МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ УКРАИНЫ ЗАПОРОЖСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ФИЗИЧЕСКОЙ И КОЛЛОИДНОЙ ХИМИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ И ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ ПО МЕДИЦИНСКОЙ ХИМИИ ДЛЯ СТУДЕНТОВ МЕДИЦИНСКОГО ФАКУЛЬТЕТА

Тема: Кислотно-основные равновесия. Буферные системы

Репензенты:

зав кафедрой органической химии д. фарм. н., Коваленко С.И. проф. кафедры биологической химии д. фарм. н., Романенко Н.И.

Методическое пособие подготовили сотрудники кафедры физической и коллоидной химии Запорожского государственного медицинского университета:

- д. фарм. н., *Каплаушенко А.Г.*;
- доц. Похмёлкина С.А.;
- − доц. Чернега Г.В.;
- доц. Пряхин О.Р.;
- ст. пр. Авраменко А.И.;
- acc. Юрченко И.А.;
- ст. лаб. Щербак М.А.

Методические указания к практическим занятиям и выполнению лабораторных работ по медицинской химии для студентов медицинского факультета. Тема: Кислотно-основные равновесия. Буферные системы / А. Г. Каплаушенко [и др.]. – Запорожье : [ЗГМУ], 2015. – 38 с.

Рассмотрено и утверждено на заседании цикловой методической комиссии химических дисциплин Запорожского государственного медицинского университета (протокол № от _____ 2015года)

Предисловие

Биолонические жидкости – плазма крови, желудочный сок, спиномозговая жидкость, желчь, моча и др. в своем составе содержат определенное количество катионов и анионов, образовавшихся после диссоциации солей органических кислот и таким образом являющихся электролитами. В плазме крови в основном содержатся макроэлементов Na⁺, K⁺, Ca²⁺, Mg²⁺ и анионы Cl-, HCO₃-, H₂PO₄-, HPO₄²⁻, SO_4^{2-} . Растворы белков (ВМС) представляют собой полиэлектролиты. Наличие у белка двух функциональных групп – COOH и NH₂ сообщают им свойства кислоты и основания соответственно. С содержанием этих соединений связаны значения осмотического давления и рН биологических жидкостей. В связи с этим, для интерпретации многих биологических явлений необходимо знать закономерности происходящих растворах электролитов, давать количественную процессам – электролитической равновесным диссоциации, реакциям протолиза и гидролиза, образованию и растворению осадка и др.

Большую роль в нормальном функционировании организма играет кислотно-основное равновесие, определяющееся значением рН внутренних сред.

В последнее кислотно-щелочного время выявлены нарушения различных сердечно-сосудистых заболеваниях: При равновесия при ишемической болезни сердца закономерно возникновение ацидоза, при инфаркте миокарда наблюдается сдвиг рН в кислую область. Одновременно наблюдается снижение ионов калия в плазме крови и эритроцитах. Тяжелые формы сахарного диабета сопровождаются уменьшением рН крови.

Величина рН существенно влияет на обмен веществ в организме, в основе которого лежат различные ферментативные реакции. Для каждого фермента существует отдельная область рН, в которой действие фермента оптимально.

Постоянство рН внутренних сред организма поддерживается наряду с физиологическими механизмами, буферными системами. Знание механизмов действия буферных систем, определение рН является необходимым для коррекции кислотно-основного баланса.

КИСЛОТНО-ОСНОВНЫЕ РАВНОВЕСИЯ. БУФЕРНЫЕ СИСТЕМЫ

Цель занятия (общая): Изучить теории кислот и оснований, свойства сильных и слабых электролитов, методы определения рН, понятия о буферных растворах.

Целевые задачи:

- •изучить теории кислот и оснований, а также свойства сильных и слабых кислот;
- •научиться проводить расчеты степени, константы диссоциации, pH раствора (в т.ч. буферного), буферной емкости;
- •овладеть методиками определения pH растворов, в том числе биологических жидкостей;
 - •научиться давать оценку достоверности полученных результатов;
 - •усвоить тестовый материал по теме занятия.

Студент должен знать:

- теории кислот и оснований;
- параметры, характеризующие кислотно-основные равновесия;
- свойства сильных и слабых кислот;
- метод определения концентрации кислот и оснований;
- характеристику буферных растворов;
- применение основных положений кислотно-основного равновесия к живым организмам

Студент должен уметь:

- определять концентрацию кислоты или основания титриметрическим методом;
 - пользоваться бюреточной установкой, магнитной мешалкой.
 - проводить расчеты рН сильных и слабых кислот и оснований;
 - готовить буферные растворы;
 - проводить расчет буферной емкости;

- определять достоверность проведенных измерений и расчетов.

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ПО ТЕМЕ ЗАНЯТИЯ

Постоянство кислотно-основнойсистемыравновесия, как известно, нормальной является ОДНИМ ИЗ основных условий жизнедеятельностиорганизма. От величины рН зависит стабильность мембран, функции ферментов, диссоциация электролитов, нервно-мышечная возбудимость и проводимость, комплексообразование и др. процессы. представляет собой соотношение Кислотно-основная система концентрациями активных масс водородных и гидроксильных (основных) ионов. Его характеризуют с помощью рН – отрицательный десятичный логарифм концентрации водородных ионов. Сдвиг pH на ± 0.1 по сравнению физиологической нормой приводит к расстройству дыхания кровообращения, на ± 0.3 – потере сознания, а в диапазоне ± 0.4 – гибели организма. В процессе жизнедеятельности организма образуются как кислые, так и щелочные продукты метаболизма, причем первых образуется почти в 20 раз больше, чем вторых. Поэтому механизмы, обеспечивающие поддержание постоянство кислотно-основной системы организма, направлены на нейтрализацию и выведение, прежде всего кислых продуктов метаболизма.

Различают 2 варианта нарушения кислотно-основного баланса:

Ацидози алкалоз.

Механизмы регуляции кислотно-основной системы организма весьма эффективны способны компенсировать И значительные сдвиги Поддержание кислотно-основной системы организма обеспечивается буферными системами тканей И функционированием крови И физиологических механизмов компенсации: легких, почек, печени, ЖКТ, костной ткани, кожи.

Теория растворов слабых электролитов

В 1887 г. С.Аррениус создал теорию электролитической диссоциации (ТЭД).

Основные положения.

- 1. Электролиты при растворении или расплавлении распадаются на ионы.
- 2. В растворе электролитов сольватированные (гидратированные) ионы движутся хаотически. При пропускании через раствор электрического тока катионы двигаются к катоду (), а анионы к аноду (+).
 - 3. Диссоциация (ионизация) процесс обратимый.

Слабые электролиты в растворах диссоциируютнеполностью.

Степень электролитической диссоциации α показывает долю молекул, распавшихся на ионы.

Степень электролитической диссоциации рассчитывается как отношение числа молекул, распавшихся на ионы (n), к общему числу молекул растворенного вещества (N_o):

$$\alpha = \frac{n}{N_0} \cdot 100 \%.$$

Между K_{π} и α существует взаимосвязь. Если обозначить концентрацию электролита, распадающегося на два иона, через C, а степень его диссоциации в данном растворе через α , то концентрация каждого из ионов будет $C \cdot \alpha$, а концентрация недиссоциированных молекул $C(1-\alpha)$. Тогда уравнение константы диссоциации принимает вид: $K_{\pi} = \frac{C\alpha^2}{1-\alpha}$. Это уравнение является математическим выражением закона разведения Оствальда.

Теория растворов сильных электролитов

Разработана в 1923 г. П. Дебаем и С. Хюккелем.

Основные положения.

- 1. Сильные электролиты в водных растворах полностью диссоциируют, т.е. степень диссоциации α = 1 или 100%. В растворах электролитов ионы взаимодействуют с полярными молекулами растворителя и образуются сольватные оболочки (гидратные оболочки, если растворитель вода). Гидратные оболочки увеличивают размер ионов и поэтому уменьшается способность иона переносить электрический ток, участвовать в химических реакциях.
- 2. Ионы взаимодействуют сдруг другом и вокруг каждого гидратированного иона возникает "ионная атмосфера" из гидратированных ионов противоположного знака, что тормозит действие каждого иона.

Под активностью электролита понимают условную эффективную концентрацию, в соответствии с которой электролит проявляет себя в химических реакциях, коллигативных свойствах растворов, при переносе электрических зарядов. Активность связана с истинной концентрацией растворенного вещества соотношением $\mathbf{a} = \mathbf{f_a} \cdot \mathbf{C}$, где \mathbf{C} - аналитическая концентрация, моль/л; а - активность электролита, моль/л; $\mathbf{f_a}$ - коэффициент активности (величина безразмерная). $\mathbf{f_a} = \alpha_{\text{кажушаяся}}$

Другой количественной характеристикой межионных электростатических взаимодействий является ионная сила раствора I :

$$I = {}^{1}/_{2} (C_{1}z_{1}^{2} + C_{2}z_{2}^{2} +C_{i}z_{i}^{2})$$

где: С - концентрация данного иона в моль/кг, z - заряд каждого иона.

Между ионной силой раствора I и коэффициентом активности f_a существует взаимосвязь: $lgf_a = -0.5 z^2 \sqrt{1}$,

где z – заряд иона. Чем больше ионная сила раствора и величина заряда ионов, тем меньше коэффициент активности.

Классификация кислот и оснований

Первая теория, разделившая вещества на кислоты и основания, была предложена Аррениусом. Согласно Аррениусу, кислоты – это вещества, при диссоциации которых в водном растворе образуются ионы водорода H⁺, а

основания — вещества, при диссоциации которых образуются ионы гидроксила OH

Теория Льюиса. По Льюису кислоты – вещества, принимающие пару электронов, основания – вещества, отдающие ее.

Теория Пирсона. При взаимодействии кислоты-акцептора пары электронов с основанием-донором пары электронов не обязательно должна образовываться ковалентная связь, а могут возникать ионная и координационная связи. Согласно данной теории в круг кислотно-основных реакций включаются реакции комплексообразования.

Теория Усановича. Кислоты — вещества, отдающие катионы или принимающие анионы (или электроны), основания — вещества, отдающие анионы (или электроны) и принимающие катионы. При такой формулировке в классы кислот и оснований включаются кислоты и основания Льюиса, окислители и восстановители.

Протолитическая теория кислот и оснований

Теория Бренстеда—Лоури дает наиболее общие представления о кислотах и основаниях. Согласно данной теории кислоты — вещества или ионы, способные отдавать ион водорода (протон), основания — вещества или ионы, способные принимать протоны. Есть вещества, способные быть и донорами, и акцепторами протонов, их называют амфолитами.

Ионное произведение воды и водородный показатель

Вода — очень слабый электролит и диссоциирует незначительно. Диссоциация H_2O — это протолитическая реакция:

$$H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$$

основание 1 кислота 2 кислота 1 основание 2

или упрощенно: $H_2O \rightleftharpoons H^+ + OH^-$

Константа диссоциации воды при 298K, определенная методом электрической проводимости, равна:

$$K_{\text{д}}(\text{H}_2\text{O}) = \frac{[\text{H}^+][\text{OH}^-]}{[\text{H}_2\text{O}]} = 1.8 \cdot 10^{-16}$$
моль/л

Вода присутствует в большом избытке, ее концентрация $[H_2O]$ может считаться постоянной и составляет 55,6 моль/л (1000 г : 18 г/моль = 55,6 моль). Объединяем две постоянные величины $K_q(H_2O)$ и $[H_2O]$ в одну, получаем:

$$K_{\rm H_2O} = [H^+][OH^-] = 1.8 \cdot 10^{-16} \cdot 55.6 = 10^{-14}$$

Величину К_{н₂0} **называют ионным произведением воды.** Эта величина постоянная при данной температуре. С ростом температуры ионное произведение воды увеличивается.

Если $[H^+] = [OH^-] = 10^{-7}$ моль/л, то это нейтральная среда. Если $[H^+] > [OH^-]$, т.е. $[H^+] > 10^{-7}$, то раствор имеет кислую среду. Если $[H^+] < [OH^-]$, т.е. $[H^+] < 10^{-7}$, то раствор имеет щелочную среду.

Водородный показатель.

На практике использование концентрации водородных ионов [H⁺] для характеристики среды не очень удобно. Поэтому для этой цели используют отрицательный десятичный логарифм активности (концентрации) водородных ионов, называемый водородным показателем рН среды:

$$pH = - lg \ a(H^+)$$
 или $pH = -lg[H^+]$

Аналогично гидроксильный показатель pOH = $- \lg a(OH^-)$ или pOH = $- \lg[OH^-]$

Например, если $[H^+] = 10^{-2}$ моль/л (кислая среда), то pH = 2, а когда $[H^+] = 10^{-9}$ моль/л (щелочная среда), то pH = 9. В нейтральной среде $[H^+] = 10^{-7}$ моль/л и pH = 7. Из этих примеров следует, что:

если pH = 7, то это нейтральная среда; если pH < 7, то это кислая среда; если pH > 7, то это щелочная среда. Логарифмируя выражение $[H^+][OH^-] = 10^{-14}$ и проведя математические преобразования, получаем: pH + pOH = 14.

Роль ионов водорода в биологических процессах

Биологические жидкости содержат сильные и слабые кислоты: HCl, H_2CO_3 , пировиноградную, молочную кислоты и другие.

Различают три вида кислотности в биологических жидкостях:

- 1. **Общая кислотность** это общая концентрация сильных и слабых кислот. Общую кислотность обычно определяют методом кислотно-основного титрования.
- 2. **Активная кислотность** равна активности (концентрации) свободных ионов водорода в растворе. Мерой активной кислотности служит значение pH раствора.
- 3. **Потенциальная кислотность** равна концентрации непродиссоциированных молекул слабых кислот и рассчитывается по разности значений общей и активной кислотностей.

Определение водородного показателя

Колориметрическое определение рН основано на изменении цвета кислотно-основных индикаторов, окраска которых зависит от рН среды. Индикаторы могут быть одноцветными, имеющими окраску только в щелочной среде, а в кислой среде — бесцветные (фенолфталеин, нитрофенолы), и двухцветными, имеющими различную окраску в кислой и щелочной средах (метилоранж, феноловый красный и др.).

Каждый индикатор характеризуется показателем титрования и интервалом (зоной) перехода окраски.

Показатель титрования pT — это значение pH в пределах интервала перехода окраски, при котором наблюдается наиболее резкое изменение цвета индикатора.

Интервалом перехода окраски индикатора называется интервал значений pH (ΔpH), в пределах которого происходит различимое глазом

изменение окраски индикатора. Граница интервала перехода приблизительно равна р $T_{\text{индикатора}}$ \pm 1. При определении рH раствора можно использовать только тот индикатор, в интервал перехода окраски которого входит рH исследуемого раствора.

Таблица 4 Кислотно-основные индикаторы

Индикатор	рТинд.	Интервал перехода окраски		
		окраска I	ΔрΗ	окраска II
Метиловый оранжевый	3,7	красная	3,1–4,4	желтая
Метиловый красный	5,7	красная	4,2–6,3	желтая
Лакмус	7,0	красная	5,0-8,0	синяя
Фенолфталеин	9,2	бесцветная	8,2–10,0	малиновая

Потенциометрическое (ионометрическое) определение рН основано на измерении электродвижущей силы (ЭДС) гальванической цепи, составленной из индикаторного полуэлемента (электрода определения), потенциал которого зависит от рН среды (стеклянный, водородный, хингидронный) и электрода сравнения (хлорсеребряного, каломельного), имеющего постоянный потенциал. Измерительная шкала иономера (рНметра) градуирована как в милливольтах, так и в ед. рН. Точность определения до 0,01 ед. рН. Можно использовать для определения рН мутных и окрашенных жидкостей.

Буферные растворы

Буферные растворы — это растворы, величина рН которых мало изменяется при добавлении к ним небольших количеств сильных кислот или щелочей, а также при разбавлении.

С точки зрения протонной теории простейший буферный раствор состоит из слабой кислоты и сопряженного ей основания или слабого

основания и его сопряженной кислоты. В этом случае буферное действие растворов характеризуется наличием кислотно-основного равновесия:

$$HA \Rightarrow H^+ + A^-$$

слабая сопряженное

кислота основание

$$B + H^+ \rightleftharpoons BH^+$$

слабое сопряженная

основание кислота

Образуемые сопряженные кислотно-основные пары ${\rm HA/A^-}$ и ${\rm B/BH^+}$ называют буферными системами.

Классификация буферных систем

- 1. **Кислотные.** Состоят из слабой кислоты и соли этой кислоты. Например, ацетатная буферная система (CH₃COOH+CH₃COONa), гидрокарбонатная буферная система (H₂CO₃+NaHCO₃).
- 2. **Основные.** Состоят из слабого основания и его соли. Например, аммиачная буферная система ($NH_3 \cdot H_2O + NH_4Cl$).
- 3. **Солевые.** Состоят из кислой и средней соли или двух кислых солей. Например, карбонатная буферная система (NaHCO₃+Na₂CO₃), фосфатная буферная система (KH₂PO₄ + K₂HPO₄).
- 4. **Аминокислотные и белковые.** Если суммарный заряд молекулы аминокислоты или белка равен нулю (изоэлектрическое состояние), то растворы этих соединений не являются буферными. Их буферное действие начинает проявляться тогда, когда к ним добавляют некоторое количество кислоты или щелочи. Тогда часть белка (аминокислоты) переходит из изоэлектрического состояния в форму "белок-кислота" или соответственно в форму "белок-основание". Образуется смесь двух форм белка: а) слабая "белок-кислота" + соль этой слабой кислоты; б) слабое "белок-основание" + соль этого слабого основания:

$$COO^ COO^ COO^ COO^ COO^ COO^ COO^ R-CH+OH^ R-CH+H_2O$$
 NH_3^+ NH_3^+ NH_3^+ NH_3^+ NH_3^+ NH_3^+ $NH_3^ NH_3^ NH_3^ NH_2^ COD^ COO^ OOO^ OOOO^ OOOO^ OOOO^ OOOO^ OOOO^ OOOO^ OOOO^ OOOO^ OOOO^ OOOOO^-$

где R - макромолекулярный остаток белка.

Расчет рН буферных систем

Для расчета pH в буферном растворе на примере ацетатного буфера рассмотрим процессы, в нем протекающие, и их влияние друг на друга.

Ацетат натрия практически полностью диссоциирует на ионы, ацетат-ион подвергается гидролизу, как ион слабой кислоты:

$$CH_3COONa \rightarrow Na^+ + CH_3COO^-$$

$$CH_3COO^- + HOH \rightleftharpoons CH_3COOH + OH^-$$

Уксусная кислота, также входящая в буфер, диссоциирует лишь в незначительной степени:

$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$

Слабая диссоциация CH₃COOH еще более подавляется в присутствии CH₃COONa, поэтому концентрацию недиссоциированной уксусной кислоты принимаем практически равной ее начальной концентрации:

$$[CH_3COOH] = [кислота]$$

С другой стороны, гидролиз соли также подавлен наличием в растворе кислоты. Поэтому можно считать, что концентрация ацетат-ионов в буферной смеси практически равна исходной концентрации соли без учета концентрации ацетат-ионов, образующихся в результате диссоциации кислоты:

$$[CH_3COO^-] = [соль]$$

Согласно закону действующих масс, равновесие между продуктами диссоциации уксусной кислоты и недиссоциированными молекулами подчиняется уравнению:

$$K_{\text{M}} = \frac{[\text{H}^+][\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]}.$$

Подставив общую концентрацию кислоты и соли в уравнение константы диссоциации, получим:

$$[H^+] = K_{\pi} \frac{[\text{кислота}]}{[\text{соль}]},$$

отсюда для кислотных буферных систем:

$$pH = pK_{(кислоты)} + lg\frac{[conb]}{[кислота]}.$$

Это уравнение называют уравнением Гендерсона – Гассельбаха.

После аналогичного вывода для основных буферных систем:

$$\begin{aligned} pOH &= pK_{(ochobahus)} + lg\frac{\text{[соль]}}{\text{[ochobahue]}},\\ pH &= 14 - pK_{(ochobahus)} - lg\frac{\text{[соль]}}{\text{[ochobahue]}} \end{aligned}$$

где $pK_{(кислоты)}$, $pK_{(основания)}$ - отрицательный десятичный логарифм константы электролитической диссоциации слабой кислоты; слабого основания; [соль] - концентрация соли, [кислота] - концентрация кислоты, [основание] - концентрация основания.

Буферная емкость

Способность буферного раствора сохранять значение pH при добавлении сильной кислоты или щелочи приблизительно на постоянном уровне характеризует буферная емкость.

Буферная емкость (В) - это число молей эквивалента сильной кислоты или щелочи, которое необходимо добавить к 1 л буферного раствора, чтобы сместить его рН на единицу.

$$B_{\text{\tiny KUCJ.}}\!\!=\frac{C_{\text{\tiny H}}(\text{HA})\cdot\text{V}(\text{HA})}{\left|p\text{H}-p\text{H}_{\text{\tiny 0}}\right|\cdot\text{V}(\text{5.p.})}, B_{\text{\tiny OCH.}}\!\!=\frac{C_{\text{\tiny H}}(\text{B})\cdot\text{V}(\text{B})}{\left|p\text{H}-p\text{H}_{\text{\tiny 0}}\right|\cdot\text{V}(\text{5.p.})},$$

где V(HA), V(B) - объемы добавленных кислоты или щелочи, л.; $C_{\text{\tiny H}}(HA)$, $C_{\text{\tiny H}}(B)$ - молярные концентрации эквивалента соответственно кислоты и 14

щелочи; V(б.р.) - объем исходного буферного раствора, л.; pH_o , pH - значения pH буферного раствора до и после добавления кислоты или щелочи; $|pH-pH_o|$ - разность pH по модулю.

Буферные системы организма

Главным источником ионов водорода в организме является углекислый газ, образующийся в результате метаболизма (обмена веществ) ≈ 15000 ммоль/сутки.

В меньшей степени количество ионов Н⁺ (30-80 ммоль/сутки) обусловлено поступлением в организм, а также образованием в нем таких кислот как серной (в результате обмена серусодержащих аминокислот), фосфорной (при метаболизме фосфорсодержащих соединений), органических кислот, образующихся при неполном окислении липидов и углеводов.

Организм освобождается от кислот благодаря процессам дыхания и мочевыделения, т.е. в организме существует взаимосвязь между метаболическими процессами и газообменом. В оценке кислотно-основного состояния организма важно не только определение значения рН, но и характеристика механизмов, обеспечивающих регуляцию этого параметра.

Если бы в организме не было немедленных буферных механизмов и респираторной (дыхательной) компенсации, то тогда даже обычные, ежедневные нагрузки кислотами сопровождались бы значительными колебаниями величины рН.

Буферные системы крови представлены буферными системами плазмы крови и буферными системами эритроцитов. Буферные системы плазмы — гидрокарбонатная, белковая и фосфатная, роль последней незначительна. На их долю приходится ≈ 44% буферной емкости крови. Буферные системы эритроцитов — гемоглобиновая, гидрокарбонатная, система органических фосфатов (фосфатная). На их долю приходится ≈ 56% буферной емкости крови.

Буферная емкость отдельных буферов крови

Название буферной системы	% относительной
	буферной емкости
Гемоглобин и оксигемоглобин	35%
Органические фосфаты	3%
Неорганические фосфаты	2%
Белки плазмы	7%
Гидрокарбонат плазмы	35%
Гидрокарбонат эритроцитов	18%

Наиболее важным буфером организма является гидрокарбонатная буферная система, обеспечивающая около 55% буферной емкости крови. Более того, эта система занимает центральное положение среди всех других важных механизмов гомеостаза ионов водорода, включая гемоглобиновую буферную систему (которая обеспечивает 35% буферной емкости крови), а также секрецию ионов водорода в почках. Непосредственно измерить очень низкую концентрацию угольной кислоты в крови практически невозможно. При равновесии с растворенным СО₂ в уравнение вместо [H₂CO₃] вводят [CO₂]. Уравнение Гендерсона-Гассельбаха принимает следующий вид:

$$pH = 6,1 + lg \frac{[HCO_3^*]}{[CO_2]},$$
 где $pK = -lg \mathbf{K}_{A_1} (H_2CO_3) = 6,1$

Практически в крови измеряют парциальное давление углекислого газа CO_2 . Концентрацию растворенного в плазме CO_2 рассчитывают, умножая P_{CO_2} на константу растворимости CO_2 . Если P_{CO_2} выражено в килопаскалях (кПа), то константа равна 0,23, если в мм.рт. ст. – 0,03.

Поэтому, если $\mathbf{P}_{\text{со}_2}$ выражено в кПа, уравнение приобретает следующую форму:

$$pH = 6.1 + lg \frac{[HCO_3^{\text{-}}]}{[\textbf{P}_{\textbf{CO}_2} \cdot 0.23]}$$

Парциальное давление CO_2 в плазме крови в норме составляет $\sim 5,3$ кПа (40 мм.рт.ст.), что соответствует концентрации $CO_2 \sim 1,2$ ммоль/л. Поддержание постоянства этого уровня зависит от равновесия между высвобождением CO_2 в результате реакций обмена веществ и его потерями из организма через альвеолы.

В клетках почечных канальцев и в эритроцитах часть CO_2 задержанная легкими, используется для образования гидрокарбонат-ионов. Почки играют ведущую роль в поддержании постоянства концентрации бикарбонатов в циркулирующей крови. Эритроциты осуществляют тонкую регуляцию бикарбонатов в плазме крови.

При $\mathbf{P}_{\mathrm{CO}_2}$ плазмы крови 5,3 кПа эти две ткани поддерживают в норме постоянную внеклеточную концентрацию гидрокарбонат-ионов 24 ммоль/л. Соотношение во внеклеточной жидкости [HCO $_3$] / [CO $_2$] (обе величины в ммоль/л) составляет 20:1. По уравнению Гендерсона–Гассельбаха это соотношение соответствует величине рН плазмы крови, равной 7,4:

$$pH = 6,1 + lg \frac{24}{1.2} = 6,1 + lg 20 = 6,1 + 1,3 = 7,4$$

Таким образом, активная реакция плазмы артериальной крови у здоровых людей соответствует pH= 7,40.

Снижение соотношения [HCO $_3$] / [CO $_2$] < 20 является причиной **ацидоза.** Ацидоз может быть обусловлен повышенным образованием ионов водорода H^+ или усиленным выделением из организма гидрокарбонатов.

Повышение соотношения [HC O_3^-] / [CO $_2$]> 20 приводит к алкалозу.

Так как в плазме крови основную роль в связывании ионов \mathbf{H}^+ играет гидрокарбонат-анион, его концентрация в плазме обусловливает резервную щелочность крови.

Фосфатная буферная система содержится как в крови, так и в клеточной жидкости других тканей, особенно в почках.

В клетках она представлена KH_2PO_4 и K_2HPO_4 . В плазме крови и межклеточном пространстве NaH_2PO_4 и Na_2HPO_4 . Основную роль в механизме действия этой системы играет ион $H_2PO_4^-$:

$$H_2PO_4^- \rightleftharpoons H^+ + HPO_4^{2-}$$

кислота сопр. основание

Увеличение концентрации H^+ приводит к сдвигу реакции влево, т.е. к образованию кислоты: $HPO_4^{2-} + H^+ \rightleftharpoons H_2PO_4^-$

основание сопр. кислота

Белковые буферные системы являются амфолитными, т.к. в их состав входят α -аминокислоты, содержащие группы с кислотными свойствами (— COOH и $-NH_3^+$) и основными свойствами (—COO $^-$ и $-NH_2$). Механизм действия такой буферной системы можно представить следующим образом:

кислотная буферная система

a)
$$H_3N^+ - R - COOH + OH^- \rightleftarrows H_3N^+ - R - COO^- + H_2O$$
 белок–кислота

6)
$$H_3N^+ - R - COO^- + H^+ \rightleftharpoons H_3N^+ - R - COOH$$

соль белка-кислоты

(сопряженное основание)

основная буферная система

a)
$$H_2N - R - COO^- + H^+ \rightleftharpoons H_3N^+ - R - COO^-$$

белок-основание

6)
$$H_3N^+ - R - COO^- + OH^- \rightleftharpoons H_2N - R - COO^- + H_2O$$

соль белка-основания

(сопряженная кислота)

где R – макромолекулярный остаток белка.

Роль белков плазмы крови в гомеостазе ионов водорода весьма мала.

Гемоглобиновая буферная система находится только в эритроцитах. Механизм ее действия связан с присоединением и отдачей кислорода. В связи с этим гемоглобин (Нв) имеет окисленную $HHBO_2$ и восстановленную $HHBO_2$ и восстановленную $HHBO_3$ и восстановленную HH

Добавление сильной кислоты или сильной щелочи вызвает защитную реакцию буферной системы по сохранению постоянного значения рН среды, что объясняется связыванием добавляемых H^+ и OH^- и образованием малодиссоциирующих электролитов.

Гемоглобиновая буферная система эффективно В организме функционирует только в сочетании с гидрокарбонатной системой. Посколько аэробные процессы обмена веществ в эритроцитах почти не происходят, они вырабатывают относительно мало СО2. Из плазмы крови в соответствии с концентрационным градиентом СО2 диффундирует в эритроциты, где фермент карбоангидраза катализирует ее взаимодействие с водой, приводящее к образованию угольной кислоты. По мере диссоциации H_2CO_3 освобождающиеся ионы H^+ в основном взаимодействуют с гемоглобином как буферной системой. В эритроцитах увеличивается концентрация гидрокарбонат-ионов, которые диффундируют BO внеклеточную жидкость в соответствии с концентрационным градиентом.

Действие всех буферных систем организма взаимосвязаны.

ЭКСПЕРИМЕНТАЛЬНЫЕ РАБОТЫ

Работа № 1. Определение активной кислотности биологических жидкостей

Цель работы: научиться определять активную кислотность жидкостей колориметрическим и потенциометрическим методами.

Приборы и реактивы: исследуемые растворы № 1 и № 2; два стаканчика ёмкостью 50мл; стеклянная палочка; универсальная индикаторная

бумага; иономер универсальный ЭВ-74 или иономер лабораторный И-176; дистиллированная вода; фильтровальная бумага.

Ход выполнения работы

Задание 1. Определение pH растворов №1 и №2 с помощью универсального индикатора.

Чистую стеклянную палочку опустите в исследуемый раствор и прикоснитесь ею к полоске индикатора. Сравните окраску влажного участка индикаторной бумаги с колориметрической шкалой рН. Определите рН исследуемого раствора и запишите его значение в таблицу результатов опыта. После определения рН раствора № 1 стеклянную палочку вымойте, протрите куском фильтровальной бумаги и сделайте определение рН раствора № 2. Занесите полученные результаты определения в таблицу.

Задание 2. Определение рН растворов № 1 и № 2 с помощью иономера.

Перед началом работы ознакомьтесь с инструкцией к прибору. Исследуемый раствор налейте в чистый стаканчик, опустите электроды в раствор на $1,5\,$ см. Дальнейший порядок выполнения работы описан в "Инструкции по эксплуатации иономера". Перед определением рН второго раствора электроды следует осторожно промыть дистиллированной водой и капли воды с электродов убрать фильтровальной бумагой. Полученные результаты занесите в таблицу и рассчитайте активную кислотность растворов по формуле: $[H^+] = 10^{-pH}$.

	рН по	рН по	
№ раствора	универсальному	иономеру	[Н],моль/л
	индикатору		
1			
2			

¹⁾ Сделайте вывод о характере среды в исследуемых растворах. Сравните [H^+] в обоих растворах.

2) Сравните точность обоих методов.

Работа №2. Приготовление буферных растворов и исследование механизма буферного действия.

Цель работы: научиться готовить буферные растворы; рассчитывать рН; изучить механизм буферного действия при добавлении воды или небольшого количества кислоты.

Оборудование и реактивы.

- пробирки, конические колбы на 100 мл, мерные пипетки на 10 и 2 мл.
- растворы: уксусной кислоты(C_M = 0,1 моль/л), ацетата натрия (C_M = 0,1 моль/л), соляной кислоты (C_M = 0,1 моль/л).
- индикаторы: универсальный индикатор, фенолфталеин, метилоранж.

Ход выполнения работы

Задание 1. Приготовить растворы по прилагаемой схеме, рассчитать pH по уравнению: $pH = pK_{\pi}(\kappa u c n o t b) + lg \frac{[conb]}{[\kappa u c n o t a]}$

и определить опытным путём. Полученные данные занести в таблицу 1. Таблица 1

Номер раствора	1	2	3
Число мл 0,1 М	9	5	1
раствора СН ₃ СООН			
Число мл 0,1 М	1	5	9
раствора СН ₃ СООNа			
рН вычисленный			
рН экспериментальный			

Определение рН раствора опытным путём.

Полоску универсальной индикаторной бумаги поместите на листок фильтровальной бумаги. Приготовленный в пробирке раствор тщательно

перемешайте и нанесите с помощью чистой стеклянной палочки на полоску индикаторной бумаги, сравните окраску со шкалой рН. Значение рН запишите в таблицу.

Задание 2. Проверить буферное действие растворов.

а) Влияние разбавления. В две пробирки налейте по 2 мл буферного раствора № 2, затем в первую добавьте 2 мл, а во вторую – 4 мл воды. Растворы перемешайте и определите рН с помощью универсального индикатора. Результаты занесите в таблицу.

	Исходный	2 мл раствора № 2	2 мл раствора № 2 + 4
	раствор	+ 2 мл воды	мл воды
	№ 2		
рН			

б) Влияние добавления кислоты. Налейте в одну пробирку 2 мл буферного раствора № 3, а в другую – 2 мл воды и определите рН с помощью универсальной индикаторной бумаги. Затем добавьте в обе пробирки по 2 капли 0,1 М раствора НС1, тщательно перемешайте и снова определите рН. Результаты занесите в таблицу

Системы	Исходное значение рН	рН после добавления 2
		капель 0,1 M HCl
Буферный раствор №		
3		
H ₂ O		

В выводах объясните причины наблюдаемых изменений или их отсутствие в опытах а) и б).

Работа № 2. Определение буферной емкости

Цель работы: определить буферную емкость двух ацетатных буферных растворов по отношению к щелочи.

Оборудование и реактивы.

- иономер универсальный ЭВ-74 или иономер лабораторный И-176
- стаканчики на 50 мл, мерные пипетки, бюретки, фильтровальная бумага, стеклянные палочки.
- растворы: уксусной кислоты ($C_M = 0,1$ моль/л), ацетата натрия ($C_M = 0,1$ моль/л), гидроксида натрия ($C_M = 0,1$ моль/л).

Ход выполнения работы

В один из стаканчиков налейте 6 мл раствора СН₃СООН и 14 мл раствора СН₃СООNа и перемешайте полученный раствор стеклянной палочкой. Измерьте исходное значение рН с помощью иономера. Порядок выполнения работы описан в «Инструкции по эксплуатации иономера». (Перед каждым определением рН электроды следует осторожно промыть дистиллированной водой и капли воды с электродов убрать фильтровальной бумагой). Из бюретки в стаканчик добавьте 2 мл 0,1М раствора NаОН, перемешайте и измерьте рН.

Во второй стаканчик налейте 14 мл раствора CH_3COOH и 6 мл раствора CH_3COON а, перемешайте и измерьте значение pH. Из бюретки добавьте 2 мл раствора NaOH, перемешайте и опять измерьте pH.

Результаты всех измерений внесите в таблицу.

Буферную емкость рассчитайте по формуле:

$$B_{\text{осн.}} = \frac{C_{\text{H}}(\text{NaOH}) \cdot \text{V(NaOH)}}{\left| \text{pH} - \text{pH}_{0} \right| \cdot \text{V(буферного раствора)}}$$

Таблица

Соотношение	Исходное	Значение	ΔрН	V(мл)	В
соль/кислота	значение	рН после		объем	(моль/л-ед.р
	pH_0	добавления		добавленно	H)
		NaOH		й щелочи	
14/6				2	
6/14				2	

По результатам работы сделайте выводы от каких факторов зависят рН буферного раствора и буферная емкость.

ТЕСТОВЫЙ САМОКОНТРОЛЬ

- 1. Как изменится константа диссоциации уксусной кислоты при разбавлении раствора в 4 раза:
 - а) увеличится в 2 раза
- б) уменьшится в 2 раза?

в) не изменится

- г) уменьшится в 4 раза
- **2.** По значениям рК кислот при 25° С определите, в 0,1М растворе какой из них концентрация Н⁺ - ионов наименьшая:
 - а) муравьиная, pK = 3.75
- б) уксусная, pK =4.75
- в) щавелевоуксусная, pK = 2.6 г) молочная, pK = 3.9 ?
- **3.** Выберите правильные утверждения – степень диссоциации слабого основания в растворе
 - а) зависит от природы слабого основания и растворителя
 - б) уменьшится при увеличении температуры
 - в) уменьшится при увеличении концентрации основания
 - г) увеличится при добавлении в раствор гидроксида натрия
- Как изменится степень диссоциации пропионовой кислоты при разбавлении раствора в 4 раза:
 - а) увеличится в 2 раза
- б) не изменится
- в) уменьшится в 2 раза
- г) увеличится в 4 раза?
- **5.** Какие ИЗ утверждений, характеризующих ионную силу раствора, верны:
- а) ионная сила мера межионных электростатических взаимодействий в растворах электролитов
- б) при увеличении ионной силы раствора величина коэффициента активности ионов в растворе увеличится
- в) в 0,1 M растворе NaCl ионная сила меньше, чем в 0,1M растворе $MgSO_4$

- г) ионная сила физиологического раствора равна 0,15 моль/кг
- 6. Выберите правильные утверждения-коэффициент активности ионов в растворе
 - а) показывает меру отклонения свойств реального раствора от свойств идеального раствора
 - б) зависит от ионной силы раствора
 - в) тем меньше, чем больше заряд иона
 - г) тем больше, чем больше концентрация электролита в растворе
 - 7. Коэффициент активности ионов в растворе НС1 уменьшится при:
 - а) добавлении NaC1
 - б) разбавлении раствора
 - в) понижении температуры
 - г) повышении температуры
- 8. С точки зрения протолитической теории кислот и оснований определите, в какой реакции вода выступает в роли основания:
 - a) $NH_3 + HOH \rightleftharpoons NH_4^+ + OH^-$
 - δ) CH₃COOH + HOH ≠ CH₃COO⁻ + H₃O⁺
 - B) $RNH_2 + HOH \rightleftharpoons [RNH_3]^+ + OH^-$
 - Γ) PO_4^{3-} + HOH \rightleftharpoons HPO $_4^{2-}$ + OH $_4^{-}$
- В 10 л раствора содержится 3,7 г Са(ОН)₂. Чему равен рН этого раствора (здесь и в последующих расчетных тестах считать коэффициенты активности ионов в растворе равными единице, а температуру равной 298К):
 - a) 1
- б) 2
- в) 12
- r) 13

?

- **10.** 100 мл 0,01М раствора NaOH разбавили водой до 10 литров. Чему равен рН полученного раствора:
 - a) 10
- б) 13
- **B**) 1
- r) 4

11. На титрование 5 мл раствора H_2SO_4 израсходовали 4,10 мл 0,1020М раствора NaOH. Чему равен рН раствора кислоты:

12	2. Aĸ	тивная ки	слотность же.	пудочного со	ока равна 0,04 м	иоль/л. Чему
равен	рН этой	жидкості	и:			
a)	1,4	б) 1,8	в) 2,6	г) 4,0	?	
13	3. pO	Н сока по	джелудочной	железы раво	ен 5,4. Чему ран	зна активная
кислот	гность (м	иоль/л) этс	й жидкости:			
a)	2,51.10	-9 б) 10^{8} ,	⁶ в) 4,0·10 ⁻⁶	г) 5,4	•	
14	4. B 1	каких пре,	делах изменя	ется рН сока	а поджелудочно	ой железы в
органи	изме здор	ового чел	овека:			
a)	5,0 – 8,0	б) 0,9	-2,0 B) $8,$	6 – 9,0 г) ′	7,36 – 7,44 ?	
15	5. По	значению	рН биологич	еской жидко	ости можно опр	еделить:
a)	активну	/ю кислоті	ность			
б)) потенці	иальную к	ислотность			
в)	общую	кислотнос	СТЬ			
г)	концент	грацию Н+	- ИОНОВ			
10	6. Подбе	рите парь	і водных рас	гворов веще	ств, при сливан	нии которых
будут	образов	ываться б	уферные сис	гемы (обрат	ите внимание н	на продукты
реакци	ий):					
1.	200	0 мл 0,2М	раствора NH ₄	OH		
2.	100	0 мл 0,3М	раствора NaH	I_2PO_4		
a)	200 мл	0,3М раст	вора NH ₄ Cl			
б)) 100 мл	0,3М раст	вора НС1			
в)	100 мл	0,3М раст	вора NaOH			
г)	200 мл	0,2М расті	BopaK ₂ HPO ₄			
д))200 мл	0,1М раст	вора naoh			
17	7. Какие (факторы в	лияют на вел	ичину рнбуф	ерной смеси:	
a)	добавле	ение с ₆ н ₁₂ 0	6			
б)) констан	нта диссоц	иации кислот	ъ (основани	(я	
R)	темпера	атура				

г) соотношение концентрацией компонентов

a) 1,38 б) 2,0 в) 2,08 г) 1,08 ?

- 18. Какие факторы влияют на величину буферной емкости:
- а) соотношение концентраций компонентов
- б) добавление $c_6 H_{12} O_6$
- в) концентрация компонентов
- г) разбавление
- **19.** Соотношение концентраций компонентов [Na₂HPO₄] \square [NaH₂PO₄] в фосфатном буферном растворе равно 2:1. Выберите правильные утверждения для данного раствора:
- а) при добавлении к буферному раствору небольшого количества NaOH рH раствора незначительно увеличится
- б) при разбавлении раствора в 100 раз его рН увеличится на 2 единицы рН
 - в) буферный раствор имеет максимальную буферную емкость
 - г) при разбавлении буферная емкость раствора уменьшится
- **20.** Даны два аммонийных буферных раствора: в первом концентрации обоих компонентов равны 1 моль/л; во втором концентрации обоих компонентов равны 0,1 моль/л. Выберите правильные утверждения для этих растворов:
 - а) рН первого раствора на 1 ед. рН больше рН второго раствора
- б) первый раствор более эффективно поддерживает постоянство рН среды по сравнению со вторым
- в) буферная емкость первого раствора больше буферной емкости второго раствора
- г) концентрация ионов водорода в первом растворе приблизительно равнаконцентрации ионов водорода во втором растворе
- **21.**Чему равен рН буферного раствора, в 10 л которого содержится 0,1 моль CH₃COOH и 0,5 моль CH₃COOK, если рК (CH₃COOH) = 4,75 (здесь и в последующих расчетных тестах считать коэффициенты активности ионов в растворе равными единице, а температуру равной 298К):
 - a) 5,45
- б) 4.75
- в) 3,75
- г) 4,05 ?

22. К 1 л буферного раствора, содержащего по 0,1 моль NH ₄ OH и NH ₄ Cl,
добавили 0,01 моль NaOH. Чему равен рН раствора после добавления щелочи
$(pK (NH_4OH) = 4,75)$:
a) 9,56 б) 4,66 в) 9,34 г) 4,84 ?
23. Аммонийный буферный раствор с концентрацией каждого
компонента 0,1 моль/л имеет рН равный 9,25. Чему равна буферная емкость
(- / - "II) 100 10

- (моль/л ед.рН) для данного раствора, если при добавлении к 100 мл его 10 мл 1M раствора NaOH рН буфера стал равен 9,33:
 - a) 0,125 б) 1,25 в) 1250 г) 0,0107
- 24. Какие буферные растворы способны эффективно поддерживать постоянство рН среды для раствора, рН которого равен 4:
 - а) ацетатный буферный, $pK(CH_3COOH) = 4,75$
 - б) аммонийный буферный, $pK(NH_4OH) = 4,75$
 - в) фосфатный буферный, $pK(H_2PO_4^-) = 6.8$
 - Γ) формиатный буферный, pK(HCOOH) = 3,75
 - 25. Какие буферные системы поддерживают постоянство рН крови человека:
 - а) фосфатная
 - б) гидрокарбонатная
 - в) ацетатная
 - г) белковая
 - д) гемоглобиновая и оксигемоглобиновая
 - 26. Какая из буферных систем вносит основной вклад в величину буферной емкости эритроцитов:
 - а) фосфатная
 - б) гидрокарбонатная
 - в) ацетатная
 - г) белковая
 - д) гемоглобиновая и оксигемоглобиновая

Эталоны решения задач по кислотно-основным равновесиям

Задача 1. Вычислить $[H^+]$ и pH раствора 0,003 M HCl при температуре 298К.

Решение:

Соляная кислота – сильный электролит, который Дано: $C_M(HCl) = 0.003$ водном растворе практически полностью моль/л диссоциирует на ионы. Так как концентрация НС1 коэффициент активности (f_a) мала, TO равен приблизительно 1, a активность (a) равна pH - ? концентрации. Тогда, активность ионов водорода $[H^{+}] - ?$ $(a(H^{+})$ или $[H^{+}]$) равна: $[H^{+}] = C_{H}$ (HCl)

1. Определяем
$$[H^+]$$
: $[H^+] = C_M (HCl) = 0,003$
($C_M (HCl) = C_H (HCl)$)

2. Определяем pH:
$$pH = -lg[H^+] = -lg0,003 = 2,52$$
.

Ответ: $[H^+] = 0,003$ моль/л; pH = 2,52.

Задача 2. Вычислить pH 0,01 M раствора NH₄OH при температуре 298К, если степень диссоциации гидроксида аммония равна 0,042.

Дано: Решение: C_M (NH4OH) = 0,01 NH4OH \rightleftharpoons NH4+ OH моль/л $\alpha = 0,042$ pH - ? $\alpha = 0.042$

1.В разбавленном растворе слабого электролита активность гидроксидионов равна: $[OH^-] = C_H \cdot \alpha = 0.01 \cdot 0.042 = 4.2 \cdot 10^{-4} \text{ моль/л} C_H \text{ (NH₄OH)} = C_M \text{ (NH₄OH)}$

2.
$$pOH = - lg [OH^{-}] = - lg 4,2 \cdot 10^{-4} = 3,38$$

3.
$$pH = 14 - pOH = 14 - 3,38 = 10,62$$
.

Ответ: pH = 10,62.

Задача 3. Вычислить степень диссоциации молочной кислоты, $[H^+]$ и рН 0,1 M раствора молочной кислоты при температуре 298K, если константа диссоциации молочной кислоты (K_{π}) равна $1,38\cdot10^{-4}$.

Дано:

 C_{M} (кислоты)= 0,1 моль/л

$$K_{\rm д}$$
 (кислоты) = $1,38\cdot10^{-4}$. α - ? $[{\rm H}^+]$ - ? ${\rm pH}$ - ?

Решение:

Молочная кислота является слабой одноосновной кислотой и диссоциирует по схеме:

$$CH_3CH(OH)COOH \rightleftharpoons CH_3CH(OH)COO^- + H^+$$

1. Определяем степень диссоциации:

Для разбавленных растворов слабых бинарных электролитов применима формула:

 $\alpha = \sqrt{\frac{K_{_{\pi}}}{C}}$ (Упрощенное выражение закона разбавления Оствальда).

Тогда,
$$\alpha = \sqrt{\frac{1,38 \cdot 10^{-4}}{0,1}} = \sqrt{13,8 \cdot 10^{-4}} = 3,7 \cdot 10^{-2} = 0,037$$

2. Определяем [H $^+$] :[H $^+$] = $C_{_{\rm H}}\cdot \alpha = 0,1\cdot 0,031 = 0,0037$ моль/л

 $C_{M}(CH_{3}CH(OH)COOH) = C_{H}(CH_{3}CH(OH)COOH)$

3. Определяем pH:pH = $-\lg [H^+] = -\lg 0,0037 = 2,43$

Ответ: $\alpha = 0.037, [H^+] = 0.0037$ моль/л , pH = 2.43

Задача 4. Вычислите степень диссоциации и концентрацию уксусной кислоты, а также концентрацию ионов водорода в растворе уксусной кислоты, рН которого равен 3,87. Константа диссоциации уксусной кислоты при температуре 298К равна $1,75 \cdot 10^{-5}$.

Дано: α - ?

Решение:

- Дано: Решение: pH = 3,87 $K_{\text{д}} = 1,75 \cdot 10^{-5}$ 1. Определяем [H⁺]:[H⁺] = 10^{-pH} = $10^{-3,87}$
- 2. Определяем С_м: Уксусная кислота диссоциирует по схеме:

 $CH_3COOH \rightleftharpoons CH_3COO^- + H^+.$

Константа диссоциации выражается отношением: $K_{A} = \frac{[H^{+}] \cdot [CH_{3}COO^{-}]}{[CH_{3}COOH]}$

 $[H^{+}] = [CH_{3}COO^{-}]$, а $[CH_{3}COOH]$ в разбавленном растворе слабого бинарного электролита можно принять равной $C_{\rm M}$. Тогда: $K_{\rm A} = \frac{[{\rm H}^{+}]^{2}}{C_{\rm M}}$

Отсюда:
$$C_M = \frac{[H^+]^2}{K_{_{\scriptstyle \Pi}}} = \frac{(1,35 \cdot 10^{-4})^2}{1,75 \cdot 10^{-5}} = 0,00104.$$

Определяем а: Для разбавленных растворов слабых бинарных электролитов применима формула: $\alpha = \sqrt{\frac{K_{_{\pi}}}{C}} = \sqrt{\frac{1,75 \cdot 10^{-5}}{0.00104}} = 0,13.$

Ответ: $[H^+] = 0.000135$ моль/л; $C_M = 0.00104$ моль/л; $\alpha = 0.13$.

ЗАДАЧИ

- Вычислить рН и рОН раствора серной кислоты, если в 1 л 1. раствора содержится $0.049 \, \Gamma \, \text{H}_2 \text{SO}_4$ (фактор эквивалентности $\text{H}_2 \text{SO}_4$ равен $\frac{1}{2}$)*. Ответ: pH = 3, pOH = 11.
- Вычислить рН 0,001 М раствора уксусной кислоты, если степень диссоциации ее равна 0,134. Ответ: рН = 3,87
- 3. Как изменится рН среды при добавлении 30 мл 0,2 М раствора гидроксида натрия к 300 мл воды? Ответ: увеличится на 5,26 единиц рН
- 4. Во сколько раз концентрация ионов водорода в крови больше, чем в спинномозговой жидкости ? (рН (крови) = 7,36, рН (спинномозговой жидкости) = 7,53 Ответ: приблизительно в 1,5 раза.

5. Определить pH буферного раствора, содержащего в 1π 18,4г муравьиной кислоты и 68 г формиата натрия, если pK(HCOOH) = 3,75. Как изменится pH при разбавлении раствора в 50 раз? *

Ответ: рН = 4,15. Практически не изменится.

6. Вычислить pH ацетатной буферной смеси, приготовленной из 100 мл 0.1 M раствора CH_3COOH и 200 мл 0.2 M раствора CH_3COONa , если $\text{K}_{\text{д}}$ (CH_3COOH) = $1.75 \cdot 10^{-5}$. Как изменится pH этого буферного раствора при добавлении к нему 30 мл 0.2 M раствора NaOH?

Ответ: рН = 5,36; рН увеличится на 0,46 единиц.

- 7. Вычислить pH раствора муравьиной кислоты, наполовину нейтрализованной щелочью (pK(HCOOH) = 3,75). Ответ: pH = 3,75.
- 8. К 100 мл крови для изменения pH от 7,36 до 7,00 надо добавить 36 мл 0,05М раствора HCl . Рассчитайте буферную емкость крови по кислоте (моль/л·ед.рН). Ответ: 0,05 моль /л·ед. рН.

*Примечание: при решении задач считать коэффициенты активности ионов в растворе равными единице, а температуру равной 298К.

ЭТАЛОНЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. К 2 л 0,1 М раствора CH_3COOH прибавили 49,2 г CH_3COONa . Вычислите pH полученного буферного раствора (K_{π} (CH_3COOH) = 1,75·10⁻⁵).

Решение:

Дано:

pH - ?

$$V(\text{раствора}) = 2 \ \pi$$
 $C_{M}(\text{CH}_{3}\text{COOH}) = 0,1$
моль/л
 $m(\text{CH}_{3}\text{COONa}) = 49,2 \ \Gamma$
 $K_{\pi} \quad (\text{CH}_{3}\text{COOH}) = 1,75 \cdot 10^{-5}$

$$CH_3COOH \rightleftharpoons CH_3COO^- + H^+$$

 $CH_3COONa \rightarrow CH_3COO^- + Na^+$

1. Вычисляем концентрацию ацетата натрия в растворе:

$$C_{M}(CH_{3}COONa) = m(CH_{3}COONa)/M(CH_{3}COO$$
 Na)·V = 49,2 / 82 · 2 = 0,3

Вычисляем рН ацетатного буферного раствора:

$$pH = -lgK_{_{\rm I\!I}} + lg\frac{[CH_{_3}COONa]}{[CH_{_3}COOH]} = -lg1,75 \cdot 10^{-5} + lg\frac{0,3}{0,1} = 4,75 + 0,48 = 5,23.$$

Ответ: pH = 5,23

Задача 2. Чему равен рН буферного раствора, содержащего в 1 л по 0,1 NH_4OH и NH_4Cl (рК (NH_4OH) = 4,75)? Как изменится рН при разбавлении раствора водой в 10 раз?

Решение:

Дано:

$$C_{M}(NH_{4}OH) = 0,1$$

моль/л

$$C_M(NH_4Cl) = 0,1$$

моль/л

$$V(pacтвоpa) = 1$$
 л

$$pK (NH_4OH) = 4,75$$

$$pH_1 - ? pH_2$$

- ?

 $C_{M}(NH_{4}OH) = 0,1$ 1. Вычисляем pH_{1} исходного раствора:

2. Вычисляем pH₂ раствора после разбавления. При разбавлении раствора в 10 раз концентрации соли и основания уменьшаются также в 10 раз:

$$pH_2 = 14 - 4,75 - \lg \frac{0,01}{0,01} = 9,25*$$

Ответ: $pH_1 = 9,25$; $pH_2 \approx 9,25$.

*Примечание: в действительности, величина рН при разбавлении несколько меняется (в нашем случае возрастает приблизительно на 0,07 единицы, что зависит от изменения коэффициентов активности ионов в связи с уменьшением ионной силы раствора при разбавлении).

Задача 3. Чтобы изменить pH на единицу, к 10 мл ацетатного буферного раствора потребовалось добавить 0,52 мл 1М раствора NaOH. Найти буферную емкость по щелочи (моль/л·ед.рН) данного буферного раствора.

Дано:

$$\Delta pH = 1$$
 $V(6.p.) = 10 \text{ мл} = 0.01 \text{ л}$
 $C_M(\text{NaOH}) = 1 \text{ моль/л}$
 $V(\text{щелочи}) = 0.52 \text{ мл} = 0.000$

$$\sqrt{\text{(щелочи)}} = 0,32$$
 мл-
 $0.52 \cdot 10^{-3}$ л

Решение:

Буферную емкость по щелочи можно определить по формуле:

$$B_{\text{осн.}} = \frac{C_{\text{H}}(\text{NaOH}) \cdot \text{V(NaOH)}}{\Delta \text{pH} \cdot \text{V(б.p.)}} =$$

$$= \frac{1 \cdot 0.52 \cdot 10^{-3}}{1 \cdot 0.01} = 0.052 \text{ моль/л.ед. pH;}$$

$$(C_{\text{H}}(\text{NaOH}) = C_{\text{M}}(\text{NaOH}))$$

Ответ: 0,052 моль/л ед. рН

Задача 4. К 16 мл 0,1 М раствора Na₂HPO₄ прибавили 40 мл 0,04 М раствора NaH₂PO₄. Определить:

- а) рН полученного буферного раствора $(K_{\pi} (H_2 PO_4^-) = 1,6 \cdot 10^{-7};$
- **б)** как изменится pH этого раствора при добавлении к нему 6 мл 0,1М раствора HCl;
 - в) можно ли приготовить фосфатный буферный раствор с рН=8,5.

Решение:

Дано:

 $C_{\rm M}$ (Na₂HPO₄) = 0,1 моль/л $V(\text{p-pa Na}_2\text{HPO}_4) = 16 \text{ мл}$ $C_{\rm M}$ (NaH₂PO₄)= 0,04 моль/л $V(\text{p-pa NaH}_2\text{PO}_4) = 40 \text{ мл}$ $C_{\rm M}(\text{HCl}) = 0,1 \text{ моль/л}$ V (p-paHCl) = 6 мл $K_{\rm M}$ (H₂PO₄) = 1,6· 10^{-7}

a)
$$pH - ?$$
 6) $\Delta pH - ?$

а) Рассчитываем рН фосфатного буферного раствора. В фосфатном буферном растворе роль кислотывыполняет ион Н₂РО₄, диссоциирующий по схеме: $H_2PO_4^- \rightleftharpoons H^+ + HPO_4^{2-}$. Так как константа этого процесса диссоциации мала, онжом считать, концентрация H_2PO_4 что равна концентрации NaH₂PO₄, а концентрация HPO_4^{2-} равна концентрации Na₂HPO₄. Тогда:

$$pH = - \lg K_{\pi} (H_2 PO_4^-) + \lg \frac{[HPO_4^{2-}]}{[H_2 PO_4^-]}$$

Необходимо учесть, что при смешивании двух растворов исходные концентрации компонентов изменяются. Новые концентрации можно рассчитать по формуле:

 $C_{\text{исх.}} \cdot V_{\text{исх.}} = C_{\text{кон.}} \cdot V_{\text{кон.}}$ Тогда новая концентрация NaH_2PO_4 будет равна:

$$[NaH_2PO_4] = \frac{C_M(NaH_2PO_4)_{\text{\tiny MCX}} \cdot V(p-pa \ NaH_2PO_4)}{V(буферного \ pactbopa)}$$

Конечная концентрация Na₂HPO₄ будет равна:

$$[Na_2HPO_4] = \frac{C_{M}(Na_2HPO_4)_{\text{\tiny MCX}} \cdot V(p-pa \ Na_2HPO_4)}{V(\text{буферного раствора})}$$

$$C_M (NaH_2PO_4)_{HCX.} \cdot V(p-pa NaH_2PO_4) = n (NaH_2PO_4) = 0,040 \cdot 0,04 = 0,0016$$

 $C_M (Na_2HPO_4)_{HCX.} \cdot V(p-pa Na_2HPO_4) = n (Na_2HPO_4) = 0,016 \cdot 0,1 = 0,0016$

Тогда
$$\frac{[\text{HPO}_4^{2^-}]}{[\text{H}_2\text{PO}_4^-]} = \frac{n(\text{Na}_2\text{HPO}_4) \cdot \text{V}(\text{буф. p - pa}\,)}{n(\text{NaH}_2\text{PO}_4) \cdot \text{V}(\text{буф. p - pa})} = \frac{n(\text{Na}_2\text{HPO}_4)}{n(\text{NaH}_2\text{PO}_4)}$$

6,8

б) Вычисляем изменение pH при добавлении к буферному раствору раствора HCl.

При добавлении 6 мл 0,1 M раствора HCl(что составляет 0,0006 моль), добавленная кислота прореагирует с 0,0006 моль Na_2HPO_4 с образованием 0,0006 моль NaH_2PO_4 :

$$Na_2HPO_4 + HCl = NaH_2PO_4 + NaCl$$

Тогда количество Na₂HPO₄ уменьшится на 0,0006 моль:

$$n (Na_2HPO_4) = 0.0016 - 0.0006 = 0.0010$$

А количество NaH₂PO₄ увеличится на 0,0006 моль:

$$n (NaH_2PO_4) = 0,0016 + 0,0006 = 0,0022$$

Отсюда:
$$pH = -\lg 1,6 \cdot 10^{-7} + \lg \frac{n(Na_2HPO_4)}{n(NaH_2PO_4)} = 6,8 + \lg \frac{0,0010}{0,0022} = 6,46$$

$$\Delta$$
pH = 6,8 - 6,46 = 0,34

Ответ :**a**)pH = 6.8; **б**) уменьшится на 0.34 ед. pH; **в**) невозможно.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Физическая химия. В 2 кн. / Под ред. К. С. Краснова:-3-е изд., испр. -- М.: Высш. школа, 2001.
- 2. Стромберг А. Г., Семченко Д. П. Физическая химия. 4-е изд., испр. М.: Высш. школа, 2001. 527с.
- 3. Евстратова К.И., Купина Н.А., Малахова Е.Е. Физическая и коллоиднаяхимия. М.: Высшая школа, 1990.
- 4. Калібабчук В.О., Грищенко Л.І., Галинська В.І. Медична хімія. К.: Інтермед, 2006.
- 5. Красовский И.В., Вайль Е.И., Безуглий В.Д. Физическая и коллоиднаяхимия. К.: Вища школа, 1983.
- 6. Ленский А.С. Введение в бионеорганическую и биофизическуюхимию. М.: Высшая школа, 1989.
- 7. Мороз А.С., Луцевич Д.Д., Яворська Л.П. Медична хімія. Вінниця: Світ, 2006.
- 8. Мороз А.С., Ковальова А.Г., Фізична та колоїдна хімія. Львів: Світ, 1994.
- 9. Миронович Л.М., Мардашко О.О. Медична хімія. К.: Каравела, 2007.
- 10. Физическая и коллоиднаяхимия. Под ред. проф. Кабачного В.И. Харьков: Изд-во НФАУ, 2001.
 - 11. Физическаяхимия. Под ред. Краснова К.С. М.: Высшая школа, 1982.
- 12. Филиппов Ю.В., Попович М.П. Физическаяхимия. М.: Моск. уи-т, 1980.
- 13. Садовничая Л.П. Хухрянский В.Г., Цыганенко А.Я. Биофизическаяхимия. К.: Вища школа, 1986.

Рецензенты: зав кафедрой органической химии д. фарм. н., Коваленко С.И. проф. кафедры биологической химии ЗГМУ д. фарм. н., Романенко Н.И.

Методическое пособие подготовили сотрудники кафедры физической и коллоидной химии Запорожского государственного медицинского университета:

- д. фарм. н., Каплаушенко А.Г.;
- доц. Похмёлкина С.А.;
- доц. Чернега Г.В.;
- доц. Пряхин О.Р.;
- ст. пр. Авраменко А.И.;
- асс. Юрченко И.А.;
- ст. лаб. Щербак М.А.;

Рассмотрено и утверждено на заседании цикловой методической комиссии химических дисциплин Запорожского государственного медицинского университета (протокол №_____ от____ 2015года)

Копирование и тиражирование только по письменному согласию ЗГМУ