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Abstract 

We hypothesize that serum irisin can have additional discriminative potency for heart failure (HF) in individuals with 
type 2 diabetes mellitus (T2DM). The study group comprised 226 consecutive T2DM patients (153 patients with any 
HF phenotypes and 30 patients without HF) aged 41 to 65 years. The plasma levels N-terminal brain natriuretic pro-
peptide (NT-proBNP) and irisin were detected by ELISA at the baseline of the study. We found that the most appro-
priate cut-off value of irisin (HF versus non-HF) were 10.4 ng/mL (area under curve [AUC] = 0.96, sensitivity = 81.0%, 
specificity = 88.0%; P = 0.0001). Cutoff point of NT-proBNP that distinguished patients with HF and without it was 
750 pmol/L (AUC = 0.78; sensitivity = 72.7%, specificity 76.5%, p = 0.0001). Using multivariate comparative analysis we 
established that concentrations of irisin < 10.4 ng/mL (odds ration [OR] = 1.30; P = 0.001) and NT-proBNP > 750 pmol/
mL (OR = 1.17; P = 0.042), left atrial volume index (LAVI) > 34 mL/m2 (OR = 1.06; P = 0.042) independently predicted 
HF. Irisin being added to NT-proBNP improved predictive modality for HF, whereas combination of NT-proBNP and 
LAVI > 34 mL/m2 did not. In conclusion, we established that irisin had independent predicted potency for HF in 
patients with established T2DM.
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Introduction
Type 2 diabetes mellitus (T2DM) remains to be a power-
ful risk factor for newly heart failure (HF) [1]. Moreover, 
all-cause mortality, cardiovascular (CV) outcomes, and 
untoward clinical course of the disease including urgent 
hospital admission, are considered to have been worse 
for HF patients with T2DM when compared with those 
who had no diabetes [2]. Along with it, at least of quarter 
of symptomatic HF patients with different phenotypes of 
the condition exerts a persistence of hyperglycemia that 
contributes to the increased T2DM risk in HF patients [3, 
4]. In fact, T2DM frequently coexists with HF and modu-
lates each other [5].

Incidence and prognosis of HF in T2DM patients seem 
to be potentially predictable factors, which are suggested 
to be attributes of pathophysiological mechanisms play-
ing pivotal role in various maladaptive responses, such as 
adverse cardiac remodeling, systemic and microvascular 
inflammation, endothelial and adipose tissue dysfunc-
tions, oxidative stress, hyperglycemia, lipotoxicity, met-
abolic memory and altered repair system [6–8]. Being 
involved in vicious circle of HF pathogenesis, these fac-
tors roughly overlap and seem to be accurately evaluated 
by their surrogate circulating indicators [9]. Although 
the natriuretic peptides (NP) definitely have powerful 
diagnostic potency to rule out HF, their predictive ability 
for HF seem to be sufficient limitation in T2DM patients 
[10]. It has been previously revealed that a discriminative 
potency of NP for HF with preserved ejection fraction 
is appeared to be lower than for HF with reduced ejec-
tion fraction [11, 12]. These phenotypes of HF distinguish 
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each other from a signature of comorbidity including 
metabolic diseases, it is reasonable to suggest that T2DM 
could be a factor contributing to limiting predictive value 
of NP for HF in this population. To up to date our knowl-
edge, multiple biological marker models are regarded to 
be more predictable than single biomarker ones [13].

Irisin is a multifunctional myokine secreted by adipo-
cytes, cardiac myocytes, and skeletal muscle, possibly 
mediating a wide range of metabolic processes including 
’browning’ of white adipose tissue, thermogenesis, insu-
lin resistance, muscle endurance, endothelial function, 
inflammatory and immune reactions and bone osteoblast 
activity [14, 15]. In physiological condition, circulating 
irisin positively associates with skeletal muscle mass, glu-
cose homeostasis, skeletal muscle metabolism and nega-
tively with fasting glycaemia [16]. Although muscle and 
adipose tissue expressions of irisin mRNA were found 
to be increased in prediabetes, T2DM was associatied 
with a reduction of the expression and the level of the 
peptide in plasma [17, 18]. Along with it, HF related to 
dramatic decrease in circulating irisin levels regardless 
of a presence of T2DM [19]. There is a hypothesis that 
irisin acting as peroxisome proliferator-activated recep-
tor gamma coactivator 1-alpha-related protein mediates 
myocardial contractility and skeletal muscle function 
and prevent adverse cardiac remodeling, alteration car-
diac function and biomechanical stress [20–23]. Thus, 
dynamic changes of irisin in peripheral circulation seem 
to be powerful predictor of cardiac remodeling and HF 
irrespectively from its phenotypes, whereas it remained 
uncertain whether irisin is comparable to NT-proBNP 
in its predictive ability in T2DM patients and if add-on 
of irisin to NT-proBNP is able to improve discriminative 
potency of the combination. We hypothesize that serum 
irisin has additional discriminative potency for HF in 
patients with T2DM.

Results
Characteristics of the study patient population
The study patient population composed of mainly male 
with average age of 51 years and numerous co-morbidi-
ties and cardiovascular (CV) risk factors, which included 
dyslipidemia (83.1%), hypertension (86.3%), stable coro-
nary artery disease (29.5%), smoking (43.2%), and obe-
sity (45.9%) (Table  1). Atrial fibrillation was detected in 
17 patients (9.20%) with HF, whereas T2DM patients 
without HF did not have this condition. LV ventricular 
hypertrophy, chronic kidney disease and microalbumi-
nuria were found in 73.2%, 21.3% and 30.6%, respectively. 
Amongs 153 patients with HF 26.2% had HFpEF, 26.8% 
demonstrated HFmrEF finally HFrEF was detected in 
30.6% individuales. All of them had II/III NYHA class. 
Therefore, mean LVEF was 53.2%, average levels of 

NT-proBNP were 2718 pmol/mL and irisin were 9.85 ng/
mL.

We did not notice significant differences between 
cohorts in demographic and anthropomorphic param-
eters, presentation of several CV risk factors, and blood 
pressure. Along with it, HF cohorts composed of more 
amount of patients with chronic coronary artery dis-
ease, LV hypertrophy, chronic kidney disease  (1st-to-3rd 
grades) and having smoking habits than non-HF cohorts 
(P = 0.001 for all cases). Therefore, LVEDV, LVESV, 
LVMMI, LAVI and E/e` were found to be sufficiently 
higher and LVEF was lower in HF patients than in non-
HF individuals. In addition to that, we did not find any 
difference in HOMA-IR and biochemical parameters 
between cohorts, apart from NT-proBNP and irisin, the 
levels of which exerted multidirectional changes. The 
HF individuals demonstrated significantly higher NT-
proBNP and lower irisin than those without HF.

Spearmen correlation between circulating levels of irisin 
and other variables
In entire patient cohort irisin levels were positively asso-
ciated with NYHA class, LVEF, HOMA-IR, NT-proBNP, 
and HDL-C, whereas negative associations were found 
for eGFR, WHR, BMI, systolic and diastolic BP, total 
cholesterol, triglycerides and LDL-C (Table  2). There 
were no significant correlations of concomitant medi-
cation including SGLT2 inhibitors with HOMA-IR and 
irisin levels. In T2DM patients with HF irisin exhibited 
moderate correlation with NT-proBNP, LVEF, and BMI, 
whereas its association with NYHA class, WHR and 
diastolic BP were weak. Irisin concentrations in non-
HF patients correlated positively with HOMA-IR, NT-
proBNP, HDL-C and inversely with WHR, BMI, total 
cholesterol, LDL-C and also eGFR.

Predictive pattern of models for all HF phenotypes
The reliability of the predictive models for HF is reported 
Fig.  1. The Receive Operation Characteristics curve 
analysis yielded that the well-balanced cut-off point for 
irisin (with HF versus free HF) were 10.4  ng/mL (area 
under curve [AUC] = 0.96, sensitivity = 81.0%, specific-
ity = 88.0%; P = 0.0001) (Fig.  1a). Cutoff point of NT-
proBNP that distinguished patients with HF and without 
it was 750 pmol/L (AUC = 0.78; sensitivity = 72.7%, spec-
ificity 76.5%, p = 0.0001) (Fig. 1b). Along with it, the best 
cutoff point for LAVI was 34 ml/m2 (AUC = 0.81; sensi-
tivity = 81.6%, specificity 65.4%, p = 0.0001) (Fig.  1c). E/
e` (HF versus non-HF) was 11 unit (AUC = 0.69; sensitiv-
ity = 66.7%, specificity 68.4%, p = 0.0027) (Fig. 1d). Thus, 
irisin exhibited more profound discriminative potency 
for HF when compared with NT-proBNP and featured of 
diastolic LV dysfunction (LAVI, E/e`).
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Logistic regression analysis
Univariate logistic regression model yielded that the pre-
dictors for HF in patients enrolled in the study were the 
following factors: irisin < 10.4  ng/mL, LV hypertrophy, 
BMI, NT-proBNP > 750 pmol/mL, age, LAVI > 34 mL/m2 
and E/e’ > 11 (Table 3). Concomitant medications were no 
remarkable predictors for HF. Multivariate logistic model 
showed that the serum levels of irisin < 10.4 ng/mL along 

with NT-proBNP > 750  pmol/mL and LAVI > 34  mL/m2 
were independent predictors for HF.

Comparison and reclassification of the predictive values 
of the models
We established that inclusion of irisin to reference pre-
dictive model constructed from NT-proBNP significantly 
added discriminatory information of the model, whereas 

Table 1 Characteristics of the study patient population

Abbreviations: BMI Body mass index, CKD Chronic kidney disease, DBP Diastolic blood pressure, E/e` Early diastolic blood filling to longitudinal strain ratio, eGFR 
Estimated glomerular filtration rate, HDL-C High-density lipoprotein cholesterol, HFpEF Heart failure with preserved ejection fraction, HFmrEF Heart failure with mildly 
reduced ejection fraction, HFrEF Heart failure with reduced ejection fraction, LAVI Left atrial volume index, LVEDV Left ventricular end-diastolic volume, LVESV Left 
ventricular end-systolic volume, LVEF Left ventricular ejection fraction, LVMMI Left ventricle myocardial mass index, LDL-C Low-density lipoprotein cholesterol, SBP 
Systolic blood pressure, TG Triglycerides, TC Total cholesterol, WHR Waist-to-hip ratio

Variables Entire T2DM population (n = 183) HF patients (n = 153) Non-HF (n = 30) P-value (HF 
vs non-HF)

Age, year 51 (41–62) 52 (41–64) 51(41–60) 0.86

Male, n (%) 118 (64.5) 100 (65.4) 18 (60.0) 0.82

Dyslipidemia, n (%) 152 (83.1) 127 (83.0) 25 (83.3) 0.84

Hypertension, n (%) 158 (86.3) 132 (86.3) 26 (86.7) 0.80

Stable CAD, n (%) 54 (29.5) 49 (32.0) 5 (16.7) 0.001
Atrial fibrillation, n (%) 17 (9.2) 17 (9.2) 0 0.0001
Smoking, n (%) 79 (43.2) 63 (41.2) 16 (53.3) 0.044
Abdominal obesity, 84 (45.9) 71 (46.4) 13 (43.3) 0.88

Microalbuminuria, n (%) 56 (30.6) 47 (30.7) 9 (30.0) 0.84

LV hypertrophy, n (%) 134 (73.2) 123 (80.3) 11 (36.7) 0.001
CKD 1–3 grades, n (%) 39 (21.3) 35 (22.9) 4 (13.3) 0.001
HFpEF / HFmrEF / HFrEF, n (%) 48 (26.2) / 49 (26.8) / 56 (30.6) 48 (31.4) / 49 (32.0) / 56 (36.6) - -

II/III NYHA class, n (%) 103 (56.3) / 50 (27.3) 103 (67.3) / 50 (23.7) - -

BMI, kg/m2 25.8 ± 2.1 25.6 ± 2.8 26.3 ± 2.6 0.88

Waist circumference, sm 85.6 ± 2.9 85.1 ± 3.2 86.5 ± 3.1 0.86

WHR, units 0.86 ± 0.03 0.85 ± 0.05 0.87 ± 0.03 0.86

SBP, mm Hg 132 ± 5 129 ± 6 135 ± 5 0.81

DBP, mm Hg 80 ± 4 78 ± 5 84 ± 3 0.80

LVEDV, mL 154 ± 6 161 ± 4 147 ± 6 0.001
LVESV, mL 72 ± 7 86 ± 6 59 ± 3 0.001
LVEF, % 53 ± 6 46 ± 3 60 ± 2 0.001
LVMMI, g/m2 151 ± 6.12 154 ± 5 137 ± 3 0.01
LAVI, mL/m2 39 ± 8 38 ± 4 30 ± 5 0.042
E/e`, unit 14.0 ± 0.46 13.5 ± 0.33 7.2 ± 0.42 0.001
eGFR, mL/min/1.73  m2 83 ± 6.0 75 ± 4.0 86 ± 3.5 0.01
HOMA-IR 7.65 ± 3.7 7.95 ± 2.3 7.15 ± 2.4 0.14

Fasting glucose, mmol/L 5.84 (4.61–7.02) 5.62 (4.30–6.96) 5.92 (4.61–6.97) 0.28

HbA1c, % 6.65 ± 0.04 6.59 ± 0.02 6.70 ± 0.05 0.70

Creatinine, mcmol/L 108.8 ± 12.0 108.6 ± 8.5 95.1 ± 10.4 0.26

TC, mmol/L 6.41 (6.15–6.82) 6.43 (6.17–6.70) 6.42 (6.35–6.90) 0.82

HDL-C, mmol/L 0.95 (0.73–1.12) 0.97 (0.80–1.07) 0.93 (0.70–1.10) 0.80

LDL-C, mmol/L 4.43 (4.10–4.75) 4.38 (4.27–4.49) 4.51 (4.35–4.68) 0.68

TG, mmol/L 2.26 (2.11–2.31) 2.21 (2.04–2.39) 2.30 (1.18–3,46) 0.64

NT-proBNP, pmol/mL 2718 (1380 – 3720) 3115 (2380 – 3750) 105 (72 – 142) 0.001
Irisin, ng/mL 9.85 (4.34 – 13.60) 6.50 (3.10—10.5) 12.90 (11.2 – 13.4) 0.001
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LAVI did not exhibit modality to increase the discrimi-
native potency of NT-proBNP (Table  4). Thus, irisin 
remarkably improved the predictive value of NTproBNP 
for HF in T2DM patients, whereas we did not find a dif-
ference between isolated irisin and irisin + reference 
model that seems to show an independent discriminative 
value of irisin for HF.

Discussion
Our study demonstrated that irisin concentrations were 
lower in T2DM patients with established HF indepen-
dently from its phenotypes. Aline with it, well balanced 
cutoff level for irisin that distinguished HF cohort from 
non-HF cohort was found to be 10.4  ng/mL. Yet, add-
on of irisin level to the predictive HF model constructed 
from elevated levels of NT-proBNP remarkably exerted 
its additive potency.

We hypothesize that these findings may be promising 
for personified transitional management of HF regard-
less of a signature of comorbidities including T2DM and 
profile of HF phenotypes. Indeed, previously received 
data showed that acute / acutely decompensated HF was 
strongly associated with an increase in both NT-proBNP 
and irisin, whereas opposite changes of these biomarkers 
in terms of increase in NT-proBNP and decrease in irisin 
accompanied chronic HF [24, 25]. Moreover, there is a 
strong reason to believe that reduced levels of irisin more 
typical for maladaptive shifts in adverse cardiac remod-
eling due to inflammation and fibrosis than elevation of 
NT-proBNP in circulation reflecting non-specific biome-
chanical stress [26]. Irisin is sometimes referred to as the 

’universal indicator’ of early stages of cardiac remodeling 
as it is capable of attenuating hypoxia / ischemia-induced 
apoptosis of cardiac myocytes and cardiac hypertro-
phy [27]. Acting via microRNA-19b/AKT/mTOR and 
AMPK/mTOR signaling pathways, irisin promotes car-
diac protective activity and modulate preconditioning 
[28, 29]. Finally, its ability to suppress oxidative stress and 
inflammation is considered to be clear explanation of the 
cause by which circulating levels of irisin was found to 
be high in acute HF along with natriuretic peptides and 
other biomarkers of biomechanical stress and myocardial 
injury [30]. Thus, a trend to decrease in circulating lev-
els of irisin in HF diabetics when compared to non-HF 
patients with T2DM seems to be a sign of incapability 
of endogenous repair system to compensate initial myo-
cardial damage, so it illustrates an occurrence of mala-
daptive stage in cardiac remodeling directly related to 
T2DM-induced microvascular inflammation, endothelial 
dysfunction and skeletal muscle myopathy [31, 32].

On the other hand, weak physical endurance in T2DM 
is regarded to be a plausible cause of low levels of circu-
lating irisin in comparison with healthy individuals [33, 
34]. It has been noticed that skeletal muscle expression 
of irisin in chronic HF inversely correlated to the levels 
of inflammatory cytokines [34, 35]. Because T2DM is a 
well-known factor contributing to atherosclerosis, sys-
temic and microvascular inflammation including adi-
pose tissue inflammatory-related remodeling, skeletal 
muscle dysfunction and persistently exists among HF 
including HFpEF, irisin can be a promising predictor of 
cardiac remodeling and HF [36, 37]. This hypothesis has 

Table 2 Spearmen correlations between irisin levels and other parameters

Abbreviations: BMI Body mass index, BP Blood pressure, DBP Diastolic blood pressure, eGFR Estimated glomerular filtration rate, HDL-C High-density lipoprotein 
cholesterol, HOMA-IR Homeostasis Model Assessment of insulin resistance, LDL-C Low-density lipoprotein cholesterol, LVEF Left ventricular ejection fraction, 
NT-proBNP N-terminal brain natriuretic pro-peptide, NYHA New York Heart Association, SBP Systolic blood pressure, TC Total cholesterol, TG Triglycerides, WHR Waist-
to-hip ratio

Factors that correlate with the 
levels of irisin

Entire population HF patients None-HF patients

r Spearmen P value r Spearmen P value r Spearmen P value

HOMA-IR 0.34 0.001 0.14 0.12 0.44 0.003
NT-proBNP 0.33 0.001 0.38 0.001 0.38 0.001
LVEF 0.26 0.044 0.32 0.001 0.17 0.54

NYHA class 0.24 0.01 0.16 0.05 - -

TC -0.27 0.001 -0.11 0.06 -0.24 0.042
HDL-C 0.24 0.02 0.13 0.42 0.29 0.001
LDL-C -0.29 0.001 -0.13 0.22 -0.31 0.001
TG -0.28 0.001 -0.20 0.050 -0.32 0.001
eGFR -0.32 0.024 -0.21 0.054 -0.30 0.001
WHR -0.40 0.001 -0.25 0.001 -0.42 0.001
BMI -0.32 0.001 -0.30 0.001 -0.34 0.001
SBP -0.28 0.001 -0.06 0.26 -0.20 0.046
DBP -0.26 0.001 -0.21 0.001 -0.22 0.044



Page 5 of 10Berezin et al. Molecular Biomedicine            (2022) 3:34  

been confirmed in some clinical studies, which yielded 
optimistic results in respect with the predictive role of 
irisin for both HFpEF and HFrEF in patients with T2DM 
or insulin resistance [38, 39]. The findings of our study 
showed that irisin levels being positively correlated with 
LVEF did not exhibit strong correlation with several met-
abolic parameters including fasting glucose, HOMA-IR 
in HF cohort, whereas in non-HF T2DM patients these 
associations were noticed. In fact, these data clarify that 
the initial trigger for irisin production in HF and non-HF 
populations can be different and that thereby low levels 
of irisin is considered a surrogate biomarker of advanced 

cardiac remodeling and the risk of HF manifestation. 
Indeed, there is strong evidence of the fact that is con-
sisted of this assumption [39, 40].

However, we noticed that irisin being added to 
NTproBNP was better predictor for HF than LAVI, so 
metabolic response in T2DM at high risk of HF occurred 
ahead of hemodynamic left-side heart changes. Aline 
with it, we established that isolated use of irisin is taken 
into account to be because the same predictable of HF as 
its combination with the based model. This clarifies inde-
pendent discriminative potency of the biomarker and 
opens new prospective in further discovery of clinical 

Fig. 1 Reliability of the predictive models for HF. The results of ROC curve analysis. a ROC curve data of irisin in HF. b ROC curve data of NT-proBNP 
in HF. c ROC curve data of LAVI in HF. d ROC curve data of E/e` in HF. Abbreviations: AUC, area under curve; CI, confidence interval; HF, heart failure; 
LAVI, left atrial volume index; E/e`, early diastolic blood filling to longitudinal strain ratio; NT- proBNP, N-terminal brain pro-natriuretic peptide
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implication of the model. Perhaps, irisin being abun-
dantly produced by skeletal muscles and adipocytes and 
other tissues out of myocardium may mediate different 
variants of peripheral tissue dysfunction, which intervene 
in an exceedingly progression of HF in T2DM [17, 19]. 
During this context, irisin seems to point out quite opti-
mistic results that deserve investigating in large clinical 
trials. Indeed, a metabolic signature of HFpEF frequently 
collides to serious difficulty within the interpretation 
of its role in prediction of clinical course of the disease 
[2, 19]. Yet, there is uncertain whether the patients with 
HFpEF and T2DM could also be beneficially treated and 
demonstrate a strict resemblance in clinical outcomes 
having a major difference in irisin. These findings are 
regarded to be another target for further studies. Taking 
into consideration the results of several studies of posi-
tive impact of irisin on cardiac function and structure 
[41, 42], we hypothesized that a decrease in irisin concen-
tration is superior to diastolic and systolic cardiac dys-
function markers in prediction of HF. Finally, we received 
strong evidence of our hypothesis when the full model 
including NT-proBNP and irisin became more predict-
able for HF than others.

There are several limitations in the study, the first of them 
relates to one center open cohorts study design. Yet, we also 
do not include T2DM patients having history TIA / stroke, 
also as those with coronary revascularization or other surgi-
cal procedures. The second limitation was that we did not 
use phenotypes of HF (HFpEF, HFrEF and HFmrEF) for fur-
ther analysis. The last limitation was a lack of serial measures 
of circulating biomarkers in a protocol of the study. However, 
we believe that these limitations are not conclusive and allow 
extrapolating the results of the study on other populations.

Methods
Study design
A total of 226 T2DM patients who were under investigation 
in the Private Multidisciplinary Hospital Vita-Centre LTD 
(Zaporozhye, Ukraine) were consecutively included in the 
study from October 2020 to December 2021. The following cri-
teria such as age > 18 years, established T2DM regardless of HF, 
and the levels of HbAc1 less 6.9% were used as inclusion ones. 
The study design, inclusion / exclusion criteria and reasons to 
exclusion at the prescreening are reported Fig. 2. Then since 
the patients were checked in compliance to inclusion / exclu-
sion criteria 183 patients were finally included in the study.

Table 3 Predictors for HF in T2DM patient populations

Abbreviations: BMI Body mass index, E/e’ Early diastolic blood filling to longitudinal strain ratio, LAVI Left atrial volume index, LVH Left ventricular hypertrophy, 
NT-proBNP N-terminal brain natriuretic pro-peptide

Logistic Regression Models

Univariate Multivariate

OR (95% CI) P-Value OR (95% CI) P-Value

NT-proBNP (> 750 pmol/mL vs ≥ 750 pmol/mL) 1.54 (1.06–2.33) 0.001 1.17 (1.02–1.26) 0.042
Irisin (< 10.4 ng/mL vs ≥ 10.4 ng/mL) 1.52 (1.16–2.86) 0.001 1.28 (1.08–2.15) 0.001
LAVI (> 34 mL/m2 vs ≤ 34 mL/m2) 1.19 (1.11–1.36) 0.001 1.06 (1.02–1.13) 0.044
LVH (present vs absent) 1.12 (1.06–1.20) 0.044 1.05 (1.00–1.11) 0.14

E/e’ (> 11 units vs ≤ 11 units) 1.12 (1.06–1.21) 0.001 1.04 (1.00–1.06) 0.42

BMI (present vs absent) 1.07 (1.02–1.11) 0.046 1.05 (1.00–1.08) 0.062

Age 1.03 (1.02–1.05) 0.048 1.03 (1.00–1.04) 0.16

Table 4 The comparisons of predictive models for HF: The results of model fit statistics

Abbreviations: LAVI Left atrial volume index, M Median, SD Standard deviation, HF Heart failure, NT-proBNP N-terminal brain natriuretic pro-peptide

Models Depending variable: HF

Area under curve Net-reclassification improvement Integrated discrimination 
indices

M ± SD P-value M ± SD P-value M ± SD P-value

Reference Model 1 (NT-proBNP) 0.78 ± 0.16 - - -

Model 2 (NT-proBNP + LAVI) 0.82 ± 0.06 0.05 0.15 ± 0.04 0.64 0.17 ± 0.03 0.42

Model 3 (NT-proBNP + irisin) 0.97 ± 0.01 0.0001 0.63 ± 0.02 0.045 0.56 ± 0.03 0.012

Model 4 (Irisin) 0.96 ± 0.01 0.0001 0.53 ± 0.01 0.044 0.42 ± 0.01 0.024
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CV risk factors and co-morbidities
We evaluated CV risk factors and co-morbidities accord-
ing to current guidelines of the European Society of Car-
diology (ESC) [43–46] so as to work out HF during the 
study we used ESC guidelines [47, 48].

Routine anthropometric examinations
We evaluated conventional anthropometric parameters 
including body mass index (BMI), height, weight, and 
hip-to-waist ratio (WHR) [49].

B-mode Echocardiography and Doppler examination
Conventional B-mode echocardiography and impulse 
Doppler examination on Vivid T8 ("GE Medical Systems", 
Freiburg, Germany) were performed with the aim of elu-
cidating hemodynamic features (left ventricular ejec-
tion fraction [LVEF], left atrial volume [LAV], left atrial 

volume index [LAVI], E/e` ratio) in compliance with cur-
rent guidelines [50]. Left ventricular hypertrophy (LVH) 
was detected per conventional echocardiohraphic crite-
ria, including the following: LV mass / body area ≥ 125 g/
m2 in male or ≥ 110 g/m2 in female [51].

Medications
T2DM patients received diet together with personally 
adjusted dose of metformin and sodium-glucose cotrans-
porter-2 (SGLT2) inhibitor optionally. HF patients were 
treated in line with conventional clinical recommenda-
tion with beta-blockers, antagonists of renin–angioten-
sin–aldosterone system, loop diuretics, while possible 
use of SGLT2 inhibitions or i/f blocker ivabradine were 
also recommended as adjunctive therapies. Lipid-low-
ering agents were prescribed in subjects with known 

Fig. 2 Flow chart of the study design. Abbreviations: CABG, coronary artery bypass grafting; HF, heart failure; HOMA-IR, Homeostatic Assessment 
Model of Insulin Resistance; HR, heart rate; TIA, transient ischemic attack; T2DM, type 2 diabetes mellitus
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dyslipidemia, T2DM or established CVD without con-
ventional contraindications. Antiplatelet drugs were 
added to the therapy when needed.

Biochemical analyses
Blood samples were collected for biochemical analysis 
after overnight fasting. After centrifugation (3000 r/min, 
30  min) polled serum aliquots were stored at ≤ –70ºC 
until analysis. Concentrations of irisin and NT-proBNP 
were measured with commercial ELISA kits (Elabsci-
ence, Houston, Texas, USA). All ELISA data were evalu-
ated in step with the quality curve and every sample was 
measured twice because the norm was finally analyzed. 
Conventional biochemistry parameters were routinely 
measured in local laboratory using Roche P800 analyzer 
(Basel, Switzerland). We used CKD-EPI formula to esti-
mate glomerular filtration rate (GFR) [52]. Insulin resist-
ance was detected as Homeostatic Assessment Model of 
Insulin Resistance (HOMA-IR) [53].

Statistical analyses
We used v. 23 SPSS (IBM, Armonk, New York, USA) 
software and v. 9 GraphPad Prism (GraphPad Software, 
San Diego, CA, USA) software for statistical analysis. 
The Kolmogorov–Smirnov test was accustomed evalu-
ate distribution of variables. Baseline characteristics were 
expressed as counts with percentages or mean ± variance 
(SD) or median (interquartile range – IQR) for continu-
ous variables and as proportions for categorical variables. 
For the normally distributed continuous variables, Stu-
dent’s t-test was used. Otherwise, the Mann–Whitney 
U-test was chosen instead. We used Spearman coeffi-
cient of correlation to represent the connection between 
variables. With the aim of obtaining a receiver operating 
characteristic (ROC)-determined biomarker cut-points 
Youden method was performed. For the optimal cut-of 
value, the realm under the curve (AUC), 95% confidence 
Intervals (95% CI), also as a sensitivity and specificity 
were estimated. Univariate logistic regression was accus-
tomed elucidate plausible predictive factors for HF. The 
potential candidates (P < 0.05) included in multivariate 
logistic regression. Predictive value of things for HF were 
confirmed using estimation of integrated discrimination 
indices (IDI) and net-reclassification improvement (NRI). 
All the tests performed were 2 sided, and p value < 0.05 
was considered statistically significant.

Conclusion
Current predictive model for HF based on measure-
ment of concentrations of natriuretic peptides and 
detection of cardiac dysfunction or alteration of cardiac 
structure seems to show the best predictive value for 

HFrEF, whereas the discriminative potency for HFm-
rEF/HFpEF is significantly lower than for HFrEF. There-
fore, coexisting comorbidities including obesity and 
T2DM intervene in problematic issue to interpretation 
of the variability of NT-proBNP. In this connection, 
discovery of new biomarkers that are able to improve 
predictive capability of current model is promising. Iri-
sin ensures a metabolic regulation of cardiac function 
and structure and tackles skeletal muscle activity with 
common clinical features of HF such as fatigue and 
low tolerability to physical exercise along with direct 
impact on adverse cardiac remodeling. Yet, irisin seems 
to show their predictive potency regardless of NT-
proBNP and any HF phenotype.

We established that serum irisin levels were sig-
nificantly decreased in HF in patients with established 
T2DM when compared with individuals with T2DM 
without this condition. Along with it, we established that 
the concentrations of irisin less than 10.4 ng/mL not only 
had discriminative information for HF, but also was able 
to improve the discriminative potency of NTproBNP for 
the disease in T2DM patients. The irisin seem to show 
optimistic results in terms of its predictive ability for HF 
independently from NT-proBNP and cardiac features 
characterized LV diastolic function (LAVI). This finding 
seem to have promising importance in discovering new 
predictive models for HF in these patient populations.
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