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Abstract: In this work, the electrochemical determination of clioquinol on the electrode, modified by 

the squaraine dye complex with copper sulfide nanoparticles, is described. The electroanalytical process 

begins with the analyte hydrolysis, followed by its hybrid oxidation by the pyridinic nitrogen atom and 

the hydroxyquinole moiety. The indirect electropolymerization scenario, in its turn, isn´t discarded 

either. The analysis of the correspondent model indicates the efficiency of the aquaraine dye/nano-CuS 

composite as an efficient electrode modifier for clioquinol electrochemical determination. The 

electroanalytical process is easy to conduct, and the analytical signal is easy to interpret. Contrarily to 

the acidic medium, the possibility of oscillatory and monotonic instability is less expressed.  
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1. Introduction 

Clioquinol [1–4] (Fig. 1) is an antifungal, antibacterial and antiprotozoan drug. Its 

action is based on microorganism DNA inhibition. Moreover, it may be used for CoViD-19 

treatment if combined with some zinc complexes.  

N

OH

I

Cl

 
Figure 1. Clioquinol structure. 

The drug efficiency and action are dose-related. Moreover, as with other quinolone 

derivatives, it is highly toxic, provoking adverse effects like anorexia, weight loss, and muscle 

fragility [5–8]. Therefore, developing an efficient method for clioquinol detection and 

quantification is possible, and electroanalytical methods may serve as a good solution for this 

task [9–12].  

Being a quinolone derivative, clioquinol may be either electrooxidized or 

electroreduced, which foresees the possibility for cathodic and anodic strategies. In the first 

case, the reaction may be realized by a nitrogen atom (yielding an N-oxide) or via a carbocyclic 

ring, substituted by donor substituents. In this process, the overvoltage generally occurs on bare 

electrodes, which is why the electrodes are modified by a specific material capable of reacting 

specifically with the analyte. Such electrodes are known as chemically modified (CME) [13–

18].  

In the case of clioquinol, which contains a strong accepting pyridinic ring, the strong 

oxidants, like peroxides and cobalt (III) oxyhydroxide in pair with cobalt dioxide and bivalent 

copper compounds, including copper (II) sulfide, easily affordable in the form of the 

nanoparticles over an organic phase, which are oxidized in alkaline medium, yielding in situ 

trivalent copper compounds, are generally used for an anodic process. These oxidants are 

generally stabilized by conjugated organic oligo and macromolecular compounds like 

squaraine dye, conducting polymers, or carbon material.  

Polymeric hybrid materials have been extensively used for the last two years in both 

anodic and cathodic processes [20, 21]. Moreover, those processes tend to be accompanied by 

electrochemical instabilities, which are capable of influencing the electrochemical equipment 

in general and the sensing properties of the concrete system. The analysis of the theoretical and 

experimental data [22–28] confirms that those instabilities are generally caused by ionic force, 

surface, and autocatalytical phenomena, such as electrode material conductivity, and are 

characteristic of different CME.  

Therefore, in this work, we theoretically describe the possibility of the electrochemical 

determination of clioquinol over the composite containing squaraine dye and copper sulfide 

nanoparticles. This is realized by the mechanism suggestion, its mathematical description by 

developing and analyzing the mathematical model from the stability point of view, and the 

comparison between this system and similar ones [27, 28].  
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2. Materials and Methods 

In the first stage of the process, clioquinol is hydrolyzed by the reaction (1):  

N

OH

I

Cl

N

OH

OH

OH

NaOH2

- NaCl   - NaI

                     (1), 

and yields a hydroxyquinole moiety, condensed with the pyridinic ring, whereas the 

cobalt sulfide is oxidized in an alkaline medium, yielding a strong, highly energetic oxidant – 

copper (III) sulfohydroxide (2):  

CuS + OH- - e- → CuS(OH)                                                                             (2) 

Then, copper sulfohydroxide oxidized the clioquinol hydrolysis products by four 

parallel scenarios, including α-hydroquinonic, γ-hydroquinonic, N-oxidation, and indirect 

electropolymerization (Fig. 2):  

 
Figure 2. The scheme of the electroanalytical process. 

Therefore, taking some assumptions [27, 28], we describe the system´s behavior by a 

trivariant equation-set (3):  

{
 
 

 
 

𝑑𝑞

𝑑𝑡
=

2

𝛿
(
𝛥

𝛿
(𝑞0 − 𝑞) − 𝑟ℎ)

𝑑ℎ

𝑑𝑡
=

2

𝛿
(𝑟ℎ − 𝑟1 − 𝑟2 − 𝑟𝑁 − 𝑟𝑃)

𝑑𝑐

𝑑𝑡
=

1

𝐶
(𝑟1 + 𝑟2 + 𝑟𝑁 + 𝑟𝑃 − 𝑟3)

                                       (3) 

Herein, q and h are clioquinol and its hydrolysis product concentrations, 𝑞0 stands for 

clioquinol bulk concentration, 𝛥 stands for clioquinol diffusion coefficient, С is the copper 

sulfide maximal matrix concentration, c is its surface coverage degree, and the parameters r 

stand for the correspondent reaction rates, calculated as:  

𝑟ℎ = 𝑘ℎ𝑞 exp(−𝑎𝑞)                                                   (4) 
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𝑟1 = 𝑘1ℎ(1 − 𝑐)
2                                                        (5) 

𝑟2 = 𝑘2ℎ(1 − 𝑐)
2                                                        (6) 

𝑟𝑁 = 𝑘𝑁ℎ(1 − 𝑐)
3                                                 (7) 

𝑟𝑝 = 𝑘𝑝ℎ
𝑛(1 − 𝑐)2𝑛−2                                           (8) 

𝑟3 = 𝑘3𝑐 exp (
𝐹𝜑0

𝑅𝑇
)                                                 (9) 

Herein, the parameters k stand for the correspondent reaction rate constants, n is the 

polymer chain length,  𝐹 stands for the Faraday number, 𝜑0 is the zero-charge-related DEL 

potential slope, 𝑅 is the universal gas constant, and T is the solution absolute temperature.  

As the pyridinic nitrogen atom is not ionized in alkaline media, the ionic form 

transformation is given only during the analyte hydrolysis. Therefore, DEL is less affected than 

in the acidic medium. Moreover, the stability topological area is widened, which favors the 

easy analytical signal interpretation, as shown below.  

3. Results and Discussion 

We analyze the system with clioquinol electrochemical determination on squaraine 

dye/CuS composite by analyzing the equation-set (3) using the linear stability theory and, for 

this purpose, expose the Jacobian matrix members as (10):  

(

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

)                                                                      (10) 

Herein:  

𝑎11 =
2

𝛿
(−

𝛥

𝛿
− 𝑘ℎ exp(−𝑎𝑞) + 𝑎𝑘ℎ𝑞 exp(−𝑎𝑞))                                               (11) 

𝑎12 = 0                                                                                                                    (12) 

𝑎13 = 0                                                                                                                                 (13) 

𝑎21 =
2

𝛿
(𝑘ℎ exp(−𝑎𝑞) − 𝑎𝑘ℎ𝑞 exp(−𝑎𝑞))                                                                        (14) 

𝑎22 =
2

𝛿
(−𝑘1(1 − 𝑐)

2 − 𝑘2(1 − 𝑐)
2 − 𝑘𝑁(1 − 𝑐)

3 − 𝑛𝑘𝑝ℎ
𝑛−1(1 − 𝑐)2𝑛−2)                   (15) 

𝑎23 =
2

𝛿
(2𝑘1ℎ(1 − 𝑐) + 2𝑘1ℎ(1 − 𝑐) + 3𝑘𝑁ℎ(1 − 𝑐)

2 + (2𝑛 − 2)𝑘𝑝ℎ
𝑛(1 − 𝑐)2𝑛−3)    (16) 

𝑎31 = 0                                                                                                                                  (17) 

𝑎32 =
1

𝐶
(𝑘1(1 − 𝑐)

2 + 𝑘2(1 − 𝑐)
2 + 𝑘𝑁(1 − 𝑐)

3 + 𝑛𝑘𝑝ℎ
𝑛−1(1 − 𝑐)2𝑛−2)                     (18) 

𝑎33 =
1

𝐶
(−2𝑘1ℎ(1 − 𝑐) − 2𝑘1ℎ(1 − 𝑐) − 3𝑘𝑁ℎ(1 − 𝑐)

2 − (2𝑛 − 2)𝑘𝑝ℎ
𝑛(1 − 𝑐)2𝑛−3 −

𝑘3 exp (
𝐹𝜑0

𝑅𝑇
) − 𝑗𝑘3𝑐 exp (

𝐹𝜑0

𝑅𝑇
))                                                                                (19) 
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From the Jacobian main diagonal elements (11), (15), and (19), it is possible to conclude 

that the positive callback, necessary for the Hopf bifurcation, describing the oscillatory 

behavior, is possible, as the mentioned elements possess positive addendums.  

In this system, the oscillatory behavior is more probable than in the simplest case, but 

either way, it is less probable than in the acidic medium. It is caused by two factors against one 

in the simplest case, but the DEL ionic force change factor is only manifested in the hydrolysis 

reactions, contrarily to other chemical stages. Also, the oscillatory behavior will be caused by 

the change of DEL and surface ionic force and conductivity in the electrochemical stage. 

Mathematically, it is manifested by the positivity of the elements 𝑎𝑘ℎ𝑞 exp(−𝑎𝑞) and 

−𝑗𝑘3𝑐 exp (
𝐹𝜑0

𝑅𝑇
). The oscillation frequency and amplitude will depend on the background 

electrolyte composition. 

Avoiding the cumbersome expressions during the steady-state stability investigation 

using the Routh-Hurwitz criterion, we rewrite the Jacobian determinant as (20):  

4

𝛿2𝐶
|
−𝜅 − 𝛯 0 0
𝛯 −𝛴 𝛲
0 𝛴 −𝛲 − 𝛺

|                                                                    (20) 

And express the stability requisite by opening the straight brackets and applying the 

DetJ<0 condition, salient from the criterion, as (21): 

−𝛴𝛺(𝜅 + 𝛯) < 0                                                                                       (21) 

The inequation (21) is warranted to be satisfied if the hydrolytic parameter 𝛯 and the 

electrooxidation parameter 𝛺 are positive, which is characteristic of most real systems. 

Therefore, this inequation describes an efficient diffusion and kinetically controlled 

electroanalytical system.  

Considering that no side reaction compromising the analyte and(or) modifier stability 

is realized in this system, the steady-state stability will correspond to the linear dependence 

between the electrochemical parameter and concentration, providing efficient analytical signal 

interpretation.  

The detection limit is defined by the monotonic instability, which depicts the margin 

between the stable steady states and unstable states. It is described mathematically by the 

nullity of the Jacobian determinant, or (22): 

−𝛴𝛺(𝜅 + 𝛯) = 0                                                                                   (22) 

If stronger oxidants are used, the clioquinol will also be N-oxidized and 

electropolymerized. The assisted electropolymerization will be thereby realized as 

electrocopolymerization, and the Jacobian elements (12), (13), and (17) won´t be nil. As for 

the proper equation-set (3), it will be rewritten as (23):  

{
 
 

 
 
𝑑𝑞

𝑑𝑡
=

2

𝛿
(
𝛥

𝛿
(𝑞0 − 𝑞) − 𝑟ℎ − 𝑟𝑁 − 𝑟𝑃)

𝑑ℎ

𝑑𝑡
=

2

𝛿
(𝑟ℎ − 𝑟1 − 𝑟2 − 𝑟𝑁 − 𝑟𝑃)

𝑑𝑐

𝑑𝑡
=

1

𝐶
(𝑟1 + 𝑟2 + 𝑟𝑁 + 𝑟𝑃 − 𝑟3)

                                                            (23) 

This case will be analyzed in one of our next works.  
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4. Conclusions 

From the analysis of the system with the electrochemical determination of clioquinol 

over the Squaraine Dye/CuS composite, it is possible to conclude that the electroanalytical 

process is efficient. Moreover, it is more efficient in the alkaline medium than in the acidic 

medium. Although oscillatory behavior is possible, it is less probable than acidic solutions. As 

for the electroanalytical process, it is either diffusion or kinetically controlled, and the 

electroanalytical signal is easy to interpret.  
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