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Leptospirosis, a re-emerging zoonotic disease, remains a significant global 
health concern, especially amid floods and disasters such as the Kakhovka 
Dam destruction. As is known, the stress that occurs in the conditions of 
military conflicts among civilian and military personnel significantly affects 
susceptibility to infectious diseases and possibly even influences their course. 
This review aims to explore how the gut microbiome and stress mediators 
(such as catecholamines and corticosteroids) might impact the leptospirosis 
disease course. The review opens new horizons for research by elucidating the 
connections between the gut microbiome, stress, and leptospirosis.

KEYWORDS

leptospirosis, gut microbiome, stress, post-traumatic stress disorder, military 
personnel, war zones, T-lymphocytes

1 Introduction

Leptospirosis, caused by the pathogenic spirochetes of the Leptospira genus, remains a 
significant global health concern and is classified as a re-emerging zoonotic disease (Ko et al., 
2009; Petakh et al., 2022a; Bradley and Lockaby, 2023). With an estimated annual infection 
rate of more than a million individuals and a staggering 60,000 associated deaths, leptospirosis 
imposes a substantial burden on public health worldwide (Haake and Levett, 2015; Samrot 
et al., 2021; Petakh and Nykyforuk, 2022; Petakh et al., 2022b, 2023a). This infectious disease 
primarily spreads through contact with the urine of infected hosts, often found in contaminated 
water sources or within the soil. Leptospirosis can manifest in a spectrum of clinical 
presentations, ranging from mild or asymptomatic cases to severe, life-threatening conditions 
that involve multi-organ dysfunction (Petakh et al., 2022c). Weil’s syndrome is a critical and 
potentially fatal manifestation of the disease that is characterized by renal, pulmonary, and 
hepatic impairment (Latchoumi et al., 2020; Abdullah et al., 2021). Notably, Weil’s syndrome 
carries a high mortality rate and is characterized by hepatic dysfunction, renal failure, and 
hemorrhagic complications (Limothai et al., 2021). In the face of such a formidable disease, 
the early recognition and provision of intensive medical care are paramount to improving 
patient outcomes.
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While leptospirosis already presents a formidable challenge, 
certain populations are particularly susceptible to its risks. The 
ongoing conflict in Ukraine has placed military personnel in a unique 
position, where they face heightened exposure to the elements that 
can facilitate leptospiral transmission (Petakh & Kamyshnyi, 2023; 
Petakh et  al., 2023b). Frequent contact with water sources and 
potential reservoir hosts, such as rodents, elevates the risk of infection 
among these individuals (Brinker and Blazes, 2017). Furthermore, 
military personnel operate under conditions that are often associated 
with elevated stress levels (Bray et al., 2001).

The civilian population is also potentially in danger of 
leptospirosis. The destruction of the Kakhovka Dam on 6 June 2023, 
has caused widespread devastation and human suffering. In the short 
term, there is a significant risk of rodent-borne diseases such as 
leptospirosis and tularemia (Wilkenfeld and Berenji, 2024). In the 
medium to long term, the World Health Organization (WHO) is 
concerned about the lasting physical and mental health impacts on 
affected communities, the environmental harm caused by the floods, 
and damage to health facilities, which may reduce access to essential 
and specialized services (WHO, 2023). Confirmation of the risks of 
local outbreaks of leptospirosis is evident in the increased incidence 
of leptospirosis in 2023. Center for Public Health of the Ministry of 
Health of Ukraine reported a 3.1-fold increase in the number of 
leptospirosis patients in 2023 compared to the previous year (WHO, 
2023). The study by Oleh Lushchak et al. involving 3,173 Ukrainians 
found that moderate and high stress was prevalent among 68.2% and 
15.5% of NDPs, 64.4% and 21.6% of IDPs, and 64.7% and 25.2% of 
refugees, respectively (Lushchak et  al., 2024). Stress can also 
dysregulate humoral and cellular immune responses to pathogens, 
increasing risk for infectious illnesses including influenza and the 
common cold (Glaser and Kiecolt-Glaser, 2005; Seiler et al., 2020). 
The association between psychological stress and susceptibility to the 
common cold has long been recognized; stress suppresses the host 
resistance to infection and increases rates of infection (Cohen 
et al., 1991).

As a result, a compelling need exists to comprehensively explore 
the relationship between stress and leptospirosis, with a particular 
focus on the intricate interplay involving gut microbiota and 
T-lymphocytes. This review aims to elucidate the complex dynamics 
of stress and its potential impact on leptospirosis, shedding light on a 
multifaceted connection that bears implications for the health and 
well-being of military personnel and beyond.

Understanding the relationship between stress and leptospirosis 
is crucial due to the high prevalence of moderate and high stress 
among NDPs, IDPs, refugees, and military personnel. By examining 
the interplay between gut microbiota and T-lymphocytes, this review 
aims to provide insights into the complex dynamics of stress and its 
potential impact on leptospirosis. This multifaceted connection has 
implications not only for military personnel but also for the overall 
health and well-being of the civilian population.

2 Leptospira immunity and 
pathogenesis of leptospirosis

Leptospira infection initiates with the attachment of bacteria to 
host cells and the formation of pores. Virulence factors, either surface-
present or secreted by the bacteria, play a crucial role in this process 

(Barbosa et  al., 2006; Cinco et  al., 2006). These factors aid in 
attachment and may be involved in forming pores or causing host cell 
lysis. Leptospira surface proteins, like LigB and LipL32, help the 
organism attach to different host cells and parts of the extracellular 
matrix (Banfi et al., 1982; Choy et al., 2007).

Upon infection, the innate immune system is activated by 
recognizing Microbial Pathogen-Associated Molecular Patterns 
(PAMPs) through Pattern Recognition Receptors (PRRs) like Toll-like 
receptors (TLRs) and nucleotide-binding oligomerization domain 
(NOD)-like receptors (NLRs; Akira et al., 2006; Mogensen, 2009). This 
recognition triggers inflammatory responses mediated by signaling 
pathways like NF-κB and activator protein 1 (AP-1). Pro-inflammatory 
molecules like cytokines, prostaglandins (PGs), and Nitric Oxide 
(NO) are produced, leading to increased arterial dilation and vascular 
permeability (Petrilli et  al., 2005; Turner et  al., 2014; Cagliero 
et al., 2018).

Interestingly, leptospiral lipopolysaccharide (LPS) activates 
TLR2 in human cells, unlike the classical TLR4 activation seen with 
other bacterial LPS. In mice, both TLR2 and TLR4 are activated by 
leptospiral LPS (Nahori et al., 2005). An essential defense mechanism 
during the initial infection is the activation of the alternative 
complement pathway, providing resistance against the complement 
system, especially in virulent strains. Recent research suggests that 
leptospires can avoid recognition by specific Toll-like and NOD-like 
receptors, possibly influencing susceptibility to leptospirosis in 
different hosts (Bonhomme and Werts, 2022).

Leptospires, being extracellular pathogens, elicit an acquired 
immune response involving antibody production and activation of the 
classical complement pathway (Fraga et al., 2011). Opsonization by 
specific IgG antibodies enhances phagocytosis by neutrophils and 
macrophages (Wang et al., 1984). Leptospires, however, can evade the 
immune response by switching complement pathways through their 
proteins, like adhesins and endostatins (Banfi et al., 1982). They can 
colonize various tissues, with a preference for the kidney due to the 
absence of a complement pathway (Abdullah et al., 2021).

While the host activates T-cell responses against the infection, the 
effectiveness seems insufficient to prevent the infection. Leptospires 
can invade various tissues and move between them but tend to 
colonize the kidney, utilizing immune evasion strategies.

3 Microbiota under stress: unveiling 
the gut-brain axis

The gut microbiome has emerged as a significant factor that may 
influence stress resilience (Figure 1). Over the past decade, we have 
come to appreciate the profound impact of the gut microbiota on 
human health, including its role in psychiatric well-being (Cryan and 
Dinan, 2012). The gut-brain axis represents a bidirectional channel of 
communication between the gut and the central nervous system, 
playing a pivotal role in maintaining neural, hormonal, and 
immunological equilibrium (Carabotti et al., 2015). With mounting 
evidence indicating that the gut microbiome can affect symptoms of 
depression and anxiety, it is now recognized as a crucial element in the 
cross-talk between the gut and the brain, leading to the extended 
concept of the microbiome-gut-brain axis (MGBA; Bear et al., 2021).

Correlational studies have demonstrated distinct differences in 
fecal microbiota composition between individuals with anxiety or 
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depression, including those in remission, and their healthy 
counterparts (Naseribafrouei et al., 2014; Jiang et al., 2015; Navarro-
Tapia et al., 2021). Women with a higher abundance of Prevotella in 
their feces have shown increased negative emotional responses to 
negative stimuli and lower brain activity in the hippocampus 
compared to those with a higher abundance of Bacteroides (Tillisch 
et al., 2017). Several rodent studies have experimentally established 
that the presence and composition of the gut microbiota can 
influence emotional behavior. In mice, gut infections or 
inflammation have been associated with patterns of behavior 
indicative of anxiety, such as reduced exploration and increased 
behavioral inhibition (Lyte et al., 1998, 2006; Bercik et al., 2010). 
Germ-free (GF) rats and mice, born and raised without microbiota, 
exhibit either increased or decreased anxiety and depressive-like 
behaviors when compared to counterparts with specific pathogen-
free (SPF) gut microbiota (Clarke et al., 2013; Nishino et al., 2013; 
Crumeyrolle-Arias et  al., 2014). Some probiotics have also 
demonstrated mood-altering effects, with the term “psychobiotics” 

referring to probiotics that confer mental health benefits through 
interactions with commensal gut bacteria (Sarkar et al., 2016).

However, MGBA research is not without inconsistencies and 
challenges. Findings from MGBA studies do not consistently align, 
and the translation of results from animal studies to human research 
has been a concern. Animal behavioral tests have inherent limitations 
in mirroring anxiety- or depressive-like symptoms in humans, and 
human studies encounter methodological challenges due to the 
heterogeneity of lifestyles and difficulties in collecting specific 
biological samples such as colon microbiota and host tissues.

Probiotic supplementation has yielded mixed effects on 
emotional behavior. Some rodent studies have shown a reduction in 
anxiety-like or depressive-like behaviors following probiotic 
supplementation, especially in cases of inflammation-induced 
behavioral changes and stress-induced behavior alterations 
(Desbonnet et al., 2010; Bravo et al., 2011; Smith et al., 2014; D'Mello 
et al., 2015; Liang et al., 2015; Cryan et al., 2019). However, other 
studies have found no significant differences, and translational 

FIGURE 1

The role of gut microbiota in stress (gut-brain axis). This figure illustrates the complex relationship between the gut and the brain, known as the gut-
brain axis. Key components include the vagus nerve, short-chain fatty acids (SCFA), and immune cells within the lamina propria of the gut. The vagus 
nerve serves as a vital communication link between the gut and the brain, facilitating bidirectional signaling. Changes in gut microbiota composition 
can profoundly impact immune cells in the lamina propria, leading to alterations in immune responses and potentially triggering inflammation. This 
dysregulation in the gut immune system is a critical aspect of the pathogenesis, highlighting the role of the gut microbiota in influencing stress-related 
responses.
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research has produced variable results as well. In some cases, 
probiotic supplements did not influence mood in healthy adults or 
individuals with irritable bowel syndrome, while other studies 
reported reduced depression scores in individuals with diagnosed 
depression and healthy adults, or decreased emotional reactivity 
(Desbonnet et al., 2008; Simrén et al., 2010; Messaoudi et al., 2011; 
Steenbergen et al., 2015; Akkasheh et al., 2016; Barrera-Bugueño 
et al., 2017; Kelly et al., 2017). A mixed outcome was observed in a 
study where anxiety scores were reduced but not depression scores, 
and mood improvement was evident only in those with low baseline 
mood (Benton et al., 2007; Rao et al., 2009).

Moreover, the direction of change in anxiety-like behaviors in GF 
rodents appears to depend on the strain, with stress-sensitive strains 
exhibiting increased anxiety-like behaviors and more resilient strains 
showing decreased anxiety-like behaviors. The presence and 
composition of the gut microbiota impact mood, with potential 
variations in host genotype and phenotype playing a crucial role in 
determining whether changes in the gut microbiota affect mood. The 
mechanisms underlying MGBA are intricate, intertwined, and 
bidirectional, and various factors, such as diet, stress, exercise, and 
individual experiences, may result in different mechanisms of 
mood modulation.

An emerging area of interest revolves around the interactions 
between stress and the MGBA. Stress can induce alterations in the gut 
microbiota composition, as demonstrated in rodent models of 
psychological stress (Bailey et al., 2011; Galley et al., 2014a,b, 2017; 
Burokas et al., 2017; Marin et al., 2017; Yang et al., 2017; Gautam et al., 
2018; Tsilimigras et al., 2018). Stress during pregnancy has also been 
shown to reshape the gut microbiome structure in offspring as well as 
in dams (Jašarević et  al., 2017). Given the growing evidence that 
changes in the gut microbiota can influence mood, it is plausible that 
stress-induced alterations in the gut microbiota might contribute to 
the development of chronic stress, anxiety, and depression following 
a stressful event. Conversely, mitigating stress-induced changes in the 
gut microbiota and their physiological effects could potentially 
enhance stress resilience.

Changes in the gut microbiota following stress exhibit 
considerable variation among studies, with most evidence derived 
from rodent research. These changes include a reduction in the 
relative abundance of Lactobacillus and an increase in genera 
containing opportunistic pathogens like Odoribacter, Clostridium, and 
Mucisprillum, as well as a decrease in Bifidobacterium although one 
study reported an increase in stress-resilient mice (Holdeman et al., 
1976; Galley et  al., 2014b; Marin et  al., 2017; Yang et  al., 2017; 
Tsilimigras et al., 2018). The changes in the gut microbiota may also 
differ within various gut niches, such as the mucosa-associated 
microbiota and the luminal microbiota (Galley et al., 2014a).

The time frame for the effects of stress on the gut microbiota 
varies, and recovery from stress-induced changes can vary, sometimes 
becoming persistent. For example, differences in microbial beta 
diversity were observed in mice after only 2 h of social stress, but a 
decrease in absolute abundance and relative abundance of 
Lactobacillus spp. was observed after 6 days (Galley et al., 2014b). The 
gut microbiome of infant rhesus monkeys altered significantly 3 days 
after being separated from their mothers and placed in individual 
cages, but returned to its pre-separation composition after 30 days 
(Zijlmans et al., 2015). In contrast, the stress-induced alterations in 
the gut microbiota of a GF mouse model did not fully reverse 21 days 

after the stress event, possibly due to other influences on gut 
microbiota besides the initial stress event (O'Mahony et al., 2009).

Several mechanisms have been suggested to mediate the 
interactions between the gut microbiota, stress, and mood. Alterations 
in the gut microbiota may affect behavior by inducing changes in the 
gut barrier, leading to increased gut permeability, and subsequently, 
the influx of gut-derived products into the bloodstream. This concept, 
known as “leaky gut,” suggests that increased gut permeability can lead 
to immune system activation and a heightened inflammatory state. 
This, in turn, may affect the central nervous system and contribute to 
mood alterations.

Indeed, several lines of evidence suggest that gut permeability can 
be altered by the gut microbiota. In a murine model of depression, it 
was observed that chronic stress led to an increase in gut permeability 
and that this effect could be  mitigated by the administration of 
Lactobacillus helveticus and Bifidobacterium longum (Mayer, 2000). In 
another rodent model, the introduction of a specific commensal 
microbiota into GF mice, derived from conventionally raised mice, 
reduced stress-induced intestinal hyperpermeability and anxiety-like 
behavior (Castagliuolo et al., 1996). In humans, studies have linked 
increased gut permeability, as assessed by urinary excretion of orally 
administered lactulose and mannitol, to depression, depression scores, 
and severity of depressive symptoms, although this association is not 
always observed (Spitz et al., 1994; Santos et al., 2001; Lyte et al., 2011; 
Vogelzangs et al., 2013). Furthermore, in a study on individuals with 
irritable bowel syndrome, reduced tight junction gene expression was 
associated with higher levels of anxiety and depression (O'Brien 
et al., 2007).

Gut-derived products, such as lipopolysaccharides (LPS), may 
also impact mood by promoting an inflammatory state in the host. 
LPS is a component of the outer membrane of gram-negative bacteria 
and can trigger an immune response when it crosses the gut barrier 
and enters the bloodstream. Circulating LPS activates the immune 
system, leading to the release of proinflammatory cytokines. In 
rodents, both acute and chronic stressors have been associated with 
increased levels of circulating LPS, while stress during pregnancy 
results in increased LPS levels in dams and offspring (Mikocka-Walus 
et al., 2016; Jašarević et al., 2017). Stress-induced increases in LPS are 
paralleled by higher levels of proinflammatory cytokines, such as 
interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which 
have also been implicated in mood disorders (Bajaj et al., 2012; Shen 
et al., 2017; Fattorusso et al., 2019).

Increased LPS levels have been associated with behavioral 
alterations. LPS administration in rodents has been shown to induce 
sickness behavior, a cluster of behavioral changes that overlap with 
depressive-like behaviors, including reduced exploration, increased 
immobility in the forced swim test, and reduced sucrose preference 
(Gaykema et al., 1998; Ait-Belgnaoui et al., 2012; Erny et al., 2015; 
Rajkumar et al., 2015). In a human study, higher levels of LPS were 
related to more severe depressive symptoms, and serum levels of 
LPS-binding protein (LBP), which binds to LPS and facilitates its 
detection by the host’s immune system, have been associated with 
elevated depression scores (Kittana et  al., 2018). In addition, the 
introduction of a microbiota from conventionally raised mice into GF 
mice resulted in decreased LPS levels in plasma and reduced anxiety-
like behavior (Castagliuolo et al., 1996).

Immune signaling pathways represent a potential mediator 
between the gut microbiota, stress, and mood. Activation of the 
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immune system and elevated proinflammatory cytokine levels have 
been related to mood disorders. Both peripheral cytokines and central 
cytokines, which are produced in the brain, can influence the brain 
and behavior. Peripheral cytokines can access the brain through 
various mechanisms, including active transport and diffusion through 
areas with a leaky blood–brain barrier or areas lacking an effective 
blood–brain barrier. Elevated proinflammatory cytokines have been 
associated with mood disorders and sickness behavior (Qiu et al., 
1999; Maes et al., 2008; Smith and Garrett, 2011; Bharwani et al., 
2017). Interestingly, the activation of microglia, the resident immune 
cells in the brain, has been implicated in the induction of depressive-
like behaviors in rodents (Maes et al., 2013).

In summary, stress can induce changes in the gut microbiota 
composition, which can influence behavior through multiple potential 
mechanisms, such as altering gut permeability and promoting an 
inflammatory state.

4 Microbiota in leptospirosis: 
implications for susceptibility and 
pathogenesis

4.1 The microbiota’s role in leptospirosis

In the context of leptospirosis, a bacterial infection triggered by 
L. interrogans, the gut microbiota plays a crucial role (Figure 2). A 
balanced and healthy gut environment, shaped by a robust and well-
functioning microbial ecosystem, is pivotal for guiding the immune 
system toward equilibrium (Rooks and Garrett, 2016; Burrello et al., 
2018). Previous research has increasingly connected the gut 
microbiota to the heterogeneous susceptibility of hosts to various 
diseases (Zhang et al., 2020). A study by Alavi et al. provided strong 
evidence that interpersonal variations in the gut microbiome can 
determine an individual’s susceptibility or resistance to cholera 
infection (Alavi et al., 2020). The composition of the gut microbiota 
also appears to be  a factor in explaining clinical symptoms in 
leptospirosis patients.

Some infections caused by nonenteropathogens, such as 
Mycobacterium tuberculosis, Influenza, and Burkholderia pseudomallei, 
have been shown to impact the microbiota’s composition (Winglee 
et al., 2014; Lankelma et al., 2017; Zhang et al., 2020). A study by 
Jacobson et al. demonstrated that it’s the community composition of 
the microbiota, rather than species richness, that plays a pivotal role 
in microbiota-mediated colonization resistance against pathogenic 
infections (Jacobson et al., 2018).

In a groundbreaking study conducted by Xufeng Xie and their 
team, the intricate interplay between the gut microbiota and 
leptospirosis was investigated (Xie et al., 2022). This study marked the 
first exploration into the role and underlying mechanisms of the gut 
microbiota in the context of leptospirosis. Notably, when the gut 
microbiota was depleted in mice, it led to weight loss and an increased 
leptospiral load in various organs compared to control mice. However, 
the effects were reversed when fecal microbiota transplantation (FMT) 
was performed on the microbiota-depleted mice. Moreover, the 
microbiota-depleted mice exhibited diminished phagocytosis and 
inflammatory responses in certain types of macrophages following 
infection. These findings suggest that the intestinal microbiota has a 
crucial role in modulating the host’s immune response to leptospirosis. 

It affects the phagocytic capabilities and inflammatory responses of 
specific macrophages, and its disruption can result in an increased 
leptospiral burden and dissemination in the infected host.

Furthermore, as evidenced by another study, host immune 
activation can lead to rapid transcriptional and metabolic adaptations 
in intestinal microbes (Becattini et  al., 2021). Infection-induced 
disturbances in the intestinal environment disrupt the balance 
between intestinal immunity and the microbiota, ultimately leading 
to shifts in the population sizes of specific bacterial species (Rooks and 
Garrett, 2016).

4.2 Impact of intestinal bacteria on 
T-lymphocytes: immunoregulatory 
bacteria

Within the context of understanding how changes in the gut 
microbiota can influence T-lymphocytes and their impact on 
inflammation, our exploration leads us to delve deeper into the 
specific roles played by individual representatives of the intestinal 
microbiota (Shim et al., 2023).

Numerous studies have unraveled the intricate crosstalk between 
the gut microbiota and immune cells, particularly in relation to 
T-lymphocytes. The commensal microbiota, which comprises the 
community of microorganisms inhabiting the gut, has been found to 
exert a profound influence on the function, development, and 
differentiation of T cells, thus contributing to the maintenance of 
immune homeostasis.

CD4+ T cells, a subtype of T-lymphocytes, differentiate into 
various Th (T helper) lineages, each with distinct effector functions. 
Researchers have shown that certain members of the Klebsiella 
genera, such as K. aeromobilis and K. pneumoniae, are capable of 
inducing Th1 cell responses within the gut environment (Shim et al., 
2023). Colonization of the gut by these Klebsiella species has been 
found to enhance the proliferation of Th1 cells, thereby augmenting 
their presence in the intestine. Additionally, probiotic bacteria, such 
as certain Lactobacillus strains, have demonstrated the ability to 
modulate Th1 cell activity (Takeda et al., 2011; Matsusaki et al., 2016). 
For example, L. plantarum and L. salivarius were found to enhance 
the production of Th1 cytokines, such as tumor necrosis factor alpha 
(TNFα) and interferon gamma (IFNγ; Won et  al., 2011). This 
influence of probiotic bacteria on Th1 cell activity signifies the 
potential for the gut microbiota to impact both Th1 and Th2 
cell functions.

Moreover, the influence of the microbiota extends to Th2 cells, 
which secrete cytokines like IL-4, IL-5, and IL-13, playing a significant 
role in humoral immunity and defense against helminth infections, 
while also contributing to chronic inflammatory diseases (Walker and 
McKenzie, 2018). Studies have revealed that Lactobacillus strains and 
B. fragilis can inhibit Th2 activity by positively influencing Th1 cell 
responses, thereby modulating the balance between these two subsets 
of T cells (Mazmanian et al., 2005; Won et al., 2011).

Another critical subtype of T-lymphocytes is the Th17 cells, 
known for producing the proinflammatory cytokine IL-17 and playing 
a role in the pathogenesis of inflammatory and autoimmune diseases 
(Won et al., 2011). Th17 cells are typically absent in GF mice but 
become inducible upon microbial colonization. Specific bacteria, such 
as segmented filamentous bacteria (SFB) and various gram-positive 
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species, have been identified as inducers of Th17 cell differentiation 
(Atarashi et  al., 2008, 2015; Lee and Kim, 2017). These bacteria 
activate specific cell subsets in the lamina propria, promoting the 
differentiation of Th17 cells (Atarashi et al., 2015; Schnupf et al., 2015). 
Additionally, microbial bile acid metabolites can affect Th17 cell 
differentiation, highlighting the role of the microbiota in modulating 
these important T-lymphocytes (Hang et al., 2019).

Regulatory T cells (Treg cells) are integral for preventing 
autoimmune diseases and maintaining immune homeostasis 
(Dominguez-Villar and Hafler, 2018). Certain microbes, such as 
B. fragilis, Bifidobacterium strains, and various Lactobacillus strains, 
are known to influence Treg cell populations, leading to the 
development of Foxp3+ Treg cells that produce immune-regulatory 
cytokines like IL-10 (Round and Mazmanian, 2010). Dysbiosis due to 
factors like antibiotic treatment or changes in microbial composition 
can affect Treg cell generation and activity, further emphasizing the 
crucial relationship between the gut microbiota and autoimmune 
diseases (O'Mahony et al., 2008).

The realm of CD8+ T cells, essential for immune defense against 
intracellular pathogens and tumor surveillance, also experiences the 
impact of the gut microbiota (Zhang and Bevan, 2011). Specific 
probiotic species have been found to determine the anti-tumor 
efficacy of CD8+ T cells. Additionally, microbial byproducts, such 
as short-chain fatty acids (SCFAs) like butyrate and propionate, 

have been shown to influence CD8+ T cell activity by either 
inhibiting or promoting their activation, depending on the context 
(Nastasi et al., 2017).

4.3 Interactions along the gut-kidney, and 
gut-liver axes

Weil’s syndrome, a severe variant of leptospirosis accounting for 
approximately 10% of cases, is characterized by significant hepatic 
dysfunction coupled with renal failure and hemorrhages. Currently, 
there is a growing understanding of the intricate interplay between the 
gut microbiome and the health of the kidneys and liver, resulting in 
two vital axes known as the gut-kidney and gut-liver axes.

When the microbial communities within the gut fall out of 
balance, it can lead to a condition called intestinal dysbiosis, often as 
a result of breaches in the intestinal barrier. Additionally, viable 
bacteria may traverse from the gut into other sites beyond the 
intestines, including the kidneys. This phenomenon of bacterial 
translocation is often associated with issues such as bacterial dysbiosis, 
bacterial overgrowth, and weakened host immune defenses (Berg, 
1999; Mielcarek et al., 2011).

Within the context of chronic kidney disease (CKD), it is 
noteworthy that the gut microbiota produces numerous uremic 

FIGURE 2

Interconnection between gut microbiota, stress, and leptospirosis. The figure illustrates that patients experiencing stress exhibit alterations in their gut 
microbiota. Additionally, recent animal studies have shown that leptospirosis, a bacterial infection, also leads to changes in the microbiota. The 
combined impact of these two conditions can potentially exacerbate inflammation during leptospirosis and result in damage to vital organs such as 
the kidneys, lungs, and liver through the so-called “axes”.
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solutes and toxins, such as indoxyl sulfate, p-cresyl sulfate (PCS), and 
trimethylamine (TMA) N-oxide. Paradoxically, elevated urea 
concentration can lead to changes in the intestinal microbiota 
composition (Hobby et al., 2019). These uremic toxins can contribute 
to various health complications in CKD patients, encompassing renal 
anemia, pruritus, fatigue, mineral bone disorders, neurological 
impairments, and cardiovascular issues (Hobby et al., 2019).

The dynamic interaction between the gut microbiota and kidney 
diseases, known as the gut-kidney axis, is implicated in a wide 
spectrum of clinical manifestations, including CKD, acute kidney 
injury (AKI), hypertension, nephrolithiasis, immunoglobulin A (IgA) 
nephropathy, hemodialysis, and peritoneal dialysis (Al Khodor and 
Shatat, 2017; Hobby et al., 2019).

In recent years, a substantial focus has been directed toward 
understanding the intricate relationship between the gut microbiota 
and the liver, a two-way connection referred to as the gut-liver axis. 
This connection is facilitated through the portal vein and the biliary 
tract, enabling gut-derived metabolites to reach the liver. 
Simultaneously, the liver releases bile acids and other mediators back 
into the intestine (Di Tommaso et  al., 2021). The integrity of the 
intestinal barrier, composed of various structural components such as 
the mucus layer, epithelial cells, vascular barrier, immune cells, and 
soluble mediators, plays a pivotal role in regulating this interaction, 
effectively limiting the systemic spread of toxins and pathogenic 
molecules (Albillos et al., 2020). While bacterial translocation, defined 
as the movement of bacteria and their products across the intestinal 
barrier into mesenteric lymph nodes (MLNs) or the portal venous 
system, is a physiological process crucial for immune system 
development, in normal conditions, only small amounts of bacteria 
and their products escape surveillance by resident immune cells, such 
as Kupffer cells, dendritic cells, natural killer (NK) cells, and 
lymphocytes (Garcovich et al., 2012; Nicoletti et al., 2019).

Consequently, any disturbances in the gut microbiota and 
alterations in the intestinal barrier are closely linked to the 
development and progression of liver diseases. Multiple studies have 
demonstrated a significant reduction in gut microbial diversity in 
individuals with liver disorders, along with an increased presence of 
pathogenic taxa like Fusobacteria, Proteobacteria, Enterococcaceae, and 
Streptococacceae, coupled with a depletion of beneficial 
microorganisms like Bacteroidetes, Ruminococcus, Roseburia, 
Veillonellaceae, and Lachnospiraceae (Gómez-Hurtado et al., 2016). 
Notably, cirrhotic patients exhibit an inverse correlation between the 
beneficial bacteria-to-pathogenic bacteria ratio, known as the 
cirrhosis/dysbiosis ratio (CDR), and the model for end-stage liver 
disease (MELD) score and endotoxin levels (Bajaj et al., 2014).

The reduction of beneficial autologous taxa leads to decreased 
production of short-chain fatty acids (SCFAs), resulting in the 
conversion of primary bile acids into secondary bile acids, which 
further exacerbates gut dysbiosis, weakens the integrity of the 
intestinal barrier, reduces gut motility, and promotes small intestinal 
bacterial overgrowth (SIBO; Rocco et  al., 2021). These changes 
amplify the rate of bacterial translocation and promote endotoxemia, 
introducing a significant amount of pathogen-associated molecular 
patterns (PAMPs) into the MLNs. This, in turn, leads to their spread 
to the liver via the portal circulation (Cirera et  al., 2001; Muñoz 
et al., 2012).

Upon reaching the liver, PAMPs interact with resident immune 
cells like Kupffer cells via TLRs, triggering MyD88-dependent and 

MyD88-independent molecular pathways that activate NF-kB. This 
results in the release of inflammatory cytokines such as TNF-α, IL-1β, 
IL-6, IL-18, as well as chemokines, NO, and reactive oxygen species 
(Seki and Schnabl, 2012).

5 Biogenic amines during stress: 
effects on lymphocytes and 
inflammation

5.1 The influence of biogenic amines on 
lymphocyte function

5.1.1 Adrenergic receptors
The catecholamines, including norepinephrine (NE) and 

epinephrine, have significant roles to play in their interactions with 
T-lymphocytes in the human body (Figure 3). In the plasma, both NE 
and dopamine are present, with NE constituting approximately 20% 
of the quantity of epinephrine and dopamine (Van Loon, 1983). 
Notably, T-lymphocytes account for about 70% of peripheral blood 
mononuclear cells (PBMCs) in the intravascular space (Autissier 
et al., 2010).

In the spleen, sympathetic innervation is regional and specific, 
primarily found in the white pulp surrounding central arteries, which 
predominantly comprises T-lymphocytes (Felten et al., 1985; Kraal, 
1992). Additionally, catecholamines may interact with T-lymphocytes 
in the central nervous system, especially when inflammation 
compromises the blood–brain barrier, allowing T-lymphocytes to 
enter and potentially interact with catecholamines (Varatharaj and 
Galea, 2017).

Understanding the functional impact of catecholamines on 
T-lymphocytes necessitates a comprehensive exploration of adrenergic 
receptor (AR) expression. Examining the literature reveals a complex 
landscape of AR subtypes expressed on T-lymphocytes.

5.1.1.1 α-adrenergic receptors
Early studies initially indicated that T-lymphocytes did not 

express α-ARs, and there was a reported absence of α1-AR mRNA in 
PBMCs (Casale and Kaliner, 1984; Cook-Mills et al., 1995). However, 
recent research has shown the presence of α1-AR mRNA in PBMCs 
(Tayebati et al., 2000). Experiments demonstrated that α1-AR agonists 
like phenylephrine reduced H3-thymidine incorporation in 
T-lymphocytes in a dose-dependent manner, which was reversed by 
α-AR antagonists (Heilig et al., 1993). The expression of α1-ARs on 
T-lymphocytes seems to occur mainly upon activation with mitogens 
such as phytohemagglutinin (PHA) or lipopolysaccharide (LPS) [83]. 
In these activated T-lymphocytes, exposure to norepinephrine 
resulted in increased ERK activation, which could be mitigated by 
selective α1-AR antagonism (Rouppe van der Voort et  al., 2000). 
Other studies have demonstrated that phenylephrine treatment of 
PBMCs from patients with juvenile rheumatoid arthritis led to 
cytokine alterations, including increased IL-6 production compared 
to healthy control PBMCs (Heijnen et al., 1996). The proliferation and 
cytokine production of pan T-lymphocytes were not affected by 
non-specific activation with the mitogen concanavalin A (ConA) 
followed by phenylephrine treatment (Bao et al., 2007). However, with 
ConA-activated pan T-lymphocytes, an intriguing study showed that 
treatment with an MAO inhibitor led to a shift toward Th2 polarization 
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with more IL-4 production, a phenomenon blocked by α1-AR and 
β2-AR antagonists but not α2-AR or β1-AR antagonists (Huang et al., 
2015). Additionally, the intracellular redox environment was observed 
to be  modulated by α1-AR agonism and antagonism, providing 
further evidence of the presence of α1-ARs on T-lymphocytes (Case 
et al., 2016). As discussed earlier, α2-ARs function through a distinct 
intracellular cascade, with clonidine-induced agonism in ConA-
activated pan T-lymphocytes inhibiting proliferation and reducing 
IFN-γ and IL-4 production. This inhibition could be mitigated by 
α2-AR antagonism and partly attenuated by the inhibition of PLC or 
PKC, highlighting the role of this pathway in α2-induced 
T-lymphocyte inhibition (Bao et al., 2007). The CD4+ T-lymphocyte 
redox environment was also found to be affected by α2-ARs, adding 
to the complexity of AR signaling in these adaptive immune cells 
(Case et al., 2016).

In summary, the literature reveals a complex picture of α-AR 
expression on T-lymphocytes, with contradicting findings across 
different studies. These receptors appear to play a role in modulating 
T-lymphocyte function, influencing their cytokine production, 
proliferation, and redox status. However, the in vivo relevance of these 
mechanisms, particularly in patients taking systemic α-AR modulating 
drugs, warrants further investigation.

5.1.1.2 β-adrenergic receptors
β-AR expression was initially indicated indirectly through the 

increased cAMP levels upon application of catecholamines, suggesting 
the presence of β-ARs on T-lymphocytes. Subsequently, different 
subtypes of β-ARs were explored individually (Bourne and Melmon, 
1971; Makman, 1971; Bach, 1975).

Evidence of β1-AR expression on T-lymphocytes is limited, but 
certain reports suggest a functional role for this receptor in effector 
T-lymphocytes. One study demonstrated that NE suppressed IFN-γ 
and TNF-α production in murine intestinal intraepithelial CD3+ 
T-lymphocytes through β1-AR activation, which was confirmed by 

selective pharmacological activation and blockade (Takayanagi et al., 
2012). β1-AR expression on Tregs has also been discussed (Cosentino 
et al., 2007). Moreover, reports indicate a greater expression of β1-ARs 
on Tregs compared to CD25− T-lymphocytes in healthy human 
patients exposed to acute physical stressors (Freier et al., 2010). β3-AR 
mRNA has been detected in ConA-stimulated pan T-lymphocytes, but 
agonism at β3-AR did not result in any functional changes, potentially 
because β3-AR agonism generates less cAMP than other β-AR 
subtypes (Knapp et al., 1997).

In contrast, β2-AR expression on T-lymphocytes has been widely 
acknowledged. Naïve CD4+ T-lymphocytes were found to express 
“high-affinity, saturable β2-ARs,” with this expression tightly 
regulated as T-lymphocytes differentiate (Kohm and Sanders, 2001). 
CD8+ T-lymphocytes express β2-ARs in greater quantities than 
CD4+ cells, and these expressions are differentially regulated in both 
healthy and rheumatoid arthritis (RA) patients (Baerwald et  al., 
1997; Wahle et al., 2001). When T-lymphocytes polarize to TH1 and 
TH2 lineages, the expression levels of β2-AR are increased or 
decreased, respectively (McAlees et al., 2011). Exposure of naïve 
CD4+ T-lymphocytes to NE or selective β2-AR agonists led to 
reduced IL-2 and IFN-γ production upon subsequent activation 
(Kin and Sanders, 2006). Interestingly, the cytokine response varied 
with the timing of NE addition, with NE preceding TH1 polarization 
leading to increased IFN-γ production from these cells (Kin and 
Sanders, 2006). The intricate regulation of NE may allow it to play 
both suppressive and activating roles in the T-lymphocyte 
inflammatory response, potentially attributed to the intracellular 
role of cAMP during different activation states or non-canonical 
β-AR mechanisms (Case and Zimmerman, 2016).

5.1.2 Dopamine receptors
Dopamine receptors (DRs) of all subtypes, including D1-D5, have 

been identified on various T-lymphocyte subtypes, with dynamic and 
context-dependent expression levels.

FIGURE 3

Impact of GCs on T-helper cell differentiation and its implications for leptospirosis. In addition to their role in stress response, GCs and catecholamines 
have direct effects on T lymphocytes and other immune cells via their respective receptors. These can suggest that the interplay between stress 
hormones and immune cells plays a crucial role in shaping the immune response during leptospirosis infection.
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D1-like receptor agonism with physiological concentrations of 
dopamine in vitro has been shown to impair the cytotoxicity and 
reduce the proliferation of CD4+ and CD8+ cells, as well as suppress 
their proliferation upon IL-2 induction (Saha et al., 2001). D1-like 
family activation has also been associated with the polarization of 
naïve CD4+ T-lymphocytes to TH2 in response to dopamine delivered 
by dendritic cells (DCs) in a dose-dependent manner (Nakano et al., 
2009). Other studies have highlighted the role of D1-like receptors in 
TH17 polarization mediated by IL-23 production by DCs (Nakano 
et al., 2008). D1-like receptor activation in Tregs resulted in reduced 
production of IL-10 and TGF-β, as well as decreased Treg proliferation 
(Cosentino et al., 2007). These cytokines are vital for Tregs to suppress 
effector T-lymphocyte proliferation, and dopamine appears to inhibit 
these processes. High concentrations of dopamine can also effectively 
inhibit the proliferation and IFN-γ synthesis in activated effector 
T-lymphocytes (Bergquist et al., 1994; Cosentino et al., 2007).

In summary, D1-like receptor activation appears to decrease the 
functionality of CD4+ T-lymphocytes and inhibit the ability of Tregs 
to suppress effector T-lymphocytes.

D2-like family receptors display less consistent behavior across 
receptor subtypes. Activation of D2R and D3R on CD8+ 
T-lymphocytes has been linked to increased adhesion to fibronectin 
and the promotion of cellular trafficking and adhesion (Levite et al., 
2001). Dopamine agonism at D3R in naïve CD8+ T-lymphocytes has 
been associated with increased adhesion to fibronectin and 
Intercellular Adhesion Molecule 1 (ICAM-1/CD54), as well as 
increased T-lymphocyte proliferation (Watanabe et al., 2006). D2R 
and D3R activation has led to increased expression of IL-10 and 
TNF-α, respectively (Besser et  al., 2005). The expression of IL-10 
inhibits effector T-lymphocytes, while D3R-mediated chemotaxis 
promotes increased CD8+ cell function, creating a complex and 
contradictory outcome. D4R activation, on the other hand, results in 
quiescence by inhibiting ERK1/ERK2 phosphorylation, upregulating 
Kruppel-like factor 2 (KLF-2), and mimicking the suppressive effects 
of the D1-like family (Sarkar et al., 2006).

In conclusion, dopamine’s role in T-lymphocyte physiology is 
indeed multifaceted, with the potential to enhance the homing and 
chemotaxis of CD8+ cells, alter CD4+ cell polarization, inhibit 
activated effector T-lymphocytes, and suppress Treg cells. These effects 
vary based on the dopamine receptor subtypes and their affinities for 
dopamine, creating a complex and dynamic interplay. It is also 
essential to recognize that T-lymphocytes interact directly with other 
cell types, such as dendritic cells, which also utilize dopamine in their 
regulation (Pacheco et al., 2009).

6 Biogenic amines’ influence on 
microbiota and Leptospira: quorum 
sensing

Quorum sensing (QS) serves as a pivotal regulatory mechanism, 
orchestrating various bacterial activities, including sporulation, 
biofilm production, secretion of virulence factors, and diverse 
interactions among bacteria. These interactions encompass 
interspecies competition, cooperative actions, and even the 
recognition of kinship among bacteria.

Within the intricate web of the gut ecosystem, molecules like 
epinephrine and norepinephrine, responsible for functions such as 

regulating gut motility, controlling potassium and chloride secretion, 
enhancing epithelial barrier function, and influencing inflammatory 
responses, play an unexpectedly intriguing role (Eisenhofer et al., 
1997; Asano et al., 2012). These molecules are not just confined to 
their traditional physiological roles but are also recognized by bacterial 
QS receptors. Their interaction with these receptors leads to profound 
alterations in bacterial behavior.

Epinephrine and norepinephrine have been observed to share a 
signaling pathway with bacteria that employ QS signal AI-3 through 
the action of two-component systems like QseC/B and QseE/F 
(Sperandio et al., 2003; Clarke et al., 2006; Hughes et al., 2009). These 
hormones are recognized as host-derived AI-3 mimics, and their 
presence significantly impacts the signal reception of AI-3. This results 
in the activation of virulence-related processes in bacteria such as 
Escherichia coli O157:H7 and Salmonella (Clarke et al., 2006; Kim 
et al., 2020).

Notably, another stress hormone found in mice intestinal mucosa, 
dynorphin, has been identified to activate QS signaling in 
Pseudomonas aeruginosa (Zaborina et al., 2007). This activation leads 
to an enhancement of the bacterium’s virulence within the 
host environment.

In an article by Karukriti Kaushik Ghosh et al., they examined the 
impact of the host stress hormone catecholamine on Leptospira gene 
transcripts encoding outer membrane proteins (Ghosh et al., 2018). 
While catecholamine supplementation did not affect the in vitro 
growth of Leptospira interrogans, it resulted in differential transcription 
of 7 out of 41 genes, which could be  reversed by the antagonist 
propranolol. They also studied LIC20035/LB047, a differentially 
regulated protein, which was found to be immunogenic and capable 
of adhering to host extracellular matrices. This protein was surface-
exposed on the outer membrane, and the recombinant LIC20035 
could be serologically detected in leptospirosis-positive human and 
bovine sera. Additionally, it showed a strong affinity for binding to 
various host extracellular matrices, particularly collagen and 
chondroitin sulfate.

7 T helper cell differentiation and GCs

Glucocorticoids (GCs) represent integral components of the 
physiological stress response and play a pivotal role in immune system 
modulation (Figures  3, 4). This chapter delves into the profound 
influence of GCs on T helper cells, a heterogeneous class of immune 
cells responsible for orchestrating diverse immune responses.

The glucocorticoid receptor (GR) is expressed in all T cells, but 
the extent of GC sensitivity varies significantly among different cell 
populations. Consequently, GCs exert selective suppression of specific 
T helper cell responses over others. They effectively suppress 
inflammatory T helper 1 (Th1) cell responses while moderately 
inhibiting Th2 cell responses and, intriguingly, permitting the 
development of IL-17-producing T helper (Th17) cells.

The initial polarization of T helper cells depends on signals 
originating from innate immune cells, and GCs impact T cell 
differentiation by regulating cytokine synthesis at this early stage. This 
regulation, in turn, directs T helper cell differentiation. For instance, 
GCs potently inhibit the production of interleukin-12 (IL-12) and 
interferon-gamma (IFNγ) by macrophages and dendritic cells, thereby 
reducing Th1 cell induction (Li et al., 2015; Oh et al., 2017). This 
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occurs through the inhibition of STAT4 phosphorylation and STAT1 
gene expression, thus preventing Th1 cell differentiation (Franchimont 
et al., 2000; Hu et al., 2003). GCs furthermore inhibit expression of 
T-bet (Tbx21) and IFNγ (Ifng) genes, and the GR directly associates 
with T-bet protein to prevent expression of a Th1 cell transcriptional 
program (Liberman et al., 2007; de Castro et al., 2018).

In the case of Th2 cell differentiation, GCs exert suppressive 
effects, although to a lesser extent than on Th1 cells. Inhibition of 
IL-12 and IFNγ production by innate cells, as a result of the prevention 
of Th1 cell differentiation, allows Th2 cells to proceed unhindered. 
While GCs have minimal impact on IL-4-induced STAT6 
phosphorylation, they induce mitogen-activated protein kinase 
phosphatase 1 (MKP1), leading to the inhibition of p38 activation and 
GATA3 expression, ultimately preventing the expression of IL-4, IL-5, 
and IL-13 (Liberman et al., 2009; Maneechotesuwan et al., 2009).

In contrast, GCs promote the differentiation of Th17 cells. They 
synergize with IL-6-activated STAT3 to facilitate Th17 cell 
development (Zhang et al., 1997). These cells tend to be refractory to 
GCs, partly due to increased expression of the GC-exporting 
membrane channel MDR1 (Ramesh et al., 2014). GCs also enhance 
the expression of RORγt and IL-17 in Th17 cells, although they can 
suppress IL-22 and GM-CSF (Banuelos et al., 2016; de Castro et al., 
2018). This hierarchy of GC effects results in a preference for Th17 
cell responses.

Less is known about the regulation of Th9 and Th22 cells by GCs, 
but in vitro studies suggest that GCs suppress the secretion of their 
signature cytokines, IL-9 and IL-22, respectively (Holz et al., 2005). 
This suppression might be linked to the GR’s ability to inhibit PU.1 
activity and aryl hydrocarbon receptor (AHR) expression, although 
further investigation is needed (Wang et  al., 2009; Uhlenhaut 
et al., 2013).

T follicular helper cells’ response to GCs remains less clear, as GCs 
inhibit IL-21 production but upregulate BCL-6 expression in non-T 
cells (Linhares et  al., 2013). Consequently, there is a discernible 

hierarchy of GC effects on T helper cell differentiation, with strong 
inhibition of Th1 cells, moderate inhibition of Th2 cells, and 
permissiveness for Th17 cell responses (Reddy et  al., 2009). This 
hierarchy extends to T helper cell survival, with GCs causing more 
significant apoptosis in Th1 cells compared to Th2 and Th17 cells.

In contrast to T helper cells, extrathymic regulatory T (Treg) cell 
differentiation is significantly promoted by GC signaling (Galon et al., 
2002). GCs enhance the upregulation of TGFβ receptors, FOXP3, and 
IL-10 (Karagiannidis et al., 2004). Moreover, the GR is upregulated 
during Treg cell differentiation, and GC-responsive genes induced by 
leucine zipper (Gilz) promote Treg cell differentiation (Bereshchenko 
et al., 2014; Schmidt et al., 2018). Transgenic overexpression of the GR 
in T cells has little impact on Treg cell numbers but significantly 
reduces T helper cell populations (Rocamora-Reverte et al., 2019). 
Furthermore, Treg cell-specific loss of GR exacerbates colitis 
(Rocamora-Reverte et al., 2019). These observations suggest that Treg 
cell differentiation and function are influenced by GCs, and that 
endogenous GCs may primarily effect immunosuppression by 
enhancing Treg cell activity during effector T cell responses. 
Additionally, Treg cells display greater resistance to GC-induced 
apoptosis, further emphasizing the pivotal role of GCs in supporting 
Treg cell differentiation and function (Tischner et al., 2012; Prenek 
et al., 2020).

8 GCs, TLRs, and Leptospira infection

The innate immune system stands as the host’s foremost line of 
defense, playing a crucial role in the initial recognition and elimination 
of invading leptospires (Fraga et al., 2011). Central to this recognition 
process are the Pattern Recognition Receptors (PRRs), which are 
expressed on the surface of innate immune cells like macrophages and 
dendritic cells (DCs). These receptors, including the Toll-like receptors 
(TLRs) and nucleotide-binding oligomerization domain (NOD)-like 

FIGURE 4

The role of GCs and catecholamines in immunoregulation. The figure illustrates the impact of glucocorticoids (GCs) and catecholamines on 
immunoregulation. It demonstrates how cortisol, released through the hypothalamic–pituitary–adrenal (HPA) axis, influences the release of cytokines 
and transcription factors in T-lymphocytes. This immunosuppressive effect can contribute to the spread of Leptospira and exacerbate the severity of 
the disease.
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receptors (NLRs), serve to identify Microbial Pathogen-Associated 
Molecular Patterns (PAMPs; Akira et  al., 2006). In the context of 
leptospirosis, considerable attention has been directed toward Toll-like 
receptors, particularly TLR2 and TLR4, within the TLR family. These 
receptors are key players in the innate immune system’s recognition 
and response to leptospires (Werts et al., 2001). In mice, which are 
resistant to leptospirosis, the LPS is recognized by both TLR2 and 
TLR4. Indeed, both TLR4 and TLR2 stimulation is important in 
controlling leptospirosis in mice. Infected with L. interrogans, double 
TLR2/TLR4 knockout mice died quickly from hepatic and renal 
failure (Nahori et al., 2005).

The influence of glucocorticoids (GCs) on the regulation of TLR2 
expression remains a subject of discussion. Findings from various 
studies have reported conflicting outcomes, with some indicating 
downregulation and others suggesting upregulation of TLR2 
(Hoppstädter et  al., 2019; Ricci et  al., 2021). Moreover, genetic 
variations in TLRs have been associated with variations in the severity 
of leptospirosis. Specific gene polymorphisms, such as TLR1 Ile602Ser 
and TLR2 Arg753Gln, have emerged as substantial factors affecting 
the development of severe leptospirosis, particularly cases 
characterized by jaundice and hepatic insufficiency (Cédola 
et al., 2015).

Corticosteroids, commonly employed for the treatment of 
inflammation in patients with leptospirosis, have demonstrated their 
effectiveness in improving the survival rates of these individuals 
(Trivedi et  al., 2010; Schulze et  al., 2014). However, it’s crucial to 
acknowledge that while these drugs can be beneficial in managing the 
disease, their potent immunosuppressive properties raise concerns. 
Excessive immunosuppression triggered by corticosteroids can 
potentially lead to severe consequences, including sepsis and the 
dissemination of leptospires throughout the body and may increase 
the risk of nosocomial infections (Duarte-Neto et al., 2019; Win et al., 
2022). Therefore, the administration of corticosteroids in leptospirosis 
cases requires a careful and balanced approach to achieve the 
desired therapeutic effects while minimizing the risks associated 
with immunosuppression.

9 Conclusion

In conclusion, leptospirosis remains a significant public health 
concern with diverse implications for human populations. This review 
has shed light on the multifaceted relationship between stress and 
leptospirosis, elucidating potential mechanisms by which stress 
influences disease dynamics. Stress impacts leptospirosis through 
intricate pathways, including the modulation of the intestinal 

microbiome and the influence of immunoregulatory bacteria in 
T-lymphocyte modulation. Furthermore, this interaction is 
compounded by the direct effects of catecholamines and 
glucocorticoids on T lymphocytes, showcasing the intricate web of 
connections that underlie this interplay.

While our review has contributed valuable insights into the 
crosstalk between stress and leptospirosis, it is evident that this 
complex relationship remains far from fully understood. To 
comprehensively unravel the intricacies of how stress affects 
leptospirosis, it is imperative to embark on further investigations. 
Future research endeavors should delve into the nuanced interactions 
within the intestinal microbiome, explore the precise roles of 
immunoregulatory bacteria, and elucidate the direct mechanisms 
through which catecholamines and glucocorticoids influence 
T lymphocytes.
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