МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ УКРАИНЫ Запорожский государственный медицинский университет Кафедра аналитической химии

МЕДИЦИНСКАЯ ХИМИЯ

Модуль 1

ФИЗИКО-ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ. ЛИОФОБНЫЕ И ЛИОФИЛЬНЫЕ ДИСПЕРСТНЫЕ СИСТЕМЫ

(конспект)

Смысловой модуль 4

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

для преподавателей и студентов 1 курса медицинского факультета специальности «Педиатрия»

Запорожье 2014

Учебно-методическое пособие составили:

доктор фармацевтических наук, профессор С. А. Васюк; кандидат фармацевтических наук А. С. Коржова.

Рецензенты:

доктор фармацевтических наук, профессор, заведующий кафедрой органической и биоорганической химии *С. И. Коваленко*; кандидат химических наук, доцент, доцент кафедры физколлоидной химии *С. А. Похмелкина*.

Модуль 1. Медицинская химия. Смысловой модуль 4. Физико-химия поверхностных явлений. Лиофобные и лиофильные дисперстные системы (конспект): учебно-методическое пособие для преподавателей и студентов 1 курса медицинского факультета специальности "Педиатрия" / сост. С. А. Васюк, А. С. Коржова. — Запорожье: [ЗГМУ], 2014. — 18 с.

Утверждено на заседании Центрального методического совета Запорожского государственного медицинского университета (протокол N2 om 27.11.2014 p.)

ПРЕДИСЛОВИЕ

Медицинскаяхимияизучаетсясогласноутвержденнойтиповойпрограммы 2005 года для студентовВУЗов III-IV уровнейаккредитацииУкраины для специальности 7.110104 «Педиатрия», соответственнообразовательно-квалификационной характеристики и образовательно-профессиональнойпрограммыподготовкиспециалистов, утвержденных приказом МОН Украины от 16.04.2003 года № 239.

Организация ученого процессаосуществляется по кредитно-модульнойсистеме в соответствии с требованиями Болонского процесса.

Согласноучебногопланамедицинскуюхимиюизучают в I семестре.

Программадисциплинысостоитиз 1 модуля, которыйвключает в себя 4 смысловых модуля:

- 1. Химиябиогенных элементов. Комплексообразование в биологических жидкостях.
- 2. Кислотно-основные равновесия в биологических жидкостях.
- 3. Термодинамические и кинетическиезакономерностипротеканияпроцессов и электрокинетическиеявления в биологических системах.
- 4. Физико-химияповерхностных явлений. Лиофобные и лиофильные дисперстные системы.

Занятие № 15

- 1. ТЕМА: Сорбция биологическиактивных веществ на границе раздела фаз
- 2. ЦЕЛЬ: Сформировать общие представления о сорбционных процессах и закономерностях, происходящих в межфазном поверхностном слое

3. ЦЕЛЕВЫЕ ЗАДАЧИ:

- 3.1. Сформировать представлениео сорбционных процессах в жизни человека.
- 3.2. Сформировать представлениео структуре биологических мембран.
- 3.3. Научиться применять поверхностно-активные вещества в медицинской практике.
 - 3.4. Усвоить закономерности адсорбции.
 - 3.5. Научиться строить изотермы адсорбции.

4. ПЛАН И ОРГАНИЗАЦИОННАЯ СТРУКТУРА ЗАНЯТИЯ:

4.1. Организационный момент	5 мин
4.2. Постановка цели занятия и мотивация изучения т	гемы занятия
(вступительное слово преподавателя)	5 мин
4.3. Выявление исходного уровня знаний	15 мин
4.4. Коррекция исходного уровня знаний	25 мин
4.5. Организация самостоятельной работы студентов (целев	ые указания
преподавателя, техника безопасности)	5 мин
4.6. Лабораторная работа	45 мин
4.7. Итоговый контроль: проверка результатов лабораторной	работы и
протоколов.	10 мин
4.8. Заключительное слово преподавателя, указания к	
занятию	3 мин

5. ЗАДАНИЕ ДЛЯ САМОПОДГОТОВКИ СТУДЕНТОВ:

5.1. Учебные вопросы для самоподготовки студентов

- 1. Поверхностное натяжение жидкостей и растворов. Изотерма поверхностного натяжения.
- 2. Поверхностно-активные и поверхностно-неактивные вещества. Поверхностная активность. Правило Дюкло-Траубе.
- 3. Адсорбция на границе раздела жидкость газ и жидкость –жидкость. Уравнение Гиббса.
- 4. Ориентация молекул поверхностно-активных веществ в поверхностном слое.
- 5. Представление о структуре биологических мембран.
- 6. Адсорбция на границе раздела твердое тело газ.
- 7. Уравнение Ленгмюра.
- 8. Адсорбция из раствора на поверхности твердого тела. Физическая и химическая адсорбция.
- 9. Закономерности адсорбции растворенных веществ, паров и газов. Уравнение Фрейндлиха.
- 10. Физико-химические основы адсорбционной терапии (гемосорбция, плазмосорбция, лимфосорбция, энтеросорбция, апликационная терапия). Иммуносорбенты.

5.2. Выполнить задания:

Задача 1.Пользуясь правилом Дюкло-Траубе, определить во сколько раз поверхностная активность амилового спирта $CH_3(CH_2)_3CH_2OH$ больше поверхностной активности этилового спирта CH_3CH_2OH .

Ответ: в 32,77 раза.

Задача 2. Определить величину адсорбции водного раствора капроновой кислоты ($C_5H_{11}COOH$) при $15^{\circ}C$, если ее концентрация составляет 0,25 моль/м³, поверхностное натяжение раствора $35\cdot10^{-3}$ H/м, а поверхностное натяжение воды равно $73,4\cdot10^{-3}$ H/м.

Ответ: $4.01 \cdot 10^{-3}$ моль/м².

Задача 3.Найти площадь, приходящуюся на одну молекулу в насыщенном адсорбционном слое анилина на поверхности его водного раствора, если предельная адсорбция равна $6.0\cdot10^{-6}$ моль/м².

OTBET: $2.77 \cdot 10^{-19} \,\mathrm{m}^2$.

Литература:

- 1. Мороз А. С, Луцевич Д. Д. Яворська Л. П. Медичнахімія: підручник для студ. вищ. навч. мед. закл. –Вінниця: Нова книга, 2011. С. 562-594.
- 2. Медицинская химия: учеб. / В. А. Калибабчук, Л. И. Грищенко, В. И. Галинская и др.; под ред. В. А. Калибабчук. К.: Медицина, 2008. С. 217-244.
- 3. Общая химия. Биофизическая химия. Химия биогенных элементов: Учеб.для вузов / Ю. А. Ершов, В. А. Попков, А. С. Берлянд и др.: Под ред. Ю. А. Ершова. М. Высш. шк., 2000. С. 423-449.
- 4. Зеленин К. Н. Химия: Учеб.для мед. вузов. СПб: «Специальная литература», 1997. С. 235-254.
- 5. Садовничая Л. П., Хухрянский В. Г., Цыганенко А. Я. Биофизическая химия. К.: Вища школа, 1986. С. 166-182.
- 6. Равич-Щербо М. И., Новиков В. В. Физическая и коллоиднаяхимия. М.: Высш. шк., 1975. C.153-168.

6. ЛАБОРАТОРНАЯ РАБОТА

6.1. Адсорбция уксусной кислоты на активированном угле

В четыре пронумерованные колбы отмерить по 10,00 мл 0,05 н., 0,10 н., 0,15 н. и 0,20 н. раствора уксусной кислоты. Во все колбы добавить по 0,5 г активированного угля и оставить, периодически помешивая, на 20 мин.

В это время оттитровать по 5,00 мл уксусной кислоты каждой концентрации 0,1 н. раствором NaOH в присутствии фенолфталеина.

Через 20 мин отфильтровать через бумажные фильтры растворы от угля в отдельные колбы. От каждого фильтрата отобрать по 5,00 мл, перенести в колбы для титрования и оттитровать 0,1 н. раствором NaOH в присутствии фенолфталеина.

Все ланные занести в таблицу.

	diffible suffeeth b it				
<u>№</u> колбы	C ₀ (CH ₃ COOH)	V ₀ (NaOH), мл	V ₁ (NaOH), мл	$\Delta V = V_0$ - V_1 , мл	Γ
1	0,05				
2	0,10				
3	0,15				·
4	0,20				·

Рассчитать величину адсорбции Г по формуле:

$$\Gamma = \frac{C_{\text{(NaOH)}} \cdot \Delta V \cdot V_{l_{\text{(CH_3COOH)}}}}{V_{2_{\text{(CH_3COOH)}}} \cdot m_{\text{адс.}} \cdot 1000}, \, \text{где}$$

 V_0 (NaOH) – объем раствора NaOH, пошедший на титрование уксусной кислоты, мл;

 V_1 (NaOH) – объем раствора NaOH, пошедший на титрование фильтрата, мл;

 V_1 (CH₃COOH) – объем раствора CH₃COOH, обработанный адсорбентом, мл;

 V_2 (CH₃COOH) –объем раствора CH₃COOH, взятый на титрование, мл;

 $m_{\text{адс.}}$ – масса адсорбента, г.

Построить график зависимости $\Gamma - f(C_0(CH_3COOH))$. Сделать вывод.

6.2. Адсорбция окрашенных веществ из смеси активированным углем

В пробирку поместить 5 мл смеси водных растворов фуксина и флуоресцеина, добавить 0,2 г активированного угля и встряхивать в течение 3 мин. Отфильтровать в другую пробирку. Описать внешний эффект. Сделать выводы.

6.3. Зависимость адсорбции от природы адсорбента

В три пробирки поместить по 5 мл $Pb(NO_3)_2$. В первую пробирку добавить 0,2 г Al_2O_3 , во вторую — 0,2 г активированного угля, третью оставить для сравнения. Пробирки встряхивать 2 мин. Отфильтровать содержимое первых двух пробирок. В каждый фильтрат и третью пробирку добить по 5 капель раствора KI. Внешний эффект занести в таблицу:

Номер пробирки	Адсорбент	Внешний эффект
1	Al_2O_3	
2	уголь	
3	_	

Сделать выводы.

7. НАГЛЯДНЫЕ ПОСОБИЯ, ТС ОБУЧЕНИЯ И КОНТРОЛЯ

- табличный фонд по теме занятия;
- карточки для выявления исходного уровня знаний-умений;
- контрольные вопросы;
- тесты.

Занятие № 16

- 1. ТЕМА: Ионный обмен. Хроматография
- 2. ЦЕЛЬ: Изучить теоретические основы явлений адсорбции и ионного обмена, возможности их применения в медицинской практике
 - 3. ЦЕЛЕВЫЕ ЗАДАЧИ:

- 3.1. Усвоить основы ионного обмена и иметь представление о применении этого явления в медицинской практике.
 - 3.2. Приобрести практические навыки хроматографического разделения веществ.

4. ПЛАН И ОРГАНИЗАЦИОННАЯ СТРУКТУРА ЗАНЯТИЯ:

4.1. Организационный момент	5 мин
4.2. Постановка цели занятия и мотивация изучения те	емы занятия
(вступительное слово преподавателя).	5 мин
4.3. Выявление исходного уровня знаний	15 мин
4.4. Коррекция исходного уровня знаний	25 мин
4.5. Организация самостоятельной работы студентов (целевь	ые указания
преподавателя, техника безопасности)	5 мин
4.6. Лабораторная работа	45 мин
4.7. Итоговый контроль: проверка результатов лабораторной	работы и
протоколов	10 мин
4.8. Заключительное слово преподавателя, указания к	
занятию	3 мин

5. ЗАДАНИЕ ДЛЯ САМОПОДГОТОВКИ СТУДЕНТОВ:

5.1. Учебные вопросы для самоподготовки студентов

- 1. Хроматография. Сущность метода.
- 2. Классификация хроматографических методов анализа по механизму разделения веществ, агрегатному состоянию фаз, по технике выполнения эксперимента.
- 3. Адсорбционная хроматография. Тонкослойная хроматография.
- 4. Распределительная хроматография. Бумажная хроматография. Газовая хроматография.
- 5. Осадочная хроматография.
- 6. Ионообменная хроматография.
- 7. Молекулярно-ситовая (гель-проникающая) хроматография. Аффинная (биоспецифическая) хроматография.
- 8. Применение хроматографии в биологии и медицине. Роль ионного обмена в процессах жизнедеятельности растений и животных. Избирательная адсорбция веществ в организме человека.

5.2. Выполнить задания:

Задание 1. Для стандартных растворов веществ A и B были получены следующие значения R_f соответственно - 0,56 и 0,34. При хроматографировании в тех же условиях неизвестного раствора на пластинке были получены два пятна, расположенные на расстоянии 5,7 см и 4,3 см. Растворитель же прошел расстояние, равное 12,6 см. Установить, присутствуют ли в анализируемом растворе вещества A и B.

Литература:

- 1. Мороз А. С, Луцевич Д. Д. Яворська Л. П. Медична хімія: підручник для студ. вищ. навч. мед. закл. Вінниця: Нова книга, 2011. С. 594-601.
- 2. Медицинскаяхимия: учеб. / В. А. Калибабчук, Л. И. Грищенко, В. И. Галинская и др.; под ред. В. А. Калибабчук. К.: Медицина, 2008. С. 244-249.
- 3. Равич-Щербо М. И., Новиков В. В. Физическая и коллоиднаяхимия. М.: Высш. шк., 1975. С. 168-174.

6. ЛАБОРАТОРНАЯ РАБОТА

6.1. Разделение катионов методомосадочной хроматографии на бумаге

В центр листа бумаги, пропитанной раствором осадителя — йодида калия, капилляром нанести анализируемый водный раствор, содержащий смесь катионов Ag^+ , Bi^{3+} , Hg_2^{2+} .

В центре образуется желто-зеленое пятно, соответствующее катиону ртуги (I):

$$Hg_2^{2+} + 2I \longleftrightarrow Hg_2I_2 \downarrow;$$

желтая зона соответствует катионамсеребра:

$$Ag^+ + I^- \leftrightarrow AgI \downarrow$$
,

черная зона – катионам висмута:

$$Bi^{3+} + 3I^{-} \leftrightarrow BiI_{3} \downarrow$$
.

6.2. Разделение солей методомадсорбционной колоночной хроматографии

В хроматографическую колонку, заполненную взвесью адсорбента оксида алюминия для хроматографии, внести раствор, содержащий 1% Cu(NO₃)₂ и 1% Co(NO₃)₂.

Через некоторое время в колонке становятся видимыми два слоя: верхний – голубой, содержащий ионы меди, и нижний – бледно-розовый, содержащий наиболее слабо адсорбирующиеся ионы кобальта. Слои могут быть далее разделены механически или обработкой разведенной азотной кислотой или другими реактивами.

6.3. Анализ смеси аминокислотметодом тонкослойной хроматографии

В 2-3 см от края пластинки на линию старта с помощью капилляра нанести 1 каплю анализируемой пробы (смесь 0,004 М растворов глицина и метионина) и по 1 капле растворов глицина и метионина как эталонных «свидетелей» с интервалом в 1,5-2 см. Пятна высушить на воздухе и пластинку поместить в хроматографическую камеру, насыщенную парами растворителя: пропанол-1 – ацетон – вода (5:2:2) вертикально.

По мере продвижения жидкой фазы на пластинке происходит разделение смеси веществ, и разделяемые компоненты образуют на пластинке отдельные зоны (пятна). Когда фронт растворителя поднимется на 6 см от линии старта, пластинку вынуть из камеры, высушить на воздухе и проявить пятна 0,25%-ным раствором нингидрина в пропаноле-1. После высушивания пластинки провести идентификацию пятен, то есть определить, какому соединению соответствует каждое из пятен разделенной смеси. Для этого рассчитать величины их коэффициентов подвижности R_f по формуле:

$$R_f = \frac{x}{L}$$

и сравнить с R_fэталонных пятен «свидетелей».

7. НАГЛЯДНЫЕ ПОСОБИЯ, ТС ОБУЧЕНИЯ И КОНТРОЛЯ

- табличный фонд по теме занятия;
- карточки для выявления исходного уровня знаний-умений;
- контрольные вопросы;
- тесты.

Занятие № 17

- 1. ТЕМА: Получение, очистка и свойства коллоидных растворов
- 2. ЦЕЛЬ: Сформировать представление о структуре и свойствах биологически важных коллоилов
 - 3. ЦЕЛЕВЫЕ ЗАДАЧИ:
 - 3.1. Изучить способы получения, очистки свойства коллоидных растворов.
- 3.2. Использовать физико-химические характеристики коллоид-ных растворов для оценки свойств биологических объектов, лекарственных препаратов.
 - 3.3. Научиться писать мицеллы.

4. ПЛАН И ОРГАНИЗАЦИОННАЯ СТРУКТУРА ЗАНЯТИЯ:

4.1. Организационный момент	МИН
4.2. Постановка цели занятия и мотивация изучения темы заня	RNTF
(вступительное слово преподавателя)	ИИН
4.3. Выявление исходного уровня знаний	иин
4.4. Коррекция исходного уровня знаний25 н	мин
4.5. Организация самостоятельной работы студентов (целевые указа	иния
преподавателя, техника безопасности)5	МИН
4.6. Лабораторная работа	МИН
4.7. Итоговый контроль: проверка результатов лабораторной работн	ы и
протоколов	мин
4.8. Заключительное слово преподавателя, указания к следующ	
занятию	мин

5. ЗАДАНИЕ ДЛЯ САМОПОДГОТОВКИ СТУДЕНТОВ:

5.1. Учебные вопросы для самоподготовки студентов

- 1. Организм как сложная совокупность дисперсных систем.
- 2. Классификация дисперсных систем по степени дисперсности.
- 3. Коллоидное состояние. Лиофильные и лиофобные коллоидные системы.
- 4. Строение коллоидных частиц.
- 5. Двойной электрический слой. Электрокинетический потенциал коллоидной частицы.
- 6. Методы получения и очистки коллоидных растворов.
- 7. Диализ, электродиализ, ультрафильтрация, компенсацион-ный диализ, вивидиализ. Гемодиализ и аппарат «искусственная почка».
- 8. Молекулярно-кинетические свойства коллоидных систем. Броуновское движение, диффузия, осмотическое давление.
- 9. Оптические свойства коллоидных систем.
- 10. Электрокинетические явления. Электрофорез. Уравнение Гельмгольца-Смолуховского. Применение электрофореза в исследовательской и клинико-лабораторной практике. Электрофореграммы.

5.2. Выполнить задания:

Задача 1.3оль гексацианоферрата(II) меди получен действием на $K_4[Fe(CN)_6]$ избытка $CuSO_4$. Написать формулу мицеллы.

Задача 2. Золь берлинской лазури получен смешением равных объемов 0,008 н. раствора $FeCl_3$ и 0,01 н. раствора $K_4[Fe(CN)_6]$. Написать формулу мицеллы и указать заряд гранулы.

Задача 3. Написать мицеллу золя, полученного при взаимодействии $BaCl_2$ и Na_2SO_4 . Какой из электролитов взят в избытке, если при электрофорезе частицы перемещаются к аноду?

Литература:

- 1. Мороз А. С, Луцевич Д. Д. Яворська Л. П. Медичнахімія: підручник для студ. вищ. навч. мед. закл. –Вінниця: Нова книга, 2011. С. 603-657.
- 2. Медицинская химия: учеб. / В. А. Калибабчук, Л. И. Грищенко, В. И. Галинская и др.; под ред. В. А. Калибабчук. К.: Медицина, 2008. С. 252-285.
- 3. Общая химия. Биофизическая химия. Химия биогенных элементов: Учеб.для вузов / Ю. А. Ершов, В. А. Попков, А. С. Берлянд и др.: Под ред. Ю. А. Ершова. М. Высш. шк., 2000. С. 491-510.
- 4. Зеленин К. Н. Химия: Учеб.для мед. вузов. СПб: «Специальная литература», 1997. С. 265-284.
- 5. Садовничая Л. П., Хухрянский В. Г., Цыганенко А. Я. Биофизическая химия. К.: Вища школа, 1986. С. 187-222.
- 6. Равич-Щербо М. И., Новиков В. В. Физическая и коллоиднаяхимия. М.: Высш. шк., 1975. C.175-179.

6. ЛАБОРАТОРНАЯ РАБОТА

6.1. Получение золей химической конденсацией

6.1.1. Получение золя гидроксида железа(ІІІ)реакцией гидролиза

Поместить в пробирку 5 мл 0,025 М раствора $FeCl_3$. Нагреть раствор до кипения. Образуется красно-бурый золь. Потенциалопределяющие ионы FeO^+ , противоионы – Cl^- . Написать формулу мицеллы.

6.1.2. Получение золей гексацианоферрата(III)железа (берлинской лазури) с различными зарядамиреакцией обмена

Взять 3 чистые пробирки. В 1-ю пробирку поместить 9 мл 0,1 н. раствора $FeCl_3$ и 1мл 0,1 н. раствора $K_4[Fe(CN)_6]$. Во 2-ю пробирку поместить по 5 мл 0,1 н. раствора $FeCl_3$ и $K_4[Fe(CN)_6]$.

В третью пробирку поместить 1 мл 0,1 н. раствора $FeCl_3$ и 9 мл 0,1 н. раствора $K_4[Fe(CN)_6]$.

№ пробирки	0,1 н. p-p FeCl ₃ , мл	0,1 н. p-p $K_4[Fe(CN)_6]$, мл		Заряд гранулы
1	9	1		
2	5	5		
3	1	9		

Указать цвет золей, потенциалопределяющие ионы и знак заряда гранулы. Запишите формулы мицелл.

6.1.3. Получение золя диоксида марганца(IV) реакцией окисления-восстановления

Поместить в пробирку 1 мл 0,015 М раствора $KMnO_4$ и 5 мл дистиллированной воды. Перемешать. Добавить 0,5 мл 0,05 М раствора $Na_2S_2O_3$. После перемешивания содержимого пробирки образуется коричневый золь. Указать потенциалопределяющие ионы и написать формулу мицеллы.

6.1.4. Получение золя серы реакцией разложения

Поместить в пробирку 5 мл 0.05 Мраствора $Na_2S_2O_3$, добавить 1 мл 0.35 Мраствора H_3PO_4 . Образуется опалесцирующий золь серы.

6.1.5. Получение золей берлинской лазури методом пептизации

В две пробирки поместить по 0,2 мл осадка берлинской лазури, полученного в опыте 6.1.2 (вторая пробирка).

В одну пробирку добавить 2-3 мл 0,1 н. раствора FeCl₃, в другую 2-3 мл 0,1 н. раствора $K_4[Fe(CN)_6]$. В пробирках образуются золи: в первой – синий, во второй – зеленый. Сделать вывод о знаке заряда частиц полученных золей.

№ пробирки	0,1 н. p-p FeCl ₃ , мл	0,1 н. p-p K ₄ [Fe(CN) ₆], мл	Цвет золя	Заряд гранулы
1	2-3	_		
2	_	2-3		

6.2. Получение золей физической конденсацией. Получение золя холестерина методом замены растворителя

К 10 мл дистиллированной воды добавить несколько капель раствора холестерина в этиловом спирте. Образуется опалесцирующий золь.

7. НАГЛЯДНЫЕ ПОСОБИЯ, ТС ОБУЧЕНИЯ И КОНТРОЛЯ

- табличный фонд по теме занятия;
- карточки для выявления исходного уровня знаний-умений;
- контрольные вопросы;
- тесты

Занятие № 18

- 1. ТЕМА: Коагуляция коллоидных растворов. Коллоидная защита
- 2. ЦЕЛЬ: На основе системного изучения процесса коагуляции золей научиться прогнозировать влияние различных факторов на устойчивость биологически важных коллоидных систем
 - 3. ЦЕЛЕВЫЕ ЗАДАЧИ:
 - 3.1. Сформировать представление о видах устойчивости дисперсных систем.

- 3.2. Изучить факторы, влияющие на устойчивость и коагуляцию дисперсных систем.
- 3.3. Усвоить методы получения и свойства аэрозолей, грубодисперсных систем, эмульсий.
 - 3.4. Овладеть методом определения порога коагуляции.

4. ПЛАН И ОРГАНИЗАЦИОННАЯ СТРУКТУРА ЗАНЯТИЯ:

4.1. Организационный момент	5 мин
4.2. Постановка цели занятия и мотивация изучения	темы занятия
(вступительное слово преподавателя)	5 мин
4.3. Выявление исходного уровня знаний	15 мин
4.4. Коррекция исходного уровня знаний	25 мин
4.5. Организация самостоятельной работы студентов (целен	вые указания
преподавателя, техника безопасности)	5 мин
4.6. Лабораторная работа	45 мин
4.7. Итоговый контроль: проверка результатов лабораторной	работы и
протоколов	10 мин
4.8. Заключительное слово преподавателя, указания к	
занятию	3 мин

5. ЗАДАНИЕ ДЛЯ САМОПОДГОТОВКИ СТУДЕНТОВ:

5.1. Учебные вопросы для самоподготовки студентов

- 1. Кинетическая (седиментационная) и агрегативная устойчивость дисперсных систем. Факторы устойчивости.
- 2. Коагуляция. Механизм коагулирующего действия электролитов.
- 3. Порог коагуляции. Правило Щульце-Гарди.
- 4. Взаимная коагуляция.
- 5. Процессы коагуляции при очистке питьевой воды и сточных вод.
- 6. Коллоидная защита.
- 7. Дисперсные системы с газовой дисперсионной средой. Классификация аэрозолей, методы получения и свойства. Применение аэрозолей в клинической и санитарногигиенической практике. Токсическое действие некоторых аэрозолей.
- 8. Порошки.
- 9. Грубодисперсные системы с жидкойдисперсионной средой. Суспензии, методы получения и свойства.
- 10. Пасты, их медицинское применение.
- 11. Эмульсии, методы получения и свойства. Типы эмульсий. Эмульгаторы. Применение эмульсий в клинической практике. Биологическая роль эмульгирования.
- 12. Полуколлоидные мыла, детергенты. Мицеллообразование у растворов полуколлоидов.

5.2. Выполнить залания:

Задача 1. Какие из приведенных ионов оказывают коагулирующие действие на отрицательный золь «берлинской лазури» $Fe_4[Fe(CN)_6]_3$: Al^{3+} , Cl^- , NO_3^- , Mg^{2+} , SO_4^{2-} , K^+ . Расположить ионы в порядке усиления их коагулирующего действия.

Задача 2. Для коагуляции 50 мл золяAgI потребовалось 9,5 мл 1 н. раствора NaCl, 42 мл 0,01 н. раствора K_2SO_4 , 22 мл 0,001 н. раствора K_3PO_4 . Определить порог коагуляции каждого электролита и установите знак заряда частиц золя.

Задача 3. Порог коагуляции золя AgI для электролитов KCl и K_2SO_4 соответственно равны 11,0 и 0,2 ммоль/л. Во сколько раз коагулирующая способность сульфата калия больше, чем у хлорида калия?

Литература:

- 1. Мороз А. С, Луцевич Д. Д. Яворська Л. П. Медичнахімія: підручник для студ. вищ. навч. мед. закл. –Вінниця: Нова книга, 2011. С. 568-602, 730-758.
- 2. Медицинская химия: учеб. / В. А. Калибабчук, Л. И. Грищенко, В. И. Галинская и др.; под ред. В. А. Калибабчук. К.: Медицина, 2008. С. 285-315.
- 3. Общая химия. Биофизическая химия. Химия биогенных элементов: Учеб.для вузов / Ю. А. Ершов, В. А. Попков, А. С. Берлянд и др.: Под ред. Ю. А. Ершова. М. Высш. шк., 2000. С. 491-525.
- 4. Зеленин К. Н. Химия: Учеб.для мед. вузов. СПб: «Специальная литература», 1997. С. 284-291.
- 5. Садовничая Л. П., Хухрянский В. Г., Цыганенко А. Я. Биофизическая химия. К.: Вища школа, 1986. С. 222-237.
- 6. Равич-Щербо М. И., Новиков В. В. Физическая и коллоиднаяхимия. М.: Высш. шк., 1975. С.179-195.

6. ЛАБОРАТОРНАЯ РАБОТА

6.1. Определение порога коагуляции золя гидроксида железа(III)

В три серии пробирок по 4 пробирки в каждой поместить по 2,5 мл золя $Fe(OH)_3$. В каждую серию пробирок добавить, встряхивая, указанные в таблице количества дистиллированной воды и электролитов (KCl, K_2SO_4 , $K_3[Fe(CN)_6]$), получив при этом три серии растворов, в которых концентрация золей одинаковая, а концентрация электролита в каждой последующей пробирке больше, чем в предыдущей в 2 раза.

Через 30 мин отметить, в каких пробирках произошла явная коагуляция (помутнение). При помутнении в таблице поставить знак «+». Указать минимальную концентрацию электролита, вызвавшую коагуляцию.

Результаты оформить в виде таблицы:

No	Золь Fe(ОН)3,	Дист. вода,	DHOKERO HKE MH	Наблюдаемый
пробирки	МЛ	МЛ	Электролит, мл	эффект
1 серия	2	М раствор КС1		
	Koai	улирующий ис	DH:	
1	2,5	2,25	0,25	
2	2,5	2,0	0,5	
3	2,5	1,5	1,0	
4	2,5	0,5	2,0	
$C_{\kappa}(KCl) =$				
2 серия	0,05 N	И раствор K ₂ SC)4	
Коагулирующий ион:				
1	2,5	2,25	0,25	
2	2,5	2,0	0,5	
3	2,5	1,5	1,0	
4	2,5	0,5	2,0	
$C_{\kappa}(K_2SO_4) =$				
3 серия	0,005 M	раствор К ₃ [Fe(CN) ₆]	
		улирующий ио		
1	2,5	2,25	0,25	

2	2,5	2,0	0,5	
3	2,5	1,5	1,0	
4	2,5	0,5	2,0	
$C_{\kappa}(K_3[Fe(CN$) ₆]) =			

1. Рассчитать порог коагуляции по формуле:

$$C_{_{\rm K}} = \frac{C_{_{(\Im\Pi,)}} \cdot V_{_{(\Im\Pi,)}} \cdot 1000}{V_{_{(\Im\Pi\Re)}} + V_{_{(\Im\Pi,)}}}.$$

2. Указать коагулирующие ионы.

3. Проверить правило Шульце-Гарди:

 $C_{\kappa}(KC1) : C_{\kappa}(K_2SO_4) : C_{\kappa}(K_3[Fe(CN)_6]) =$

6.2. Коагуляция отрицательного золя «берлинской лазури»

Приготовить три серии пробирок по три в каждой.

Получить отрицательный золь «берлинской лазури» путем прибавления к 1 мл 0,1 н. раствора $FeCl_3$ 9 мл 0,1 н. раствора $K_4[Fe(CN)_6]$.

Во все серии пробирок налить по 1 мл приготовленного золя добавить во все пробирки дистиллированную воду и растворы электролитов в количествах, указанных в таблице.

Через 35 мин отметить, в каких пробирках наступила коагуляция (указать в таблице знаком «+»).

Результаты оформить в виде таблицы:

№ пробирки	Золь Fe ₄ [Fe(CN) ₆] ₃ ,	Дист. вода, мл	Электролит, мл	Наблюдаемый эффект
1 серия	1 M pa	створ КС1		
_	Коагулиј	рующий ион:		
1	1,0	1,8	0,2	
2	1,0	1,5	1,5	
3	1,0	-	2,0	
$C_{\kappa}(KCl) =$				
2 серия 0,02 M раствор BaCl ₂				
Коагулирующий ион:				
1	1,0	1,0	1,0	
2	1,0	0,5	1,5	
3	1,0	-	2,0	
$C_{\kappa}(BaC)$	l ₂) =			
3 серия	3 серия 0,002 M раствор AlCl ₃			
	Коагулирующий ион:			
1	1,0 1,5 0,5			
2	1,0 0,5 1,5			
3	1,0	-	2,0	
C _k (AlCl	3) =			

1. Рассчитать порог коагуляции по формуле:

$$C_{K} = \frac{C_{(3\pi.)} \cdot V_{(3\pi.)}}{V_{(30\pi8)} + V_{(3\pi.)}}$$

2. Сделать вывод о соблюдении правила Шульце-Гарди:

 $C_{\kappa}(KCl) : C_{\kappa}(BaCl_2) : C_{\kappa}(AlCl_3) =$

3. Определить зависимость коагулирующей способности электролитов от заряда коагулирующих ионов.

7. НАГЛЯДНЫЕ ПОСОБИЯ, ТС ОБУЧЕНИЯ И КОНТРОЛЯ

- табличный фонд по теме занятия;
- карточки для выявления исходного уровня знаний-умений;
- контрольные вопросы;
- тесты.

Занятие № 19

- 1. ТЕМА: Свойства растворов биополимеров. Изоэлектрическая точка белка
- 2. ЦЕЛЬ: Научиться оценивать свойства полимерных материалов на основе химической природы и характеристики молекул
 - 3. ЦЕЛЕВЫЕ ЗАДАЧИ:
 - 3.1. Научиться характеризовать строение и свойства биополимеров.
- 3.2. Научиться прогнозировать на основе законов термодинамики набухание и растворение ВМС.
 - 3.3. Научиться находить изоэлектрическую точку белка.
- 3.4. Научиться использовать информацию про свойства биополимеров в практической медицинской деятельности.

4. ПЛАН И ОРГАНИЗАЦИОННАЯ СТРУКТУРА ЗАНЯТИЯ:

4.1. Организационный момент
4.2. Постановка цели занятия и мотивация изучения темы занятия
(вступительное слово преподавателя)
4.3. Выявление исходного уровня знаний
4.4. Коррекция исходного уровня знаний
4.5. Организация самостоятельной работы студентов (целевые указания
преподавателя, техника безопасности)
4.6. Лабораторная работа45 мин
4.7. Итоговый контроль: проверка результатов лабораторной работы и
протоколов
4.8. Заключительное слово преподавателя, указания к следующему
занятию

5. ЗАДАНИЕ ДЛЯ САМОПОДГОТОВКИ СТУДЕНТОВ:

5.1. Учебные вопросы для самоподготовки студентов

1. Растворы ВМС, их роль в организме. Классификация ВМС.

- 2. Структурная организация белковой молекулы (глобулярная и фибриллярная). Изоэлектрическое состояние белка. Изоэлектрическая точка белка и методы ее определения. Электрофорез.
- 3. Свойства растворов ВМС, их сравнительная характеристика с коллоидными растворами и истинными растворами.
- 4. Набухание и растворение ВМС. Влияние рН среды, температуры и электролитов на набухание. Роль набухания в физиологии организма.
- 5. Устойчивость растворов ВМС. Методы осаждения белков.
- 6. Осмотическое давление растворов биополимеров. Онкотическое давление. Мембранное равновесие Доннана.
- 7. Вязкость растворов биополимеров: аномально высокая вязкость, удельная вязкость, приведенная и характеристическая вязкость.
- 8. Студни, их образование и свойства. Тиксотропия. Синерезис. Биологическое значение студнеобразования.

5.2. Выполнить задания:

Задание 1. В растворе содержится смесь белков: глобулина (pI = 7), альбумина (pI = 4,9) и коллагена (pI = 4,0). При каком значении pH можно электрофоретически разделить эти белки?

Задание 2. К какому электроду будут передвигаться частицы белка при электрофорезе, если его pI = 4, а pH раствора равен 5.

Задание 3. При набухании 200 г каучука поглотилось 964 мл хлороформа (плотность 1,9 г/мл). Рассчитать степень набухания каучука и массовые доли веществ в полученном студне.

Otbet: $\alpha = 915.8\%$; $\omega_{\text{каучука}} = 9.84\%$; $\omega_{\text{хлороформа}} = 90.16\%$.

Литература:

- 1. Мороз А. С, Луцевич Д. Д. Яворська Л. П. Медична хімія: підручник для студ. вищ. навч. мед. закл. Вінниця: Нова книга, 2011. С. 676-728.
- 2. Медицинскаяхимия: учеб. / В. А. Калибабчук, Л. И. Грищенко, В. И. Галинская и др.; под ред. В. А. Калибабчук. К.: Медицина, 2008. С. 318-341.
- 3. Равич-Щербо М. И., Новиков В. В. Физическая и коллоиднаяхимия. М.: Высш. шк., 1975. С. 196-199, 208-212, 214-217.
- 4. Садовничая Л. П., Хухрянский В. Г., Цыганенко А. Я. Биофизическаяхимия. К.: Вища школа, 1986. С. 238-258.

6. ЛАБОРАТОРНАЯ РАБОТА

6.1. Определение изоэлектрической точки желатинапо степени коагуляции

В четыре пробирки поместить по 2 мл ацетатного буферного раствора с рН согласно таблице. В каждую пробирку добавить по 2 мл 0,5%-го раствора желатина, перемешать и осторожно (по стенке) добавить по 3 мл этанола. Через 5 мин оценить степень помутнения в пробирках и установить изоэлектрическую точку.

<u>№</u>	pН	Объем 0,5%-го раствора	Объем этилового	Степень
п/п	системы	желатина, мл	спирта, мл	помутнения
1	3,8	2	3	
2	4,4	2	3	

3	4,7	2	3	
4	5,1	2	3	

6.2. Изучение влияния величины рН на набухание

В три пробирки поместить по 0,5 см сухого желатина и добавить по 5 мл растворов, указанных в таблице. Через 15-20 мин сделать выводы.

№	Сухой желатин	Раствор, мл	Выводы
пробирки			
1	0,5 см	5 мл 0,1 н. раствора НС1	
2	0,5 см	5 мл ацетатного буфера с рН=4,7	
3	0,5 см	5 мл 0,1 н. раствора NaOH	

6.3. Изучение влияния электролитов на набухание

В три пробирки поместить по 0,5 см сухого желатина и добавить по 5 мл растворов, указанных в таблице. Через 15-20 минут сделать выводы.

Номер	Сухой	Раствор, мл	Выводы
пробирки	желатин		
1	0,5 см	5 мл 1 н. раствора K ₂ SO ₄	
2	0,5 см	5 мл 1 н. раствора КС1	
3	0,5 см	5 мл 1 н. раствора KSCN	

7. НАГЛЯДНЫЕ ПОСОБИЯ, ТС ОБУЧЕНИЯ И КОНТРОЛЯ

- табличный фонд по теме занятия;
- карточки для выявления исходного уровня знаний-умений;
- контрольные вопросы;
- тесты.

Занятие № 20

- 1. ТЕМА: Итоговый контроль усвоения модуля 1 «Медицинская химия»
- 2. ЦЕЛЬ: Оценить знания и умения студентов по предмету «Медицинская химия»
 - 3. ЦЕЛЕВЫЕ ЗАДАЧИ:
- 3.1. Провести итоговый тестовый контроль и индивидуальное собеседование со студентами по медицинской химии.

4. ПЛАН И ОРГАНИЗАЦИОННАЯ СТРУКТУРА ЗАНЯТИЯ:

4.1. Организационный момент5 ми						
4.2.	Выявление	конечного	уровня	н знаний-уме	ний (тестовый	
контроль)					50 мин	
4.3.	Коррекция	конечного	уровня	знаний-умений	(индивидуальное	
собеседование)						

4.4.	Проверка протоколов					10 мин
4.5.	Заключительное	слово	преподавателя	по	результатам	итогового
контроля	[3 мин

5. ЗАДАНИЕ ДЛЯ САМОПОДГОТОВКИ СТУДЕНТОВ:

5.1. Повторить теоретический материал и решение расчетных задач по темам №№ 1-19.

5.2. Проработать тестовые задания к занятиям №№ 1-19.

Литература:

- 1. Мороз А. С, Луцевич Д. Д. Яворська Л. П. Медична хімія: підручник для студ. вищ. навч. мед. закл. Вінниця: Нова книга, 2011. 776 с.
- 2. Медицинскаяхимия: учеб. / В. А. Калибабчук, Л. И. Грищенко, В. И. Галинская и др.; под ред. В. А. Калибабчук. К.: Медицина, 2008. 400 с.
- 3. Равич-Щербо М. И., Новиков В. В. Физическая и коллоиднаяхимия. М.: Высш. шк., 1975. 255 с.
- 4. Садовничая Л. П., Хухрянский В. Г., Цыганенко А. Я. Биофизическаяхимия. К.: Вища школа, 1986. 271 с.
- 5. Общая химия. Биофизическая химия. Химия биогенных элементов: Учеб.для вузов / Ю. А. Ершов, В. А. Попков, А. С. Берлянд и др.: Под ред. Ю. А. Ершова. М. Высш. шк., 2000. 560 с.
- 6. Зеленин К. Н. Химия: Учеб.для мед. вузов. СПб: «Специальная литература», 1997. 677 с.

6. НАГЛЯДНЫЕ ПОСОБИЯ, ТС ОБУЧЕНИЯ И КОНТРОЛЯ

- табличный фонд по теме занятия;
- карточки для выявления исходного уровня знаний-умений;
- контрольные вопросы;
- тесты.