunction.

No strong evidence in large clinical 
trials.

Galectin-3 Extracellular fibrosis and 
inflammation

Alternative stratification at 
higher risk of CV death and HF 
manifestation.

Peak concentrations independently associated 
with elevated risk of all-cause mortality, CV 
mortality, and HF-related outcomes.

Lack of dynamics during therapy.
Low diagnostic accuracy for HF.
Predictive value for readmission lower 

than that of NT-proBNP.
Cut-off depends on age and gender.

sST2 Extracellular fibrosis and 
inflammation

Alternative stratification at 
higher risk of all-cause 
mortality, CV death, and HF 
manifestation.

Peak concentrations independently associated 
with elevated risk of all-cause mortality, CV 
mortality, and HF-related outcomes. 
Available for serial measures and guided 
therapy.

The concentrations at discharge exert 
higher predictive potency than at 
admission.

Abbreviations: ACR, adverse cardiac remodeling; HF, heart failure; CV, cardiovascular; hs-cTn, high-sensitivity cardiac troponin; H-FABP, heart-type fatty ac-
id-binding protein; GSTP1, glutathione transferase P1; NPs, natriuretic peptides; NT-proBNP, N-terminal brain natriuretic pro-peptide; OGBM, optimal guide-
based management; POC, point-of-care; sST2, soluble isoform of suppression of tumorigenicity 2.
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able effects on HFrEF/HFpEF and renal outcomes, independent 

of baseline hs-cTnT concentrations [46]. These facts lead us to 

consider whether thorough monitoring of the serum concentra-

tions of hs-cTn should be incorporated in routine optimal guide-

based management (OGBM) of HF, whereas peak concentra-

tions of hs-cTn retain their discriminative potency in acute and 

chronic HF. Data from HF patients included in the Biomarkers 

in Heart Failure Outpatient Study (BIOS) Consortium showed a 

significant difference in prognostic cut-offs of hs-cTnT between 

male and female patients with HF, whereas there was no differ-

ence with respect to NT-proBNP concentrations [49].

Heart-type fatty acid-binding protein
Other biomarkers of myocardial necrosis, such as heart-type 

fatty acid-binding protein (H-FABP) and glutathione transferase 

P1 (GSTP1), which are not included in the contemporary diag-

nostic strategy for ACS/AMI, are promising predictors of acute 

HF. H-FABP reflects myocardial injury and has several putative 

advantages over hs-cTn [50]. First, H-FABP is rapidly released 

from myocardial cells within 1 hour of damage due to ischemia/

necrosis, allowing reliable stratification of patients with low con-

centrations of hs-cTn. Second, there is no need to recheck hs-

cTn, which reduces the total cost of diagnosis [51]. There is still 

no clear consensus for the routine implementation of H-FABP in 

OGBM for HF, although strong algorithms for risk stratification 

for acute pulmonary embolism have already been developed 

[52]. It remains unclear whether H-FABP surpasses hs-cTn in 

its discriminative potency among HF patients without ACS, which 

requires further investigation.

Glutathione transferase P1
Decreased levels of GSTP1 contribute to the susceptibility to im-

pairment of cardiac function and adverse cardiac remodeling 

via regulation of oxidative stress, systemic and microvascular in-

flammation, and endothelial dysfunction in HF [53]. There is 

limited evidence that polymorphisms in glutathione transferases, 

which are engaged in direct antioxidant defense and indirect 

modulation of apoptosis-related signaling pathways in the myo-

cardium, are indicators of HF manifestations [54]. 

BIOMARKERS OF FIBROSIS AND 
INFLAMMATION 

Galectin-3
Galectin-3 is a β-galactoside-binding lectin that regulates myo-

cardial and microvascular inflammation, mononuclear migra-

tion, and extracellular accumulation of collagen matrix through 

overproduction of collagen and fibroblast proliferation, leading 

to adverse cardiac remodeling and cardiac dysfunction [55]. 

The main stimulus for macrophage secretion of galectin-3 is 

suggested to be aldosterone, which translates autocrine and 

paracrine signals from transforming growth factor-β and cyclin 

D1 in fibroblasts to attenuate myofibroblast proliferation, immune 

cell recruitment, and extracellular collagen matrix deposition [56]. 

Pro-inflammatory cytokines such as interferon-gamma and in-

terleukin-6 were found to induce galectin-3 mRNA expression 

in the myocardium and vasculature [57]. In fact, galectin-3 has 

been considered the most upregulated protein in cardiac hyper-

trophy, the transformation of HFpEF into HFrEF, and malignant 

arrhythmia related to electrophysiological remodeling due to fi-

brotic changes in the myocardium [58]. 

 Recent research progress has revealed the pivotal role of ga-

lectin-3 in CVD and for HF diagnosis and management. When 

compared with other HF biomarkers, galectin-3 provides infor-

mation about the myocardial fibrotic state and the risk of adverse 

cardiac remodeling and its progression [59]. Among patients at 

higher risk of HF, there was no association between dynamic 

changes in galectin-3 and incident HF or atrial fibrillation [60]. 

Although peak concentrations of galectin-3 were independently 

associated with an elevated risk of all-cause mortality, CV mor-

tality, and HF hospitalization for all HF phenotypes [61], there 

was no significant impact of HF medications on galectin-3 con-

centrations [62]. Thus, galectin-3 remains an alternative biomarker 

that may add discriminative value to NPs but does not meet se-

rial measures.

Soluble isoform of suppression of tumorigenicity 2
Soluble isoform of suppression of tumorigenicity 2 (sST2) is a 

biomarker of cardiac fibrosis and inflammation, which has been 

thoroughly investigated during the last decade; therefore, there 

are numerous high-quality narrative and systematic reviews of 

sST2 in HF [63, 64]. The concentration of sST2 predicted the 

risk of cardiac remodeling, HF occurrence, and death regard-

less of common comorbidities, including coronary artery disease, 

renal failure, chronic obstructive pulmonary disease, and hyper-

tension [65]. Elevated concentrations of sST2 >35 ng/mL were 

also found to be reliable and specific biomarkers of all-cause 

death, CV death, and HF hospitalization in patients with HFrEF 

and HFpEF, whereas NPs seem to be more sensitive in stratify-

ing patients with HFrEF than those with HFpEF [66, 67]. Over-

all, sST2 exerts the most important characteristics of ideal bio-

markers, including high accuracy in a single measure, possibil-
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ity of being repeatedly measured and incorporated into a multi-

ple-biomarker approach for risk stratification, and availability in 

clinical practice at a reasonable cost [68]. Although sST2 retains 

predictive potency as a biomarker, it also provides additional in-

formation for risk stratification similar to NPs.

BIOMARKERS OF EXTRACELLULAR MATRIX 
REMODELING

Abundant molecules are considered to be responsible for the 

structural modification of the extracellular matrix (ECM) and the 

binding between cardiac myocytes and their surroundings, in-

cluding fibrillar compounds of the ECM (collagen type I and type 

III); products of their degradation (pro- or telopeptides); glyco-

proteins, proteoglycans, and some proteins (fibronectin, lam-

inin, fibrillin, and elastin); as well as bone-related peptides, in-

cluding osteonectin, osteoprotegerin, and osteopontin. Under 

physiological conditions, these molecules take part in the regu-

lation of cardiac ECM arrangement, the alteration of which plays 

a pivotal role in adverse cardiac remodeling in HF. Elucidating 

the role of each of these molecules warrants comprehensive 

and thorough investigation, because they are heavily involved in 

the pathogenesis of myocardial fibrosis and are related to arrhyth-

mogenesis [69, 70]. Although numerous clinical trials have been 

performed in the last two decades to evaluate the utility of these 

molecules as diagnostic or prognostic biomarkers in patients 

with HF, collagen turnover biomarkers and bone-related pro-

teins have been found to be closely associated with all-cause 

and CV mortality and HF hospital admission [71, 72]. These 

markers are not highly specific for detecting adverse cardiac re-

modeling, and abnormal concentrations have often been found 

in acute and stable coronary artery disease, valvular heart dis-

ease, cardiac hypertrophy, and cardiomyopathy (Table 3). Nev-

ertheless, there is a large amount of evidence that collagen turn-

over biomarkers, mainly telopeptides such as serum carboxy-

terminal telopeptide of collagen type-I and osteoprotegerin, rule 

out HF rather than confirm this condition [73, 74]. It remains 

unclear whether these are reliable biomarkers for a multiple-bio-

marker strategy, because they are considered surrogate mark-

ers of vascular calcification, coronary artery disease, and sever-

ity of HF, but can also be overexpressed in acute decompensated 

HF [75].

Table 3. Advantages and disadvantages of plausible biomarkers without proven value in current HF management

Biomarker
Correspondence to basic 

pathophysiological 
mechanism/triggers

Advantages Disadvantages

Pro- or telopeptides of 
collagen type-I

ECM remodeling Independent predictor of high risk of HF, HF outcomes, and death.
Additive prognostic value when compared with the concentrations 

of NT-proBNP.
Available for a multi-marker approach for risk stratification.

Unavailable for serial measures.
Low diagnostic value

Bone-related proteins ECM remodeling Independent of NPs’ predictive value for CV mortality, HF 
hospitalization, and arrhythmia.

Available for a multi-marker approach for risk stratification.

Unavailable for serial measures.
Low diagnostic value

GDF15 Inflammation Predicts ischemia-induced HF and AF.
Available for a multi-marker approach for risk stratification.
Available for biomarker-guided therapy

Not available for prediction of newly 
diagnosed HF and non-ischemic 
cardiomyopathy.

Renal dysfunction 
biomarkers

Renal injury Available for serial monitoring.
Association of HF-related outcomes

No relation to change of HF management.

Biomarkers of 
neurohumoral activation

Neurohumoral activation Available for mortality prediction regardless of HF phenotypes. Strict similarity in predictive abilities with 
those of NPs.

Available for acute HF rather than chronic HF.

Oxidative stress 
biomarkers

Mitochondrial injury Relatively low-cost measures. Low accuracy, predictive ability, 
reproducibility, and reliability.

Skeletal muscles 
dysfunction biomarkers

Muscles injury Available for mortality prediction regardless of HF phenotypes.
Association of HF-related outcomes.
Available for biomarker-guided therapy.

No validated scores to use.

Abbreviations: AF, atrial fibrillation; ECM, extracellular matrix; CV, cardiovascular; HF, heart failure; GDF-15, growth differentiation factor-15; NPs, natriuretic 
peptides.
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BIOMARKERS OF INFLAMMATION

Growth differentiation factor-15 (GDF15) belongs to the trans-

forming growth factor-beta superfamily and regulates the inflam-

matory response and tissue repair [76]. The direct molecular 

targets of GDF-15 are c-Jun N-terminal kinase, Bcl-2-associated 

death promoter, and epidermal growth factor receptor suppres-

sion, along with activation of Smad/eNOS. The PI3K/AKT signal-

ing pathways are considered crucial elements in tissue protec-

tion progenitor and mature endothelial cells. In animal models, 

overexpression of GDF15 was found to be a conductor of a lean 

phenotype, insulin sensitivity, hypophagia, and other metabolic 

parameters, which may explain the link between T2DM and car-

diac dysfunction via the orphan glial-derived neurotrophic factor 

(GDNF) family receptor α-like (GFRAL) [77]. Overall, GDF15 ex-

erts a cardioprotective effect that connects to its spectrum of 

autocrine/paracrine properties, including anti-inflammatory, an-

tioxidative, and antiapoptotic properties [78]. Cardiomyocyte ex-

pression of GDF15 was highly induced by ischemia and reper-

fusion injury and was associated with cardiac fibrosis after in-

flammation due to AMI and HF. Elevated concentrations of GDF15 

predicted newly onset atrial fibrillation [79], cardiac thrombosis 

[80], cardioembolic stroke, and AMI, but not HF and non-isch-

emic cardiomyopathy [81]. GDF15 is considered a promising 

biomarker or a potential therapeutic target for the management 

of HF; however, models based on GDF15 have not yet been val-

idated and are frequently based on retrospective investigations.

 Classic biomarkers of inflammatory activation, such as tumor 

necrosis factor-alpha and its soluble receptor I, interleukin-6, 

YKL-40, disintegrin and metalloprotease 17 (ADAM-17), cluster 

of differentiation 146 (CD146), and high-sensitivity C-reactive 

protein, failed to show independent predictive value from clini-

cal findings, echocardiographic characteristics, and NPs. In ad-

dition, these markers have renal clearance, which is considered 

a setback rather than a neutral particularity for patients with HF. 

Therefore, their diagnostic potency was found to be sufficiently 

reduced compared with that of BNP and NT-proBNP [82]. 

 The multicenter Prevalence of Microvascular Dysfunction in 

Heart Failure With Preserved Ejection Fraction (PROMIS-HF-

pEF) study provided data on 248 circulating inflammatory pro-

teins, including tumor necrosis factor receptor 1 (TNFR1), uro-

kinase plasminogen activator receptor (UPAR), insulin-like growth 

factor binding protein 7 (IGFBP7), and GDF15, from 228 pa-

tients with HFpEF [83]. This study strongly confirmed that in-

flammatory markers were upregulated in HFpEF patients when 

compared with those of healthy volunteers, and that the profile 

constructed from these biomarkers mediated the association 

between comorbid conditions and echocardiographic charac-

teristics of left and right ventricular function [83].

 There are numerous renal dysfunction biomarkers, including 

albumin in urine, albumin:creatinine ratio, and estimated glo-

merular filtration rate based on serum creatinine and cystatin C, 

neutrophil gelatinase-associated lipocalin, and kidney injury mol-

ecule-1. These markers only exhibit limited usefulness in HF 

management in routine clinical practice with no modifications in 

HF strategy depending on the trend of changes in biomarker 

concentrations [84]. However, these markers improved the pre-

diction of 10-year HF risk based on conventional CV risk factors 

[85].

 Conventional biomarkers of neurohumoral activation (adreno-

medullin, mid-regional pro-adrenomedullin, copeptin) seem to 

be informative for predicting mortality in patients with different 

phenotypes of HF, but their circulating concentrations propor-

tionally increase in connection with disease severity, mainly among 

patients with acute decompensated HF [86]. Clinical features 

showed similar accuracy as the circulating concentrations of 

biomarkers of neurohumoral activation in patients with HF, mainly 

in hypervolemic conditions. Moreover, these biomarkers exerted 

strict similarity in their predictive abilities when compared with 

BNP and NT-proBNP for all-cause mortality in acute HF [87].

 Oxidative stress biomarkers were extremely popular two de-

cades ago because their measurements did not require sophis-

ticated techniques, and an understanding of their interplay in 

HF pathogenesis was quite clear. However, numerous biomark-

ers affecting various aspects of oxidative stress and mitochon-

drial injury, such as ceruloplasmin, myeloperoxidase, 8-hydroxy-

2´-deoxyguanosine, and thioredoxin 1, do not demonstrate suffi-

ciently high accuracy, predictive ability, reproducibility, and reli-

ability to be incorporated into clinical practice. In addition, novel 

oxidative stress biomarkers (α1-antitrypsin and lectin-like oxidized 

low-density lipoprotein receptor-1) appear to represent promis-

ing targets for HF management [88].

 A large number of circulating biomarkers of skeletal myopa-

thy (myostatin, irisin, brain-derived neurotrophic factor, interleu-

kin-15, fibroblast growth factor-21, and growth differential fac-

tor-11) have been widely evaluated to improve the predictive 

ability of NPs in HFpEF and HFrEF in combination with several 

metabolic conditions. Although these biomarker models are prom-

ising, their main setbacks include the retrospective design of the 

studies, small sample size, and lack of validation using conven-

tional scores [89]. Apelin and irisin seem to yield precise predic-

tive information when added to NPs in patients with any HF phe-
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notype. Although the serial measures of these biomarkers ap-

peared quite useful in terms of modification of HF management 

in patients with HFrEF, there are limited data supporting this find-

ing [90, 91]. 

MULTI-MARKER PREDICTIVE MODEL

The current approach for searching for new biomarkers is based 

on common principles of machine learning, which enables judg-

ment of fewer variants of biomarkers of the risk of all-cause death 

or HF-related hospitalization. For instance, Chirinos, et al. (2020) 

[92] evaluated the concentrations of 49 plasma biomarkers in 

HF patients included in the Treatment of Preserved Cardiac Func-

tion Heart Failure With an aldosterone Antagonist (TopCat) trial 

and found that the model composed of fibroblast growth fac-

tor-23, osteoprotegerin, tumor necrosis factor-alpha and its sol-

uble receptor I, interleukin-6, YKL-40, fatty acid binding protein-4, 

GDF15, angiopoietin-2, matrix metalloproteinase-7, sST-2, and 

NT-proBNP predicted outcomes in patients with HFpEF. The in-

corporation of sST2 into the Penn HF Study, Barcelona Study, 

and ProBNP Outpatient Tailored Chronic Heart Failure (PRO-

TECT) biomarker sub-study exhibited an increase in the discrimi-

native potency of the whole model, although the optimal panel 

of markers remained uncertain and requires further investiga-

tion [93]. Thus, a biomarker-driven strategy in HF care is argued 

to better match the patient’s metabolic profile than conventional 

HF management [94].

FUTURE DIRECTIONS

Although the biomarker-guided approach to predict the natural 

evolution of HF and detect vulnerable populations in terms of 

all-cause mortality, CV death, and HF hospitalization appears 

promising, there is uncertainty in the optimal number of biomark-

ers selected in multi-marker scores, economic burden after im-

plementation of the strategy, and impact of biomarker measures 

on the modification of HF management [93, 94]. Preference for 

genomic, transcriptomic, proteomic, and metabolomic evalua-

tion in comparison with a single biomarker determination is not 

specified and requires more data for evaluation [95]. In this re-

gard, cell-free and packaged microRNAs, circulating extracellu-

lar vesicles, and precursors of various cells (endothelial progeni-

tor cells and mononuclear precursors), which are engaged in 

cardiac and vascular repair, are regarded as interesting options 

for future investigations of improving personalization in HF man-

agement [96].

CONCLUSION

NP remains the most practically useful circulating biomarker for 

HF; however, its predictive potency may vary depending on the 

HF phenotype and signature of comorbidities. Alternative bio-

markers such as galectin-3 and sST2 seem to add prognostic 

information to NPs, especially among patients at higher risk of 

HF. Other biomarkers and methods for their clinical implemen-

tation are under question and require thorough examination in 

the future. The multiple-biomarker approach has been tested, 

but it remains unclear whether its economic burden and repro-

ducibility are suitable for practical utilization. 
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