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Abstract: Atrial fibrillation (AF) is associated with atrial remodeling, cardiac dysfunction, and poor
clinical outcomes. External direct current electrical cardioversion is a well-developed urgent treatment
strategy for patients presenting with recent-onset AF. However, there is a lack of accurate predictive
serum biomarkers to identify the risks of AF relapse after electrical cardioversion. We reviewed
the currently available data and interpreted the findings of several studies revealing biomarkers for
crucial elements in the pathogenesis of AF and affecting cardiac remodeling, fibrosis, inflammation,
endothelial dysfunction, oxidative stress, adipose tissue dysfunction, myopathy, and mitochondrial
dysfunction. Although there is ample strong evidence that elevated levels of numerous biomarkers
(such as natriuretic peptides, C-reactive protein, galectin-3, soluble suppressor tumorigenicity-2,
fibroblast growth factor-23, turn-over collagen biomarkers, growth differential factor-15) are associ-
ated with AF occurrence, the data obtained in clinical studies seem to be controversial in terms of
their predictive ability for post-cardioversion outcomes. Novel circulating biomarkers are needed to
elucidate the modality of this approach compared with conventional predictive tools. Conclusions:
Biomarker-based strategies for predicting events after AF treatment require extensive investigation in
the future, especially in the presence of different gender and variable comorbidity profiles. Perhaps,
a multiple biomarker approach exerts more utilization for patients with different forms of AF than
single biomarker use.

Keywords: atrial fibrillation; electrical cardioversion; post-procedural complications; biomarkers

1. Introduction

Atrial fibrillation (AF) is the most common form of sustained cardiac arrhythmia in
the world [1]. The prevalence of AF advances with increasing age. After the age of 80,
atrial fibrillation affects 10–17% of the population [2]. The morbidity is increased and
mortality rises up to 3.5-fold in men and women [3]. Along with it, AF frequently occurs
in patients at higher risk of cardiovascular diseases (CVD) as well as among individuals
with known CVD [4]. Unfortunately, AF and CVD exacerbate each other and mutually
intervene in prognosis. Indeed, patients with any form of AF demonstrated poorer clinical
outcomes if there is concomitant heart failure (HF), coronary artery disease (CAD), type 2
diabetes mellitus (T2DM), obesity, obstructive sleep apnea, chronic kidney disease (CKD),
or peripheral artery disease [5–7]. Further, the prognosis of patients with AF is poorer
than the prognosis of patients with various CVD and comorbid conditions (i.e., HF, CKD)
without AF [8]. Multi-morbidity among patients with AF seems to play a pivotal role in
natural evolution of primary and secondary AF through direct and indirect impact on the
structural and/or electrophysiological abnormalities that occur in AF [9,10]. AF influences
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electrical remodeling, i.e., shortening of refractoriness due to the high atrial rate itself,
resulting in adverse cardiac remodeling [11]. Yet, the persistence of AF itself modulates the
risk of cerebrovascular and cardiovascular events [12,13].

The management of AF includes either rhythm restoration or rate control along with
comorbidity management, prevention of stroke, and systemic thromboembolism [14].
Synchronized electrical cardioversion can terminate AF. Combined with sedation, it is
a safe procedure and highly effective, restoring sinus rhythm in more than 90% [15–17].
It is important to detect AF recurrence after successful electrical cardioversion. In this
case, early cardioversion could prolong the subsequent duration of sinus rhythm and slow
disease progression compared to delayed sinus rhythm restoration [18].

Although the current clinical protocol of initial AF management seems to be very
useful in practice [1], it poses challenges in predicting incidental AF and early detection of
AF-related complications [19,20]. There are many factors associated with AF recurrence,
such as duration of AF, higher age, sex, HF, LA volume index, chronic obstructive pul-
monary disease, hypertension, obstructive sleep apnea, hyperthyroidism, smoking, and
obesity [21,22]. However, the role of biomarkers reflecting the different stages of AF patho-
genesis has not been completely understood. The purpose of the study is to summarize
the current evidence on the value of various biomarkers in predicting the likelihood of AF
recurrence after electrical cardioversion.

2. Promoting Factors and Electrophysiological/Anatomical Substrates of AF

Vulnerable substrates for the occurrence, support, and recurrence of AF are electrophys-
iological and adverse cardiac remodeling, along with structural remodeling, mechanical
dysfunction, and trigger activity, which are mediated by genetic ion channel alterations, con-
comitant cardiovascular (CV) diseases (acute and chronic coronary syndromes, multifocal
atherosclerosis, primary and secondary cardiomyopathy, etc.), CV risk factors (hyperten-
sion, smoking, obesity, diabetes mellitus, resistance to insulin, and dyslipidemia), and
comorbidities (chronic obstructive pulmonary disease, bronchial asthma, chronic kidney
disease) (Figure 1). In addition, concomitant hemodynamic factors as a result of numerous
diseases (heart failure, atrial cardiomyopathy, pulmonary hypertension, inherited and
acquired heart diseases, myocarditis) and conditions (chemotherapy, cardiac toxicity) play
a crucial role in secondary structural remodeling of the heart [23–25]. These factors con-
tribute to AF occurrence by maintaining afterdepolarization-induced triggered ectopic
activity, focal enhanced automaticity, altered function of ion channels, micro-reentrant
circus rotor, less dynamic head–tail interactions during re-entry in cardiac tissue, altered
ion accumulation on the dynamics of re-entry and electrical heterogeneity [26]. Indeed,
head–tail interactions have previously been known to have a causative impact on the
dynamics of the reentrant action potential, which plays a pivotal role in inducing AF [26].
To note, intracellular ions, mainly Ca2+ and Na+, accumulated during reentrant arrhythmia
through the rapid repetitive cellular excitation may lead to spontaneous termination of
re-entry or break-up of the re-entry loop into multiple pathways resulting in AF. Along
with it, the initiation and persistence of AF are controlled by both parasympathetic and
sympathetic stimulation, as well as hormonal influences, which also seem to play a role
in AF recurrence [27]. However, the continuous interaction between electrophysiological,
structural, and anatomical remodeling leads to intercellular uncoupling and a pro-fibrotic
response, which is crucial for trigger activity, the presence of AF, and the transformation of
cardiac dysfunction into HF [28].
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and prolongation of the action potential, which are also associated with the increase in the 
stimulation rate [29,30]. The overload of intracellular calcium in cardiac myocytes and its 
spontaneous release from the sarcoplasmic reticulum seems to be a major factor in the 
occurrence of delayed afterdepolarizations and triggered ectopic activity in the 
myocardium [30]. Although sympathetic activation and direct stimulation by angiotensin-
II are classic mechanisms of enhancing propensity for AF, there are numerous other 
mechanisms that intervene in altered afterdepolarizations. They mainly include a reduced 
inward rectifier, as well as increased activity of the Na/Ca exchanger and residual beta-
adrenergic responsiveness [31,32]. Yet, alterations in the regulation and accumulation of 
intracellular calcium can be a result of properly persistent AF and alternative 
arrhythmogenic mechanisms (intramural decremented conduction, transmural 
heterogeneity of repolarization, prolongation of QT-interval, and block of the premature 
impulse), which are activated due to progress of pre-exciding CV diseases including HF 
and coronary artery syndromes [33]. To note, asynchronous down-regulation of voltage-
dependent potassium currents and L-type calcium currents between layers of 
myocardium through the calcium/calmodulin-dependent kinase II signal pathway 
activated by hemodynamic factors (fluid overload, hypertension), ischemia/hypoxia, 
hormonal dysfunction (hyperthyroidism), perivascular edema due to microvascular 
inflammation, impaired mitochondrial metabolism and oxidative stress due to metabolic 
diseases/conditions (diabetes mellitus, obesity, myopathy, insulin resistance) and cardiac 
hypertrophy may support electrophysiological remodeling [34–39]. Although the role of 
hemodynamic factors and ischemia in shaping AF risk is well established [34,35], the 
impact of metabolic influences on electrophysiological remodeling is not always obvious. 
For instance, among patients with thyroid dysfunction, free thyroxine levels but not 
thyroid-stimulating hormone concentrations are associated with an increased risk of 
incident AF regardless of preexisting CV disease [37]. On the other hand, a hypothyroid 
state may directly induce myocardial fibrosis via stimulating autophagy and inhibiting 
TGF-β1/Smad2 signal transduction pathway [38]. Obesity and T2DM link glycemic 

Figure 1. Promoting factors and plausible pathogenetic mechanisms of AF. Abbreviations: AF, atrial
fibrillation; CV, cardiovascular; CKD, chronic kidney disease; SAS, sympathoadrenal system; IR,
insulin resistance; HF, heart failure; RAAS, renin-angiotensin-aldosterone system.

2.1. Electrophysiological Remodeling

Electrophysiological remodeling affects variable changes in specific ionic currents,
such as a reduction in transient outward potassium current, L-type calcium current, and
ultra-rapid delayed rectifier current, as well as shortening of the effective refractory period
and prolongation of the action potential, which are also associated with the increase in
the stimulation rate [29,30]. The overload of intracellular calcium in cardiac myocytes
and its spontaneous release from the sarcoplasmic reticulum seems to be a major factor
in the occurrence of delayed afterdepolarizations and triggered ectopic activity in the my-
ocardium [30]. Although sympathetic activation and direct stimulation by angiotensin-II
are classic mechanisms of enhancing propensity for AF, there are numerous other mecha-
nisms that intervene in altered afterdepolarizations. They mainly include a reduced inward
rectifier, as well as increased activity of the Na/Ca exchanger and residual beta-adrenergic
responsiveness [31,32]. Yet, alterations in the regulation and accumulation of intracellular
calcium can be a result of properly persistent AF and alternative arrhythmogenic mecha-
nisms (intramural decremented conduction, transmural heterogeneity of repolarization,
prolongation of QT-interval, and block of the premature impulse), which are activated due
to progress of pre-exciding CV diseases including HF and coronary artery syndromes [33].
To note, asynchronous down-regulation of voltage-dependent potassium currents and
L-type calcium currents between layers of myocardium through the calcium/calmodulin-
dependent kinase II signal pathway activated by hemodynamic factors (fluid overload,
hypertension), ischemia/hypoxia, hormonal dysfunction (hyperthyroidism), perivascular
edema due to microvascular inflammation, impaired mitochondrial metabolism and ox-
idative stress due to metabolic diseases/conditions (diabetes mellitus, obesity, myopathy,
insulin resistance) and cardiac hypertrophy may support electrophysiological remodel-
ing [34–39]. Although the role of hemodynamic factors and ischemia in shaping AF risk is
well established [34,35], the impact of metabolic influences on electrophysiological remod-
eling is not always obvious. For instance, among patients with thyroid dysfunction, free
thyroxine levels but not thyroid-stimulating hormone concentrations are associated with an
increased risk of incident AF regardless of preexisting CV disease [37]. On the other hand,
a hypothyroid state may directly induce myocardial fibrosis via stimulating autophagy
and inhibiting TGF-β1/Smad2 signal transduction pathway [38]. Obesity and T2DM link
glycemic fluctuations to electrophysiological remodeling that leads to the onset and main-
tenance of AF through mitochondrial dysfunction, oxidative stress, and inflammation [39].
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Chan YH et al. (2019) [40] reported that insulin resistance (IR) was associated with sig-
nificantly increased sarcoplasmic reticulum calcium content and diastolic calcium sparks
in the atrial myocardium. Moreover, IR increased collagen accumulation and superoxide
production in the atrial myocardium through increased synthesis of transforming growth
factor beta 1 (TGF-β1) and abnormal upregulation of calcium-homeostasis-related pro-
teins, such as oxidized CaMKIIδ, phosphorylated-phospholamban, phosphorylated-RyR-2,
and sodium–calcium exchanger [40].

Yet, subcellular mechanisms underlying electrophysiological remodeling seem to
relate to the alteration of connexin 43 expression, which is a principal ventricular gap
junction protein [40,41]. However, significant changes in connexin 43 phosphorylation
were found to be more closely associated with timing AF persistence and the presence
of HF [42]. In particular, these changes can even explain an association of such powerful
components of electrophysiological features as increased transmural dispersion in refrac-
toriness and conduction with increased inducibility of AF and low efficacy of electrical
cardioversion [43,44]. Moreover, this may be a novel paradigm of electrophysiological
remodeling based on the timing of conduction abnormalities in connection to dynamic
changes in connexin 43 isoforms, cardiac dysfunction, and comorbidities [43,44]. Indeed,
there is strong evidence of the fact that apelin-13-an aliphatic multifunctional peptide,
mainly originated from the myocardium, skeletal muscles, and liver-increased connexin
43 through autophagy inhibition and inducing AKT and mTOR phosphorylation and
thereby decreases susceptibility to cardiac arrhythmias including AF and cardiomyocyte
death [45,46]. Yang M et al. (2022) [47] recently reported that the apelin/AMPK/mTOR
signaling pathway, which regulates angiotensin II-mediated autophagy and apoptosis of
cardiac myocytes, is under close control of miRNA-122-5p. The overexpression of miRNA-
122-5p leads to exacerbation of cardiac and vascular hypertrophy, cardiac fibrosis, and
dysfunction. Thus, the overexpression of miRNA-122-5p may be an underlying mechanism
of binding myocardial fibroblasts and activation of AF. On the other hand, angiotensin-II
acts as a promoter of expression of pro-apoptotic molecules, such as P62 and Bax, and
as a mediator of mTOR phosphorylation, which downregulates LC3II, beclin-1, and con-
tributes to the imbalance of autophagy and apoptosis in the myocardium. These changes
were associated with increased myocardial accumulation of collagen I and collagen III,
overexpression of TGF-beta-1 and connective tissue growth factor (CTGF), as well as down-
regulation of myocardial expression of apelin, angiotensin-converting enzyme-2 (ACE2),
and growth differential factor-15 (GDF-15) [47–49]. These facts confirm a close interplay be-
tween the Apelin-APJ axis and ACE2-GDF-15-porimin signaling in angiotensin-II-mediated
myocardial hypertrophy and fibrosis, which are crucial substrates for AF occurrence and
prolongation. Therefore, they modulate the relationship between electrophysiological and
anatomical cardiac remodeling.

2.2. Adverse Cardiac Remodeling

Adverse cardiac remodeling in AF patients includes AF-related atrial remodeling
and cardiac remodeling due to concomitant CV diseases [50]. Both variants may be as-
sociated with sinus node dysfunction, variability in conduction gaps due to parasympa-
thetic/sympathetic stimulation and epigenetic regulation of intercellular communication,
cardiac cell-to-cell heterogeneity, and extracellular matrix alteration [50–53]. Therefore, the
overlap between both variants of remodeling is mediated by concomitant hemodynamic
changes such as valvular regurgitation [54]. AF-related alteration of atrial structure starts
with the differentiation of cardiac fibroblasts into myofibroblasts, which is regulated by nu-
merous triggers, including angiotensin-II, noradrenaline, thyroid hormones, inflammatory
cytokines, chemokines, matrix metalloproteinases, galectine-3, soluble suppression of
tumorigenesis-2 (sST2), TGF-beta-1 and microRNAs (Figure 2).
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Gal-3, galectine-3; TGF-beta-1 transforming growth factor beta-1, TNFα tumor necrosis factor alpha;
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subfamily M, member 7; Nav1.5, voltage-gated sodium channel, Kv1.5, voltage-gated potassium
channel; MMPs. Matrix metalloproteinases; sST2, soluble suppression of tumorigenesis-2; RANKL,
tumor necrosis factor ligand superfamily member 11; OPG, osteoprotegerin.

These triggers contribute to the altered expression of several ion channel proteins,
such as transient receptor potential channel-3 (TRPM3) and member 7 TRPC3, which
regulate intracellular calcium flow, and mediate dysfunction of the ion channels on the
surfaces of target cells [54]. Angiotensin-II, aldosterone, endothelin, and catecholamines,
as well as several inflammatory cytokines (TNF-alpha, interleukin-2) acting as signaling
molecules contribute to fibroblast proliferation via Ca2+ entry via transient receptor po-
tential channels (voltage-gated sodium [Nav1.5] and potassium channels [Kv1.5]) [55].
In addition, myofibril protein breakdown is stimulated by overexpressed calpain, which is
activated by intracellular Ca2+ loading [56]. As a result, activated myofibroblasts not only
produce several types of collagens shaping collagen deposition and cardiac fibrosis but also
directly interact with cardiomyocytes promoting AF [57]. Moreover, myofibroblasts and
fibrotic areas interfere with atrial tissue conduction and lead to intercellular uncoupling.
Indeed, interactions between myofibroblast and cardiomyocyte alter conduction and elicit
focal activity in the atria [58]. Finally, cell uncoupling, along with cardiac myocyte disar-
mament and extensive fibrosis, lead to gap junctions and non-uniformity of anisotropy
modulating AF. In addition, pre-exceeding CV diseases, such as myocardial infarction,
cardiomyopathies, myocarditis, and cardiac hypertrophy, through the strength of local
mechanical forces, loss of cardiac myocytes and extensive fibrosis intervene in anisotropy
modality of cardiac electrical conductivity and shaping arrhythmogenic substrate [59].

Although collagen accumulation in the myocardium is regulated by autocrine/paracrine
and neurohumoral mechanisms, the atria are more prone to extracellular matrix remodel-
ing and collagen deposition than the ventricles. Possibly, it depends on the distinguished
presence of matrix metalloproteinases, their inhibitors, and pro-inflammatory molecules
involved in the subsequent regulation of collagen synthesis and degradation. The accumu-
lation of collagen, other matrix proteins (elastin, fibronectin 1, fibrillin 1), and proteoglycans
in abundance lead to severe heterogeneous areas in the atria with variable alteration of
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electrophysiological properties [59]. This eventually leads to changes in myocardial cell
architecture, such as elongation and disturbed alignment of demarcated fibers. This sub-
sequently causes anisotropic changes in the entire myocardium, mediating a discrepancy
between transverse and longitudinal electrical conduction leading to AF.

3. Electrical Cardioversion of AF: Safety and Outcomes

It seems that standard external direct current electrical cardioversion is a well-developed
urgent treatment strategy for patients presenting recent-onset AF [1,60]. Numerous retro-
spective one-center studies and multicenter trials yielded 86–88% efficacy of the approach
in restoring sinus rhythm along with 6–10% relapse of AF in a short-term perspective
(7–28 days) [61–63]. Overall, electrical cardioversion in AF patients who required emer-
gency department transportation was associated with infrequent hospital admission and
few mild-to-moderate complications [61]. However, the duration of AF in the majority of
studies was less than 48 h in 99% of the patients. Burton JH et al. (2004) [61] observed
in a retrospective multicenter study that electrical cardioversion had an 86% success rate,
and only 10% of the patients returned to the emergency department within 7 days. Fried
AM et al. (2021) [16] reported that the efficacy of this procedure, defined as restoration
of sinus rhythm, reached 88% in routine clinical practice, whereas major complications
(post-cardioversion stroke, thromboembolic events, jaw thrust maneuver for hypoxia, and
overnight observation for hypotension) and predefined minor adverse events (frequently
related to general anesthesia, skin burns) were detected in 0.3% and 14%, respectively.
In addition, electrical cardioversion was about 2.5 times more effective than conventional
pharmacological treatment in restoring sinus rhythm [62,63]. Although there are numerous
potential complications of electrical cardioversion (i.e., ventricular fibrillation, thromboem-
bolism due to inadequate anticoagulant therapy, nonsustained ventricular tachycardia,
various forms of atrial arrhythmias, bradycardia, transient left bundle branch block, my-
ocardial necrosis, asymptomatic myocardial dysfunction, acute HF, transient hypotension,
pulmonary edema, and stroke), they occur less frequently than recurrent AF. Further, 6.4%
of patients revisited the emergency department within 30 days, and 4.8% returned with
AF or atrial flutter. It is noteworthy that the return visit rate for patients with relapsed AF
varies between 3% and 17% [64].

Overall, 30-day all-cause mortality among AF patients undergoing direct-current elec-
trical cardioversion was 0.8% [65]. Data received from the FIRE (Atrial Fibrillation/flutter
Italian Registry) registry showed that predictors of unsuccessful electrical cardioversion
were onset of AF > 48 h, concomitant HF, increasing age, syncope, transient ischemic attack
(TIA)/stroke as well as previous admission to a non-cardiology department [66]. The in-
vestigators also found several predictors of in-hospital mortality in this patient population,
including age, HF, diabetes mellitus, previous admission to a non-cardiology department,
and TIA/stroke [66]. Thus, patients at low risk for thromboembolic complications, includ-
ing stroke and heart failure, seem to benefit more from electric cardioversion than other
individuals with recent-onset AF [67].

Another reason for physicians to use this approach may be cost savings and a short
period of emergency department admission [67,68]. Houghton AR et al. (2000) [69] and
Boriani G. et al. (2007) [70] did not identify concise hemodynamic predictors of successful
external electrical cardioversion or relapses after electrical cardioversion among patients
with persistent AF or atrial flutter. However, only two predictors (duration of arrhythmia
≥1 year and previous cardioversion) were found to be powerful for this matter [69,70],
whereas, in previous investigations, relapse of AF was associated with reduced left ven-
tricular ejection fraction [71]. Along with it, standard external biphasic direct current
electrical cardioversion has better efficacy than monophasic electrical cardioversion (360-J)
for restoration of sinus rhythm in AF patients, although dual external monophasic 360-J
cardioversion may increase the success rate as a rescue technique after failing standard
external direct current cardioversion [72,73]. In this concept, the prediction of plausible
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cardiovascular events, including relapsed AF, with a biomarker strategy seems promising
in patients with recent-onset AF.

4. Predictors for AF Recurrence Following Electrical Cardioversion

Biomarkers reflecting the complex pathophysiological mechanisms underlying AF
seem to be an effective tool to predict rhythm status after cardioversion as well as other AF-
related complications, which can intervene in mortality, hospital admission, cardiovascular
(CV), and non-CV outcomes (Table A1).

4.1. Natriuretic Peptides

Natriuretic peptides (brain natriuretic peptide [BNP], N-terminal pro-B-type natri-
uretic peptide (NT-proBNP), mid-regional pro-A type natriuretic peptide (MR-proANP))
serve as circulating cardiac biomarkers of biomechanical stress, adverse cardiac remodeling
and fluid overload with established diagnostic and predictive values for acute and chronic
HF involving any phenotypes [74,75]. Along with it, elevated levels of NPs were strongly
associated with all-cause and CV mortality and urgent hospitalization among patients with
AF, T2DM, CKD, hypertension, and cardiac hypertrophy [76,77]. Moreover, NT-proBNP
and BNP were found to be predictors for AF [78–80]. However, it has been suggested that
restoration of sinus rhythm through effective electric cardioversion may associate with
a reduction in NP concentrations and thereby predict the recurrence of new episodes of
arrhythmia. Xu X et al. (2017) [81] observed in a meta-analysis that low levels of BNP and
NT-proBNP were associated with the maintenance of sinus rhythm and that the baseline
concentrations of both biomarkers may be a predictor of AF recurrence after successful
electrical cardioversion. Ari H. et al. (2008) [82] reported that a significant decrease in BNP
levels 30 min after electric cardioversion corresponded to six-month maintenance of sinus
rhythm in follow-up.

In the GAPP-AF (The gene expression patterns for the prediction of atrial fibrillation)
study, Meyre PB (2022) [83] investigated 21 conventional and new circulating biomarkers
reflecting inflammation, myocardial injury, cardiac biomechanical stress, and renal dysfunc-
tion before and 30 days after electrical cardioversion and evaluated plausible associations
of changes in circulating biomarker levels with rhythm status at 30-day follow-up. The pa-
tients included in the study had no acute HF, severe valvular disease, or life-limiting active
or chronic serious concomitant diseases. The authors found that low levels of NT-proBNP
were independently associated with sinus rhythm restoration after electric cardioversion.
On the other hand, initial levels of BNP and NT-proBNP in patients with persistent AF
without established CVD did not predict long-term sinus rhythm maintenance, although
conversion to sinus rhythm related to a significant decrease in circulating BNP but not
NT-proBNP level [84]. In contrast, NT-proBNP levels were found to be a predictor of AF
recurrence 30 days after successful electric cardioversion among patients with persistent
AF and CV risk factors, including hypertension and dyslipidemia [85]. In another study,
pre-procedural NT-proBNP levels, but not post-procedural levels of the peptide, indepen-
dently predicted the relapse of AF after successful electrical cardioversion [86]. These
controversial issues perhaps may relate to the presence of concomitant HF. Indeed, in the
CAPRAF (Candesartan in the Prevention of Relapsing Atrial Fibrillation) trial, plasma
NT-proBNP concentrations measured before electrical cardioversion did not predict car-
dioversion success nor the relapse of AF in patients without HF [87]. Mabuchi N et al.
(2000) [88] noticed that low atrial natriuretic peptide (ANP) and high BNP levels before
electric cardioversion were independent predictors of recurrent AF in mild chronic HF
patients. Moreover, the authors established that ANP to BNP ratio <0.44 was a significant
risk factor for AF recurrence [88]. The BNP level of 700 fmol/mL or higher on day 7 after
cardioversion was most predictive for AF recurrence (sensitivity, 78%; specificity, 71%),
whereas ANP did not predict the relapse of AF [89]. Buccelletti F. et al. (2011) [90] measured
the levels of NT-proBNP in 200 patients admitted to the emergency department due to
new-onset AF (<2 weeks) regardless of HF presence. The authors found that NT-proBNP
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levels of either ≤450 pg/mL or >1800 pg/mL seem to show positive and negative predic-
tive values for cardioversion in rate-control and rhythm-control strategies, respectively.
In the range of 450 to 1800 pg/mL, NT-proBNP did not exhibit serious clinical utility [90].
However, it remained unclear whether continuous monitoring of the dynamic changes of
NPs after sinus rhythm restoration predicts recurrent AF [91]. Overall, the restoration of
sinus rhythm after electric cardioversion in AF patients is associated with a decrease in
circulating levels of NPs and low levels of NT-proBNP predicts a sustainable maintains of
sinus rhythm in follow-up.

4.2. Biomarkers of Fibrosis

Cardiac fibrosis was found to be closely associated with AF. Circulating biomarkers
of fibrosis have already been proposed as a promising tool in its evaluation, but which
biomarkers are most appropriate for AF remains unclear [92]. There are a large number of
circulating biomarkers, which characterize the accumulation of extracellular matrix compo-
nents and fibrosis, such as soluble suppressor tumorigenicity-2 (sST2), galectin-3 (Gal-3),
procollagen type III N terminal peptide (PIIINP), type I collagen carboxyl telopeptide
(ICTP), and fibroblast growth factor 23 (FGF-23) [93].

4.2.1. Galectin-3

Gal-3 is a multifunctional galactose-binding protein that belongs to the transforming
growth factor beta superfamily and a biomarker of fibrosis, involved in atrial remodeling,
cardiac fibrosis, and AF [94]. Previous studies revealed that patients with AF had higher
Gal-3 values than non-AF patients, regardless of their comorbidity profile [95,96]. Moreover,
elevated Gal-3 levels were independently associated with paroxysmal non-valvular AF [97].

There is ample evidence of a close relation between elevated Gal-3 levels, atrial re-
modeling (i.e., parameters of left atrial dimension, volume, compliance, and contractility)
and AF recurrence following successful electrical cardioversion [98–100]. Gürses KM et al.
(2019) [98] reported that pre-cardioversion Gal-3 levels in persistent AF corresponded to
a higher left atrial volume index and were associated with early AF recurrence following
successful sinus rhythm restoration. In contrast, Cichoń M et al. (2021) [101] did not
find any link between circulating Gal-3 levels and the risk of recurrent AF in obese and
non-obese patients with persistent AF. The same results were obtained in another study
involving 75 non-HF patients with paroxysmal or persistent AF referred for electrical
cardioversion [102]. Although the authors of the study established a correlation between
the Gal-3 levels and oxidative stress and inflammation in AF patients, only circulating
myeloperoxidase, but not Gal-3, was associated with the maintenance of sinus rhythm in a
multivariate model, possibly due to the small number of patients and relatively early stage
of AF [102]. Whether these changes may be explained in connection with single nuclear
polymorphisms of the Gal-3 gene has not been fully elucidated [103]. Thus, the predictive
ability of Gal-3 for sinus rhythm restoration following successful electrical cardioversion
requires thorough investigations in face-to-face comparison with other biomarkers before
implementation in clinical practice.

4.2.2. sST2

Soluble suppression of Tumorigenicity 2 protein (sST2) is part of the interleukin 1
receptor/Toll-like superfamily, which is related to cardiac inflammation, fibrosis, and also
remodeling. Current clinical guidelines for HF consider sST2 as an alternative biomarker
of all-cause and CV mortality as well as HF-related complications, including hospital ad-
mission, especially in HF with preserved ejection fraction (HFpEF) [74,75]. Although sST2
is involved in cardiac fibrosis, local and systemic inflammation, and atrial and ventricular
remodeling, its role in predicting clinical outcomes of electrical cardioversion of AF remains
uncertain [104,105]. In patients with HF and acute myocardial infarction, elevated sST2
levels were a powerful risk factor for new-onset AF [106,107]. Moreover, in AF patients
without concomitant cardiovascular disease, sST2 concentrations were positively associated
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with LV myocardial strain and T1 mapping indices [108]. Previous studies have demon-
strated significant predictability of AF recurrence after cryoballoon and radiofrequency
ablation using sST2 [109–111].

It appears that limited evidence exists regarding a discriminatory effect of sST2 mea-
sured before and after electrical cardioversion on AF recurrence. Wałek P. et al. (2020) [112]
found that sST2, but not Gal-3, predicted sinus rhythm maintenance after successful electri-
cal cardioversion of AF in patients without HF. Perhaps, sST2 may be considered as part of
a multimarker panel for the prediction of AF recurrence along with NPs and Gal-3. Over-
all, sST2 seems to be a promising predictive biomarker for AF recurrence after electrical
cardioversion, cryoballoon, and radiofrequency ablation.

4.2.3. Other Biomarkers of Fibrosis

Begg GA (2017) [113] investigated an association of biomarkers related to fibrosis
and collagen metabolism with procedural risk and AF recurrence rates among 79 patients
undergoing external direct current cardioversion in comparison with 40 age-and-disease-
matched volunteers. The authors found that Gal-3, PIIINP, and ICTP were not predictive for
AF recurrence after electrical cardioversion, whereas FGF-23 had a weak predictive ability
for relapsing AF [113]. In contrast, Kawamura M. et al. (2012) [114] found no discriminatory
levels of interleukin-6, high-sensitivity C-reactive protein, BNP, renin, and aldosterone for
the 24-month recurrence rate of AF, whereas baseline serum levels of PIIINP > 0.72 U/mL
predicted AF relapse. Thus, there is a serious discrepancy between biomarker levels
corresponding to the presence of atrial fibrosis confirmed by cardiac magnetic resonance
imaging and their discriminatory properties for recurrent AF [115–117].

Furthermore, elevated serum levels of FGF-23 strongly correlated with the total num-
ber of major cardiovascular events and left atrial dimension in paroxysmal AF patients as
well as with new-onset AF in sinus rhythm patients presenting CV risk factors, but not with
the maintenance of sinus rhythm during follow-up [117–119]. Meta-analysis of 15 clinical
studies, enrolling 36,017 participants, revealed that elevated serum FGF-23 levels, but not
GDF15 levels, were associated with the risk of AF [120]. A meta-analysis of 15 clinical trials
involving 36,017 participants found that elevated serum FGF-23 levels, but not GDF15
levels, were associated with AF risk [120]. However, it remains unclear whether these
results also apply to patients undergoing electrical cardioversion.

4.3. Biomarkers of Inflammation
4.3.1. GDF15

GDF15 is a member of the TGF-beta superfamily whose expression is increased in
response to biomechanical myocardial stress, inflammation, or ischemia/hypoxia [121].
GDF15 is involved in the regulation of energy homeostasis, thermogenesis, and eating
behavior [122]. Yet, GDF15 also exerts anti-inflammatory and anti-proliferative prop-
erties, although the underlying molecular mechanisms are still unclear [123]. Elevated
GDF15 levels were found in patients with any phenotypes of chronic HF, stroke, AF, and
T2DM [124–128]. In the general population, GDF-15 did not show a positive association
with the prevalence of AF and the risk of AF occurrence [129]. The suitability of GDF15
for predicting bleeding and/or atrial thrombosis during anticoagulant therapy remains
questionable [130]. Clinical evidence for the discriminative value of GDF15 for AF re-
lapse or sinus rhythm maintenance is extremely limited. There is one small study that
prospectively included 82 patients with persistent AF [101]. Although log10 serum GDF-15
levels correlated positively with the CHA2DS2-VASc score, there was no close association
between GDF-15 levels and sinus rhythm maintenance in patients after successful electric
cardioversion [101]. Thus, a discriminative potency of GDF15 for the prediction of clinical
efficacy of electrical cardioversion among patients with nonvalvular/valvular AF is not
completely understood and requires scrutiny in large clinical studies.
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4.3.2. hs-CRP

High-sensitivity C-reactive protein (hs-CRP) is a classic biomarker of inflammation
and is a component of the inflammatory profile observed in AF patients. Elevated hs-
CRP levels were found in patients with all forms of nonvalvular/valvular AF, regardless
of etiology and concomitant comorbidities [131,132]. hs-CRP predicted new-onset AF
both in the general population as well as in patients with established cardiovascular
or metabolic diseases, such as HF, acute myocardial infarction, T2DM, and metabolic
syndrome [133–135]. Among patients with AF complicated by systemic thromboembolism,
the levels of hs-CRP correlated positively with the CHA2DS2-VASc score [136].

Loricchio ML et al. (2007) [137] investigated plausible predictors for a 1-year risk
of AF recurrence after electrical cardioversion. In a Cox regression analysis, the authors
found that age, gender, hypertension, T2DM, LVEF, left atrial diameter, use of various
antiarrhythmic and antihypertensive (including angiotensin-converting enzyme inhibitors
or angiotensin II antagonists) drugs, and statins were not associated with relapsing AF.
On the contrary, a low quartile of hs-CRP levels was found to be a strong predictor for this
outcome [137]. Lombardi F. et al. (2008) [138] did not find any changes in hs-CRP levels
after cardioversion in patients with persistent AF and preserved LVEF, regardless of the
post-procedural underlying rhythm. However, NT-proBNP levels decreased significantly
in patients who maintained sinus rhythm but not in those who had AF. Yet, baseline hs-CRP
levels, but not echocardiographic features of atrial dysfunction and initial NT-proBNP
levels, predicted recurrences of AF after cardioversion in patients without pre-existing
left ventricular dysfunction [138]. Barassi A et al. (2012) [139] and Korantzopoulos P et al.
(2008) [140] confirmed that in patients with persistent AF and preserved LVEF, elevated
hs-CRP levels independently predicted subacute AF recurrence rate, whereas NT-proBNP
concentrations were not associated with arrhythmic outcome but corresponded to the
alterations of cardiac hemodynamics secondary to the presence of AF.

Overall, there is ample strong evidence that elevated preprocedural hs-CRP levels may
provide independent predictive information for both successful electrical cardioversion
of AF and maintenance of sinus rhythm after conversion [141,142]. The meta-analysis by
Liu et al. [143], which included six prospective observational studies (n = 366 patients),
showed that peripheral blood CRP levels were higher in patients with failed electric
cardioversion than in those with successful restoration of sinus rhythm. In another meta-
analysis by Yo CH et al. (2014) [144], a cut-off value of 1.9 mg/L hs-CRP predicted long-term
AF recurrence (77% sensitivity, 65% specificity), and more than 3 mg/L predicted short-
term AF relapse (73% sensitivity, 71% specificity). Thus, the measurement of CRP levels
before the procedure may provide additional prognostic information about the success of
sinus rhythm maintenance.

In addition, there are data illustrating that hs-CRP levels measured shortly after
electrical cardioversion may be a powerful biomarker for assessing the risk of relapsing
AF in the long-term. In particular, Celebi OO et al. (2011) [145] reported that hs-CRP
levels measured before and 2 days after electrical cardioversion predicted the 1-year risk
of AF relapse. Whether postprocedural hs-CRP provides more information to predict
the event than preprocedural hs-CRP is still unclear. However, elevated levels of hs-
CRP predicted new-onset AF in the general population and among patients with known
cardiovascular diseases, while their role as a marker of sustainable sinus rhythm control
places under question.

4.4. Myokines and Adipocytokines

Several interdependent canonic signaling pathways, such as the renin-angiotensin-
aldosterone system; TGF-beta pathway, inflammatory chemokines, and cytokines lead
to cardiac fibrosis through modulation of oxidative stress and inflammation. However,
the direct mechanical stretch may act as a modulator of extracellular matrix remodel-
ing by attenuating the expression of matrix metalloproteinases and their inhibitors. Re-
cently, another signaling pathway has been identified that induces atrial fibrosis via the
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secretion of adipokines from epicardial, perivascular, and adipose tissue white adipocytes.
In addition, recent studies have shown that myokines derived from cardiac and skeletal
muscle myocytes may act as adaptive regulators of extracellular matrix remodeling and
can attenuate fibrosis [146,147]. Depending on their origin, adipokines and myokines
may modulate myofibroblast capabilities, regulate myocyte energy homeostasis and pro-
tect against inflammation and fibrosis [148,149]. However, some pro-fibrotic adipokines
and myokines can switch a generation of reactive oxygen species to pro-inflammatory
and pro-fibrotic stimuli, stimulate myofibroblast differentiation through JAK/STAT3 and
JNK/c-Jun signaling, interfere with myocyte electrophysiology, and promote fibrosis in
the myocardium [150–152]. Numerous previous studies have shown that resistin, apelin,
and adiponectin are adipokines associated with several known risk factors for AF and risk
of AF [153–156]. A recent meta-analysis of 34 studies (total number of patients = 31,479)
showed that some adipokines, mainly adiponectin, apelin, and resistin, were associated
with the risk of AF in the pooled univariate data, whereas the associations were not appar-
ent after multivariate adjustment [157]. However, there is limited evidence of the relation
between adipokine and myokine signatures and the risk of AF-related outcomes after
electric cardioversion.

4.4.1. Apelin

Apelin is a multifunctional regulatory peptide with potential cytoprotective properties.
It is a ligand of the angiotensin II protein J receptor (APJ) receptor and belongs to the G
protein-coupled receptor family [158]. Apelin mRNA is widely expressed in tissues such
as the cardiovascular, central nervous, adipose, skeletal muscles, and gastrointestinal sys-
tems. The Apelin/APJ axis mediates signal transduction for regulating energy homeostasis,
including glucose and lipid metabolism, mitochondrial function, angiogenesis, cellular
proliferation, and differentiation [159]. Furthermore, apelin inhibits apoptosis, decreases
myocardial infarction size, and prevents myocardial ischemia/reperfusion injury via the
PI3K/Akt and ERK1/2 caspase signaling. It is also engaged in the autophagy pathway,
attenuation of inflammatory reactions, and prevention of atherosclerotic plaque forma-
tion [160]. Several controversial issues remain regarding whether the apelin/APJ system is
essential for regulating atrial and ventricular remodeling by alleviating myocardial hyper-
trophy induced by angiotensin II, oxidative stress, and TGF-beta1 [161–163]. Nevertheless,
it has been shown that atrial wall stretching can activate the myocardial APJ axis [164].
Moreover, APJ was found to be essential for stretch-induced contractility and may also
induce ectopic electrical activity by Ca2+ sensitization of myofilaments. It is believed
that apelin counteracts APJ’s stretch-triggered hypertrophy signaling by suppressing Ca2+

transients [164]. Along with it, there are a variety of vascular effects of apelin that include
regulation of systolic and diastolic blood pressure through vasorelaxation and an increase
in regional blood flow [165,166].

Previous studies have shown that circulating levels of apelin were sufficiently lower
in patients with established cardiovascular diseases (coronary artery disease, myocardial
infarction, acute coronary syndrome, HF), T2DM, and obesity than in healthy volun-
teers [167,168]. A meta-analysis of 30 studies revealed a negative association of apelin
serum levels with cardiovascular diseases [169]. However, peripheral blood apelin con-
centrations were not only significantly decreased in AF patients compared with healthy
controls but also independently predicted recurrent AF in patients with persistent AF. This
included cases occurring after pulmonary vein isolation in subjects without structural
heart disease [170–172]. It has been suggested that low apelin levels may interfere with AF
susceptibility through elevated atrial NADPH-dependent oxidative stress and the TGF-
β/Smad2/α-SMA pathway associated with mitochondrial dysfunction and myocardial
fibrosis [173,174]. In addition, the apelin/APJ axis might be involved in atrial thrombus
formation among AF patients, possibly as a result of concomitant downstream plasminogen
activator inhibitor-1 (PAI-1) [175].
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The predictive role of apelin for AF occurrence after electric cardioversion remains
uncertain. In a small comparative study, Kallergis EM et al. (2010) [176] showed that
baseline apelin levels did not independently predict AF recurrence, whereas NT-proBNP
did. Interestingly, maintenance of sinus rhythm after electrical cardioversion resulted in
an increase in serum apelin levels and a decrease in serum NT-pro-BNP levels. However,
more studies are needed to clarify apelin’s discriminative potency for AF recurrence in
AF patients after electrical cardioversion, with comparisons of apelin’s predictive value to
other conventional and promising biomarkers.

4.4.2. Irisin

Irisin was previously described as a hormone-like myokine, which is mainly secreted
by skeletal muscle and myocardium and is a derivative of the membrane protein fibronectin
type III domain-containing 5 (FNDC5) [177]. Exercise increases serum levels of irisin,
which exert cytoprotective effects on remote organs and tissues, including the heart, kidney,
vasculature, bones, and brain [177,178]. Irisin interacts with αV/β5 integrin on the surface
of target cells and induces a wide range of biological effects, including stimulation of
glucose and lipid metabolism, increase in insulin resistance, browning of visceral adipose
tissue, thermogenesis, angiogenesis, survival of osteoblasts, and production of bone-related
proteins such as sclerostin [179–182].

Serum irisin levels were significantly decreased in obese and T2DM patients compared
with nondiabetic controls, as well as in patients with known cardiovascular disease (car-
diac hypertrophy, stable coronary artery disease, chronic HF, multifocal atherosclerosis)
compared with healthy volunteers [183,184]. On the contrary, acute HF, acute coronary
syndrome, and acute myocardial infarction were associated with an increase in irisin levels,
which is considered an adaptive factor that reduces endothelial damage by inhibiting
inflammatory reactions and suppressing oxidative stress [185–187]. A low irisin level was
described as an independent predictor of clinical outcomes in HF patients [188,189]. Al-
though patients with HFpEF and AF had significantly lower irisin levels than those without
AF [190], the role of irisin in predicting AF-related events, including relapse after electric
cardioversion, has not yet been investigated.

4.4.3. Bone-Related Proteins

There is growing strong evidence that inflammatory responses are involved in the
development of AF and its complications. Bone-related proteins are matricellular peptides
that mediate diverse biological functions and are involved in many pathological conditions
in cardiovascular disease, including fibrosis, microvascular inflammation, calcification,
extracellular remodeling, and atherosclerotic plaque formation [191]. Bone-related proteins,
such as osteoprotegerin (OPG) and TNF-related apoptosis-inducing ligand (TRAIL), medi-
ate a link between cardiovascular comorbidities and diseases, such as diabetes mellitus,
CKD, atherosclerosis, HF, vascular calcification, and the occurrence of AF [192]. Indeed,
cardiovascular comorbidities were associated with higher OPG levels and lower TRAIL lev-
els immediately after the first hours of AF paroxysm [125,193]. Furthermore, osteopontine
(OPN) levels were related to an increased risk of systemic thromboembolism and ischemic
stroke in patients with AF [194]. OPG and OPN were found to be predictors of HF outcomes
independent of AF presence and have been included in a multiple-scoring system to predict
survival in chronic HF [195]. In a small clinical study involving 100 non-CVD patients
with and without AF recurrence, low levels of bone morphogenetic protein 10 exhibited
predictive value for sinus rhythm maintenance with a striking similarity to NT-proBNP [83].
However, it remains unclear whether these biomarkers have prognostic abilities for the
maintenance of sinus rhythm in AF patients after electrical cardioversion.
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4.5. Biomarkers of Oxidative Stress and Endothelial Dysfunction
4.5.1. Cell-Free Circulating DNA

Cell-free circulating DNA (cfcDNA) circulates in two main pools: circular and single-
stranded molecules belonging to mitochondrial-derived and nuclear-derived subpopu-
lations, reflecting patterns of DNA methylation and a variety of neutrophil extracellular
traps (NETosis) [196,197]. The cfcDNA are determined in subdetectable concentrations
under certain physiological conditions, such as physical exercise, whereas increased circu-
lating levels of these fragments are strongly associated with cardiovascular, autoimmune,
rheumatic diseases, infections, and malignancy [198–202]. The main causes of cfcDNA
production are mitochondrial dysfunction and inflammation, which are powerful drivers
of numerous diseases and conditions, including AF [203].

Wiersma M. et al. (2020) [204] reported that levels of cell-free circulating mitochondrial
DNA (cfc-mtDNA) were significantly increased in patients with paroxysmal AF under-
going AF treatment, especially in men and in patients with AF recurrence after electrical
cardioversion or pulmonary vein isolation. In contrast, cfc-mtDNA levels gradually de-
creased in patients with persistent AF and long-standing persistent AF. Nevertheless, the
authors suggested that cfc-mtDNA levels might be associated with the stage of AF and the
risk of AF recurrence after treatment, especially in men. Gender differences in descriptive
values of cfc-mtDNA for AF recurrence remain poorly understood but could be related to
different comorbidities in both subpopulations. However, another study found no signifi-
cant changes in mtDNA copy number in the peripheral blood of AF patients of different sex
and age [205]. Perhaps, cfcDNA may be included in the multiple biomarker models with
the aim of improving their predictive potency in AF patients with low levels of NT-proBNP
or in AF patients with malignancy who are treated with chemotherapy.

4.5.2. mRNA

MicroRNAs (miRNAs) participate in atrial remodeling and cardiac fibrosis, contribut-
ing to the development of AF [206]. Garcia-Elias A et al. (2021) [207] established that
circulating levels of miR-199a-5p and miR-22-5p, which regulate fibrogenic response in
the myocardium, were higher in HFrEF patients with AF than in those without AF [207].
MiR-21, which corresponds to atrial fibrosis, is associated with the risk of persistent AF
in patients with left atrial enlargement [208]. Interestingly, increased circulating levels of
miR-1-3p, which is a myosine gene regulator involved in hypertrophy, myocardial infarc-
tion, and cardiac arrhythmogenesis, predicted a high risk of subclinical AF [209]. MiR423,
which downregulates fibrosis-related genes such as collagen I, collagen III, fibronectin,
and TGF-beta, may be a pivotal factor in stratifying patients at risk of AF occurrence and
persistence [210]. Moreover, differences in miRNA expression in the atrial myocardium
of men and women may mediate a sex-specific association between circulating miRNAs
in plasma and AF at the population level [206]. In addition, there is evidence that epige-
netic regulation of NETosis may participate in the development of AF susceptibility. As a
matter of fact, miR-146a and miR21 may provide prognostic information in patients with
AF [211,212] due to its direct effects on NETosis. In a study by da Silva AMG (2018) [213],
miR-21, miR-133b, and miR-499, which are directly involved in the downregulation of
apoptosis and fibrosis, were found to be directly involved in AF. However, it remains to
be determined whether a signature of mi-Rs can be used to predict poor response to AF
treatment, including electrical cardioversion. At the same time, Zhou Q et al. (2018) [213]
reported that among 123 miRs affecting cardiac fibrosis, hypertrophy, and inflammation by
relation with the SMAD7 and FASLG genes, only miR-21 demonstrated a positive correla-
tion with left atrial low-voltage areas in patients with persistent AF and was associated
with post-ablation outcome. Overall, the signature of miRs appears to be a more promising
tool for higher AF risk than for outcomes after treatment, although this conjecture needs to
be further investigated in the future.
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4.5.3. Asymmetric Dimethylarginine

Asymmetric dimethylarginine (ADMA) is a well-known biomarker of endothelial
dysfunction that indirectly reflects vascular NO production and exhibits certain predictive
information for mortality and morbidity of cardiovascular diseases, including AF [214,215].
In the population-based Gutenberg Health Study (n = 5000), ADMA levels were correlated
with left ventricular hypertrophy and AF prevalence [216]. An ARISTOTLE (Apixaban for
Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) substudy
showed that elevated ADMA levels exhibited a weak association with thromboembolic
events in AF patients treated with anticoagulants (warfarin or apixaban) for a median of
1.9 years [217]. The investigators found that tertile groups of ADMA levels were sufficiently
associated with death, stroke, and systemic embolism and that incorporating ADMA into
CHA2DS2-VASc or HAS-BLED predictive models significantly improved C-indices for
those clinical outcomes [217].

There is strong evidence that acute and persistent episodes of AF seem to show
elevated ADMA levels accompanied by increased biomarkers of ischemic myocardial injury
like cardiac troponins [218]. In the animal AF model, ADMA concentrations in peripheral
blood returned to normal within 24 h after successful electrical cardioversion [218]. Along
with it, increased circulating levels of ADMA in AF may be reduced by a Mediterranean
diet and statin treatment [219,220]. Thus, being closely associated with thrombus formation
and CHADS2/CHA2DS2-VASc score, ADMA is a biomarker for predicting pro-thrombotic
risk in AF [221,222].

There are controversial data for ADMA’s predictive ability regarding AF recurrence
after electrical cardioversion. Xia W et al. (208) [223] reported that elevated ADMA
levels were strongly associated with an increased risk of AF relapse within 1 month after
electrical cardioversion. On the contrary, Tveit A et al. (2010) [224] found that the levels of
ADMA and the L-arginine/ADMA ratio did not exert predictive ability for sinus rhythm
maintenance after electrical cardioversion, while the L-arginine/ADMA ratio remained
elevated in patients with sinus rhythm for 6 months compared with patients with AF
recurrence. The discriminative potency of ADMA may be strongly related to comorbidities.
Indeed, serum ADMA levels were not associated with incident AF in the general population
after adjusting for other cardiovascular risk factors [224]. Overall, the utility of ADMA
refines clinical risk stratification in AF regardless of the treatment strategy.

5. Conclusions

Previous clinical studies demonstrated limited ability to predict the efficacy of electrical
cardioversion with conventional biomarkers, which described adverse cardiac remodeling,
biomechanical stress, fibrosis, inflammation, endothelial dysfunction, oxidative stress,
and mitochondrial dysfunction. Epigenetic biomarkers such as miRs and biomarkers of
oxidative stress and inflammation such as cfcDNA appear to show highly variable results
in predicting post-procedural events. A biomarker-based strategy for predicting events
after AF treatment requires extensive future investigation, especially in different gender
and variable comorbidity profiles. Therefore, a multiple biomarker approach may be more
useful than using a single biomarker for patients with different forms of AF. Large clinical
trials are needed to make direct face-to-face comparisons with different biomarkers and
their combinations.
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Appendix A

Table A1. Predictive values of different biomarkers in prediction of AF-related complications after
electrical cardioversion.

Biomarkers Population Observation Period Significance/Outcomes References

Biomechanical stress

BNP 58 patients with persistent AF
and preserved LVEF 6 months

Baseline BNP level and the magnitude
of its decrease after successful

cardioversion predicted AF recurrence
[82]

NT-proBNP and
BMP10

100 non-CVD patients with and
without AF recurrence 30-day follow-up

Low NT-proBNP levels and BMP10
levels after electric cardioversion

predicted sinus rhythm restoration
[83]

BNP and
NT-proBNP 43 patients with persistent AF 18 months

Pre- and post-procedural levels of
BNP and NT-proBNP did not predict

new episodes of AF
[84]

NT-proBNP 199 patients with persistent AF 30 days

The levels of NT-proBNP > 500 ng/L
predicted recurrence of AF in 30 days

after successful electrical
cardioversion

[85]

NT-pro-BNP 40 patients with persistent AF 1 month
Elevated baseline NT-pro-BNP

predicted AF recurrence after electric
cardioversion

[86]

NT-pro-BNP 171 patients with persistent AF
without HF 1 month

Pre-cardioversion and
post-cardioversion NT-pro-BNP levels

did not predict a relapse of AF in
patients without HF

[87]

ANP and BNP 71 HF patients with
persistent AF 1 month

Low ANP and high BNP levels before
electric cardioversion independently

predicted recurrent AF
[88]

ANP and BNP 60 patients with persistent AF 12 months

The BNP level ≥700 fmol/mL on
day 7 after cardioversion predicted AF

recurrence. ANP level was not
predictive of AF recurrence

[89]

NT-proBNP 200 patients with newly onset
AF with and without HF 1 month

NT-proBNP levels of either
≤450 pg/mL or >1800 pg/mL had

positive and negative predictive
values for cardioversion in

rate-control and rhythm-control
strategies

[90]

Cardiac fibrosis

Gal-3 90 patients with persistent AF 3 months

Serum Gal-3 level independently
predicted early AF recurrence

following successful direct-current
electrical cardioversion.

[98]

Gal-3 82 patients with persistent AF 1 month
Baseline serum levels of Gal-3 were

not associated with a risk of
recurrent AF

[101]

Gal-3 75 non-HF patients with
paroxysmal or persistent AF 1 year Pre-procedural Gal-3 levels did not

predict recurrent AF [102]
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Table A1. Cont.

Biomarkers Population Observation Period Significance/Outcomes References

sST2 80 patients with persistent AF
without HF 12 months

Serum levels of sST2 predict sinus
rhythm maintenance after

cardioversion of AF in patients
without HF

[112]

FGF-23 79 patients with persistent AF 12 months
FGF-23, but not Gal-3, PIIINP, and

ICTP, had weak predictive ability for
relapsing AF

[113]

PIIINP
88 patients with maintenance of

sinus rhythm and 54 patients
with AF recurrence

24 months
Baseline PIIINP levels >0.72 U/mL

independently predicted AF
recurrence after electric cardioversion

[114]

Inflammation

GDF15 82 patients with persistent AF 1 month

GDF-15 levels correlated positively
with the CHA2DS2-VASc score, but

not associated with a risk of recurrent
AF after electric cardioversion

[101]

hs-CRP 102 patients with non-valvular
persistent AF 1 year

Low levels of hs-CRP were associated
with long-term maintenance of sinus
rhythm after electrical cardioversion

for AF

[137]

hs-CRP 53 patients with persistent AF
and a mean LVEF of 58.7 ± 6% 3 weeks

No changes in hs-CRP levels and
decrease in NT-proBNP levels after

effective cardioversion.
Pre-procedural levels of hs-CRP
predicted recurrence rate of AF

[138]

hs-CRP 57 patients with a mean LVEF of
58.7 ± 6% 3 weeks

Pre-procedural levels of hs-CRP, but
not NT-proBNP, predicted recurrence

rate of AF
[139]

hs-CRP
60 patients who received

amiodarone for sinus rhythm
maintenance

3 years

Pre-procedural levels of
CRP >0.43 mg/dL were an
independent predictor of

AF recurrence

[140]

hs-CRP 106 patients with a history of
symptomatic AF lasting ≥ 1 day 36 days

Pre-procedural hs-CRP
levels ≥0.06 mg/dL predicted both
AF recurrence and maintenance of

sinus rhythm

[141]

hs-CRP 56 patients with persistent AF 180 days

Pre-procedural hs-CRP <0.8 mg/L
was significantly associated with

lower AF recurrence rates and
maintenance of sinus rhythm

[142]

hs-CRP 216 patients with persistent AF 12 months
The baseline and 2-day levels of

hs-CRP levels contributed a risk of
AF recurrence

[145]

Apelin and
NT-proBNP

40 patients with persistent AF
and 15 controls in sinus rhythm 1 month

Pre-procedural apelin levels were
lower and NT-pro-BNP levels were

higher in patients with AF compared
to controls. Cardioversion led to an

increase in apelin levels and a
decrease in NT-proBNP levels. Apelin

did not predict AF recurrence, but
NT-proBNP did

[176]
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Table A1. Cont.

Biomarkers Population Observation Period Significance/Outcomes References

Biomarkers of oxidative stress and mitochondrial dysfunction

cfc-mtDNA

59 non-AF patients undergoing
cardiac surgery, 100 patients

with paroxysmal AF,
116 patients with persistent AF,
20 longstanding-persistent AF

individuals and 84 control
individuals

-

Elevated cfc-mtDNA levels were
found in patients with paroxysmal AF
undergoing electrical cardioversion or
pulmonary vein isolation, as well as in

patients with AF relapse after AF
treatment. In patients with persistent
AF and longstanding persistent AF,

the levels of cfc-mtDNA
gradually decreased

[204]

miR-199a-5p
and miR-22-5p

49 HFrEF with AF and 49 HFrEF
with sinus rhythm -

Elevated levels of circulating
miR-199a-5p and miR-22-5p were

associated with AF in HFrEF patients
[207]

miR-21
60 persistent AF patients and

60 matched sinus rhythm
volunteers

-

Circulating miR-21 positively
correlates with the quantification of
left atrial fibrosis and is associated

with the risk of persistent AF in
patients with left atrial enlargement

[208]

miR-1-3p

64 consecutive patients with
cryptogenic stroke, 9 patients

with AF and 9 individuals with
sinus rhythm

6 and 12 months Elevated plasma levels of miR-1-3p
predicted AF [209]

miR-21,
miR-133a,
miR-133b,
miR-150,
miR-328,

and miR-499

5 acute new-onset AF patients,
16 well-controlled AF and

15 control
-

miR-21, miR-133b, and miR-499,
which downregulate apoptosis and
fibrosis, were found to be directly

related to AF

[213]

Biomarkers of endothelial dysfunction

ADMA 64 patients with persistent AF 1 month

High levels of ADMA were strongly
associated with an increased risk of

AF relapse after electrical
cardioversion

[222]

ADMA 98 patients with persistent AF 6 months
Changes in ADMA did not predict

rhythm outcome after electrical
cardioversion

[223]

Abbreviations: ADMA, asymmetric dimethylarginine; ANP, atrial natriuretic peptide; CVD, cardiovascular
disease; BNP, brain natriuretic peptide; BMP10, bone morphogenetic protein 10; HF, heart failure; hs-CRP,
high-sensitivity C-reactive protein; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro-B-type
natriuretic peptide; sST2, soluble suppressor tumorigenisity-2; Gal-3, galectin-3; PIIINP, procollagen type III N
terminal peptide; ICTP, type I collagen carboxyl telopeptide; FGF-23, fibroblast growth factor 23, cfc-mtDNA,
cell-free circulating mitochondrial DNA.
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