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Abstract: Prenatal hypoxia (PH) is a key factor in the development of long-term cardiovas-
cular disorders, which are caused by various mechanisms of endothelial dysfunction (ED),
including those associated with NO deficiency. This emphasizes the potential of therapeutic
agents with NO modulator properties, such as Thiotriazoline, Angiolin, Mildronate, and
L-arginine, in the treatment of PH. Methods: Pregnant female rats were given a daily
intraperitoneal dose of 50 mg/kg of sodium nitrite starting on the 16th day of pregnancy.
A control group of pregnant rats received saline instead. The resulting offspring were
divided into the following groups: Group 1—intact rats; Group 2—rat pups subjected to
prenatal hypoxia (PH) and treated daily with physiological saline; and Groups 3 to 6—rat
pups exposed to prenatal hypoxia and treated daily from the 1st to the 30th day after birth.
Levels of sEPCR, Tie2 tyrosine kinase, VEGF-B, SOD1/Cu-Zn SOD, GPX4, and GPX1 in
the heart’s cytosolic homogenate were assessed using ELISA. The expression of VEGF and
VEGF-B mRNA was analyzed via real-time polymerase chain reaction, and the nuclear area
of myocardial microvessel endothelial cells was evaluated morphometrically. Results: We
have shown that only two representatives of this group—Angiolin and Thiotriazoline—are
able to exert full effect on the indices of endothelial dysfunction after PH to decrease sEPCR,
increase Tie-2, VEGF-B and VEGF-B mRNA, Cu/ZnSOD, and GPX in myocardial cytosol,
and increase the area of endotheliocyte nuclei in 1- and 2-month-old rats in comparison with
the control. Conclusions: Our results experimentally substantiate the necessity of early
postnatal cardio- and endothelioprotection using NO modulators, taking into account the
role of NO-dependent mechanisms in the pathogenesis of cardiovascular system disorders
in neonates after PH.
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1. Introduction
The global progression of cardiovascular disease is influenced by a myriad of factors,

including lifestyle choices, dietary habits, unhealthy behaviors, and socioeconomic shocks,
but also by suboptimal intrauterine conditions. Numerous studies have demonstrated that
cardiovascular dysfunction in adulthood can be programmed during pregnancy, particu-
larly as a result of poor maternal nutrition, alcohol consumption, substance abuse, chemical
exposure, and stress. Among the various complications associated with pregnancies world-
wide, fetal hypoxia emerges as one of the most prevalent issues, significantly impacting
long-term cardiovascular health [1–3].

Prenatal hypoxia (PH) is associated with asymmetric fetal growth restriction, leading
to hypertrophic growth of the heart and aorta, altered cardiac function, and sympathetic
hyperinnervation of peripheral resistive arteries in newborns. In adulthood, the effects
of prenatal hypoxia extend to an increased risk of hypertension, coronary heart disease,
ischemic heart disease, heart failure, and metabolic syndrome, as well as heightened
susceptibility to ischemic injury. These findings underscore the critical importance of
addressing hypoxic conditions during pregnancy to mitigate long-term cardiovascular
risks [4,5].

The presence of endothelial dysfunction mechanisms was revealed in the pathology
of the cardiovascular system after prenatal hypoxia. Clinical manifestations of functional
state disturbance and cardiovascular system maladaptation after prenatal hypoxia directly
correlated with signs of endothelial dysfunction (changes in endothelin-1, nitric oxide
(NO), vascular endothelial growth factor (VEGF) production, circulating desquamated
endotheliocytes) both in newborns and at older ages [6–8].

Nitrogen monoxide (NO) system disorders play a certain role in the formation of
endothelial dysfunction and cardiovascular pathology, including after prenatal hypoxia.
Studies have revealed that prenatal hypoxia can change both the production and bioavail-
ability of NO. During prenatal hypoxia, increased concentrations of superoxyradicals and
other reactive oxygen species can lead to oxidative modification of NO and convert it to
peroxynitrite, which negatively affects fetal organs [5,9,10].

Hypoxia decreases endothelial nitric oxide synthase (eNOS) expression and can alter
its enzymatic activity through various post-translational modifications. In conditions of
hypoxia coupled with L-arginine deficiency, eNOS may generate superoxyradicals instead
of NO. Such abnormalities in eNOS function are thought to be a major cause of endothelial
dysfunction observed in cardiovascular disease [8,11].

Given that prenatal hypoxia exerts both immediate and long-term effects on cardiovas-
cular development, it is essential to explore novel molecular and biochemical markers that
reflect the hypoxic impact on the cardiovascular system. Additionally, the development
of therapeutic agents targeting these effects is critical. The molecular basis of vascular
endothelial dysfunction is a complex and not fully understood problem. In this regard, the
“eNOS-L-arginine-NO” system may soon play a key role in the pharmacological correction
of endothelial dysfunction. Currently, there are no drugs with specific endothelioprotective
activity. However, considering the role of NO in the development of endothelial dysfunc-
tion, positive modulators of NO synthesis have attracted the attention of researchers as
potential agents for cardio- and endothelioprotection following prenatal hypoxia [12–14].
Pharmacologically, the level of NO and its bioavailability can be increased through (1)
stimulation of NO synthesis, for example, through therapy with L-arginine (a substrate
for eNOS), tetrahydrobiopterin (a cofactor for eNOS), or metabolic cytoprotectors that
increase the amount of gamma-butyrobetaine (such as Mildronate or trimetazidine); (2)
direct protection of NO from reactive oxygen species (ROS) using thiol antioxidants (e.g.,
Thiotriazoline, Angiolin); (3) positive modulation of eNOS activity [15]. We observed
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promising experimental outcomes with the use of nitric oxide (NO) modulators, includ-
ing L-arginine, Thiotriazoline, Angiolin, and Mildronate, following instances of prenatal
hypoxia [12,16]. These agents are also described in other studies, which show that cytopro-
tective, antioxidative, and anti-ischemic effects of these agents are associated with a positive
effect on the nitric oxide monoxide system, and influence the synthesis, bioavailability or
transport of this messenger.

Thus, Thiotriazoline (tiazotic acid) is a scavenger of reactive oxygen and nitrogen
forms, protects NO from chemical modification and transformation into peroxynitrite, and
exhibits cardioprotective, membrane-stabilizing, and anti-ischemic properties. Thiotriazo-
line has low toxicity at different routes of administration to four species of animals, belongs
to the V class of toxicity (practically non-toxic substances) and does not show general toxic,
teratogenic, embryotoxic, mutagenic, and carcinogenic actions. It has been used in clinical
practice for more than 20 years [17].

Angiolin (3-methyl-1,2,4-triazolyl-5-thioacetate (S)-2,6-diaminohexanoic acid) is a
structural analog of Thiotriazoline that regulates the concentration of reactive oxygen
species (ROS), protects NO from conversion into peroxynitrite, and modulates the expres-
sion of eNOS and vascular endothelial growth factor (VEGF) during ischemia and hypoxia.
It exhibits antioxidative, neuroprotective, endothelial-protective, cardioprotective, and
anti-ischemic properties. “Angiolin” belongs to the V class of toxicity (practically non-toxic
substances)—LD50 at parenteral administration: rats—7667 mg/kg; mice—9000 mg/kg;
LD50 at intragastric administration—rats—15,000 mg/kg; mice—10,309 mg/kg—and does
not show general toxic, teratogenic, embryotoxic, mutagenic, and carcinogenic actions.
After the permission of the State Expert Center of the Ministry of Health of Ukraine, it
successfully passed the first phase of clinical trials [18].

Mildronate affects NO synthesis by increasing the level of gamma-butyrobetaine, and
it exhibits cardioprotective and anti-ischemic properties [18,19].

L-arginine, a precursor of NO synthesis, exhibits membrane-stabilizing, cardioprotec-
tive, and anti-ischemic properties [20].

Purpose of this study: to perform a comparative evaluation of the effects of NO
modulators (L-arginine, Thiotriazoline, angiotensin, and Mildronate) on various markers
of endothelial dysfunction (sEPCR, Tie-2, VEGF-B, endothelial cell nuclear density) and the
antioxidant system (Cu/ZnSOD, GPX1, GPX4) following experimental PH and to justify
further investigation into the cardio- and endothelioprotective effects of the most promising
pharmacological agent.

2. Results
Prenatal hypoxia (PH) modeling leads to changes in the concentration of various

proteins in the heart cytosol of experimental animals, which may indicate the development
of endothelial dysfunction (Tables 1 and 2). We observed a significant increase in the
concentration of the soluble form of the endothelial protein C receptor (sEPCR), rising by
1.92 times at 1 month of life and by 2.14 times at 2 months of life compared to the intact
group of the corresponding age (p ≤ 0.05). Additionally, we found a significant decrease in
the tyrosine kinase receptor Tie-2, by 42.3% at 1 month of life and by 37.9% at 2 months.
The concentration of vascular endothelial growth factor B (VEGF-B) was also significantly
reduced after PH, decreasing by 28.1% and 35.2% at 1 and 2 months, respectively, in
experimental animals. We also found a decrease in VEGF mRNA expression by 2.9 times
and a decrease in VEGF-B mRNA expression by 5.8 times in the hearts of 1-month-old
rats compared to the group of healthy 1-month-old animals. In the hearts of 2-month-old
rats, the reduction in VEGF and VEGF-B mRNA expression was even more pronounced
compared to the group of healthy 1-month-old rats, with reductions of 3.3 and 6.4 times,
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respectively. Additionally, we observed that prenatal hypoxia (PH) leads to a greater
suppression of VEGF-B mRNA (Tables 3 and 4). Evidence of endothelial dysfunction in
the myocardial microvessels was shown by a decrease in the area of endothelial cell nuclei,
which was reduced by 42.6% in 1-month-old rats and 43.4% in 2-month-old rats (Table 5).
Furthermore, we identified a reduction in the expression of antioxidant enzymes, which
play a crucial role in limiting the damaging effects of oxidative stress intermediates—such
as superoxide radicals, hydroperoxides, and lipid peroxides. In the cytosol of rat hearts
after PH, a significant decrease in the concentration of the Cu/Zn-dependent isoform
of superoxide dismutase (Cu/ZnSOD) by 27.6% (at 1 month of life) and by 31.6% (at
2 months of life) was observed. A reduction in the concentration of glutathione peroxidase
4 (phospholipid hydroperoxidase) (GPX4) was also found at 1 and 2 months of life, by
49.5% and 47.8%, respectively. The concentration of glutathione peroxidase 1 (GPX1) also
decreased, by 51.2% at 1 month of life and by 54.3% at 2 months.

Table 1. System parameters of cytosolic fraction in 1-month-old rats after prenatal hypoxia and treatment.

Experimental Groups sEPCR,
pg/mL

Tie-2,
pg/mL

VEGF-B,
pg/mL

Cu/ZnSOD,
pg/mL

GPX1,
pg/mL

GPX4,
pg/mL

Intact (rats born from rats with
normal pregnancies) (n = 10)

22.5 ±
0.411

17.7 ±
0.348

44.7 ±
1.012

87.7 ±
1.802

43.3 ±
1.044

67.8 ±
1.676

PH (rats with prenatal hypoxia)
(control) (n = 10)

43.2 ±
1.360 1

10.2 ±
0.275 1

32.1 ±
1.012 1

63.5 ±
1.360 1

21.1 ±
0.538 1

34.2 ±
0.537 1

PH + L-arginine (n = 10) 38.0 ±
0.854 1,*

14.2 ±
0.348 1,*

34.7 ±
1.486 1

62.7 ±
1.739 1

22.8 ±
0.696 1

38.3 ±
1.328 1,*

PH + Thiotriazoline (n = 10) 33.5 ±
1.012 1,*

12.7 ±
0.316 1,*

36.8 ±
1.170 1,*

77.8 ±
1.961 1,*

38.8 ±
0.696 1,*

57.7 ±
0.949 1,*

PH + Angiolin (n = 10) 28.2 ±
0.538 1,*

16.4 ±
0.380 1,*

47.8 ±
0.885 1,*

79.7 ±
1.676 1,*

40.7 ±
1.012 *

62.8 ±
1.803 *

PH + Meldonium (n = 10) 40.5 ±
2.119 1

11.0 ±
0.231 1,*

31.1 ±
1.170 1

65.2 ±
1.961 1

22.7 ±
0.348 1

37.3 ±
0.601 1*

Notes: 1—p ≤ 0.05 in relation to the intact group of animals; *—p ≤ 0.05 in relation to the control group of animals.

Course administration of drugs that are modulators of the nitric oxide system for
30 days immediately after birth leads to varying degrees of normalization in the expression
of these proteins (sEPCR, Tie-2, VEGF-B, Cu/ZnSOD, GPX) (Tables 1 and 2). The admin-
istration of L-arginine resulted in a significant reduction in sEPCR by 12.0% immediately
after discontinuation of the drug and by 22.4% one month after the end of L-arginine
treatment, indicating a lasting effect. L-arginine administration significantly increased the
concentration of Tie-2 by 1.4 times in the cytosol of experimental animals both immediately
after discontinuation of the drug and one month after the end of the treatment course.
However, L-arginine administration did not affect the concentration and expression of
VEGF-B and Cu/ZnSOD in the heart cytosol of experimental animals. L-arginine adminis-
tration resulted in a significant increase in endotheliocyte nuclear cavity in 28% of post-PH
myocardial microvessels one month after administration of the drug (Table 5).

The introduction of L-arginine led to a significant increase in GPX4 expression immedi-
ately after administration, while GPX1 expression increased a month after the course ended.
Thiotriazoline significantly reduced cEPCR levels in the cytosol of the hearts of rats after PH
at both observation periods (1 and 2 months of life of experimental animals) by 22.4% and
29.0%, respectively. The course administration of Thiotriazoline resulted in a significant
increase in Tie-2 by 24.5% and 39.0% for the respective observation periods (1 and 2 months
after PH). Additionally, Thiotriazoline led to a significant increase in VEGF-B by 14.6%
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and 19.6% for the respective observation periods. Thiotriazoline increased the expression
of VEGF mRNA and VEGF-B mRNA by 2.61 and 6.8 times, respectively, in the hearts of
1-month-old rats after prenatal hypoxia (PH), and by 3.9 and 12.8 times, respectively, in the
hearts of 2-month-old rats after PH (Tables 3 and 4). Thiotriazoline significantly elevated
the expression of antioxidant enzymes in the cytosol of the myocardium of experimental
animals—Cu/ZnSOD by 22.5% and 25.3%, GPX1 by 83.8% and 200%, and GPX4 by 68.7%
and 87.7% for the respective observation periods after the drug administration. As can be
seen, Thiotriazoline has a greater impact on GPX1, which is consistent with its previously es-
tablished antioxidant properties. Thiotriazoline demonstrated direct endothelial-protective
properties, significantly increasing the nuclear area of endothelial cells in the myocardium
of 1- and 2-month-old rats after prenatal hypoxia (PH) by 40.7% and 62%, respectively,
compared to the untreated group.

Table 2. Cytosolic fraction parameters in 2-month-old rats after prenatal hypoxia and treatment.

Experimental Groups sEPCR,
pg/mL

Tie-2,
pg/mL

VEGF-B,
pg/mL

Cu/ZnSOD,
pg/mL

GPX1,
pg/mL

GPX4,
pg/mL

Intact (rats born from rats with
normal pregnancies) (n = 10)

21.2 ±
0.348

18.2 ±
0.253

48.8 ±
1.012

91.9 ±
2.308

46.4 ±
0.664

72.4 ±
1.676

PH (rats with prenatal hypoxia)
(control) (n = 10)

45.4 ±
0.727 1

11.3 ±
0.221 1

31.6 ±
0.696 1

62.8 ±
1.581 1

21.2 ±
0.949 1

37.8 ±
0.569 1

PH + L-arginine (n = 10) 35.2 ±
0.537 1,*

15.2 ±
0.348 1,*

32.7 ±
0.854 1

66.7 ±
1.328 1

24.3 ±
0.569 1,*

39.4 ±
0.443 1

PH + Thiotriazoline (n = 10) 32.2 ±
0.569 1,*

15.7 ±
0.243 1,*

37.8 ±
1.075 1,*

78.7 ±
1.992 1,*

42.6 ±
0.791 1,*

68.7 ±
1.360 1,*

PH + Angiolin (n = 10) 21.2 ±
0.632 *

18.4 ±
0.379 *

52.8 ±
1.202 1,*

88.7 ±
2.625 *

48.8 ±
1.075 *

77.8 ±
1.834 1,*

PH + Meldonium (n = 10) 44.9 ±
1.676 1

10.4 ±
0.127 1,*

34.7 ±
0.601 1,*

64.4 ±
1.391 1

27.4 ±
0.601 1,*

42.5 ±
1.518 1,*

Notes: 1—p ≤ 0.05 in relation to the intact group of animals; *—p ≤ 0.05 in relation to the control group of animals.

Table 3. VEGF mRNA and VEGF-B mRNA expression in myocardial tissues of 1-month-old rats after
prenatal hypoxia and treatment.

Experimental Groups VEGF mRNA, a.u. VEGF-B mRNA, a.u.

Intact (rats born from rats with
normal pregnancies) (n = 10) 1.000 ± 0.0017 1.000 ± 0.009

PH (rats with prenatal hypoxia)
(control) (n = 10) 0.34 ± 0.00012 1 0.170 ± 0.00011 1

PH + L-arginine (n = 10) 0.31 ± 0.00012 1 0.18 ± 0.0022 1

PH + Thiotriazoline (n = 10) 0.812 ± 0.0055 1,* 1.17 ± 0.0011 1,*

PH + Angiolin (n = 10) 1.731 ± 0.0121 1,* 2.13 ± 0.0021 1,*

PH + Meldonium (n = 10) 0.331 ± 0.0021 1 0.18 ± 0.0022 1

Notes: 1—p ≤ 0.05 in relation to the intact group of animals; *—p ≤ 0.05 in relation to the control group of animals.
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Table 4. Expression of VEGF mRNA and VEGF-B mRNA in myocardial tissues of 2-month-old rats
after prenatal hypoxia and treatment.

Experimental Groups VEGF mRNA, a.u. VEGF-B mRNA, a.u.

Intact (rats born from rats with
normal pregnancies) (n = 10) 1.000 ± 0.0012 1.000 ± 0.0015

PH (rats with prenatal hypoxia)
(control) (n = 10) 0.30 ± 0.00014 1 0.156 ± 0.0003 1

PH + L-arginine (n = 10) 0.31 ± 0.00021 1 0.161 ± 0.0014 *

PH + Thiotriazoline (n = 10) 1.17 ± 0.0011 1,* 2.00 ± 0.0021 1,*

PH + Angiolin (n = 10) 1.87 ± 0.0023 1,* 3.05 ± 0.0023 1,*

PH + Meldonium (n = 10) 0.31 ± 0.0011 1 0.143 ± 0.0001 1

Notes: 1—p ≤ 0.05 in relation to the intact group of animals; *—p ≤ 0.05 in relation to the control group of animals.

Table 5. Cross-sectional area of endothelial cell nuclei in the myocardial apex of 1- and 2-month-old
rats after prenatal hypoxia and treatment.

Experimental Groups
Cross-Sectional Area of Endothelial Cell Nuclei, µm2

1-Month-Old Rats 2-Month-Old Rats

Intact (rats born from rats with
normal pregnancies) (n = 10) 15.23 ± 2.34 16.17 ± 2.65

PH (rats with prenatal hypoxia)
(control) (n = 10) 8.77 ± 0.76 1 9.15 ± 0.67 1

PH + L-arginine (n = 10) 8.98 ± 1.23 1 11.71 ± 1.10 1,*

PH + Thiotriazoline (n = 10) 12.34 ± 1.24 1,* 14.82 ± 1.58 1,*

PH + Angiolin (n = 10) 14.11 ± 2.35 * 15.61 ± 1.76 *

PH + Meldonium (n = 10) 8.34 ± 0.714 1 8.77 ± 1.11 1

Notes: 1—p ≤ 0.05 in relation to the intact group of animals; *—p ≤ 0.05 in relation to the control group of animals.

It is noteworthy that the measured indicators in the group of animals with PH receiving
Thiotriazoline did not significantly differ from those in the group of animals born after a
normally progressing pregnancy. Angiolin demonstrated the most pronounced therapeutic
effect among all the studied agents (Tables 1 and 2). Specifically, Angiolin significantly
reduced cEPCR levels in the cytosol of the hearts of rats after PH at both observation
periods—immediately after the course of administration and 1 month after its cessation (1
and 2 months of the experimental animals’ life)—by 34.7% and 53.3%, respectively.

It is important to note that cEPCR levels in the cytosol of the myocardium of 2-month-
old animals with PH after receiving Angiolin were comparable to those of animals born
after a physiologically normal pregnancy. The course administration of Angiolin led to a
significant increase in Tie-2 by 60.7% and 62.8% for the respective observation periods (1 and
2 months after PH). cEPCR indices in myocardial cytosol of 2-month-old animals after PH
receiving Angiolin were at the level of animals born after physiologically normal pregnancy.

The administration of Angiolin also led to a significant increase in VEGF-B by 48.9%
and 67.0% for the respective observation periods. It is important to note that the concentra-
tion of VEGF-B in the cytosol of the myocardium of 1- and 2-month-old rats after PH was
significantly higher than that of age-matched animals born after a physiologically normal
pregnancy. Angiolin increased the expression of VEGF mRNA and VEGF-B mRNA by 5.7
and 12.5 times, respectively, in the hearts of 1-month-old rats after prenatal hypoxia (PH)
and by 6.2 and 19 times in the hearts of 2-month-old rats after PH (Tables 3 and 4). Among
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all the pharmacological agents tested, Angiolin demonstrated the most pronounced direct
endothelial-protective properties, significantly increasing the nuclear area of endothelial
cells in the myocardium of 1- and 2-month-old rats after PH by 60.8% and 70%, respectively,
compared to the untreated group. Morphometric parameters of endothelial cell nuclei in
animals treated with Angiolin after PH were comparable to those of healthy rats.

The use of Angiolin also resulted in an increase in the expression of antioxidant
enzymes—Cu/ZnSOD by 25.5% and 41.2%, GPX1 by 92.8% and 130.1%, and GPX4 by
83.6% and 105.8% for the respective observation periods after the drug administration—
indicating a significant antioxidant mechanism of action for the drug.

Mildronate, when administered in a course after PH, had the least pronounced effect
compared to the other studied drugs (Tables 1 and 2). We observed a significant change in
the group receiving Mildronate compared to the control group in the levels of Tie-2 and
GPX4 immediately after a one-month course of administration, as well as a significant
change compared to the control group in the levels of VEGF-B, Tie-2, GPX1, and GPX4 one
month after the course of the drug.

3. Discussion
The modeling of PH through the introduction of sodium nitrite to pregnant females

leads to hemic hypoxia due to the formation of methemoglobin. This hypoxia is accom-
panied by tissue hypoxia caused by the uncoupling of oxidation and phosphorylation
processes. The disruption of blood oxygen transport in pregnant female rats results in
impaired uteroplacental blood flow and oxygen starvation of the fetus or embryo [21]. Ad-
ministration of sodium nitrite at a dose of 50 mg/kg leads to hypoxia of medium severity
in adult individuals, according to the criteria proposed by N.F. Ivanitskaya [22].

The modeling of PH leads to the development of postnatal heart defects. In both
newborns and adult animals, our model allows for the assessment of the physiological
development of offspring and the effectiveness of experimental cardioprotective therapy
following prenatal hypoxia (PH). The administration of sodium nitrite to pregnant rats
results in increased methemoglobin levels [23], specifically, hypoxic damage to the target
organs of the fetus. Our previous studies have shown that modeling chronic hypoxia with
sodium nitrite leads to persistent ECG abnormalities, reduced myocardial contractility,
and sinus node dysfunction [24], focal dystrophy, as confirmed by an increase in the
concentration of a highly sensitive marker of myocardial remodeling and the risk of heart
failure, ST2 [16].

We also revealed a significant impairment of the myocardial nitriergic system in rats
after prenatal hypoxia (PH)—an imbalance in the ratio of eNOS/iNOS expression against
the background of NO deficiency and increased nitrotyrosine levels [12]. This suggests
impaired cardiac tolerance to ischemia/reperfusion and damage to endothelial-dependent
mechanisms of vasodilation/vasoconstriction, and may further contribute to the develop-
ment of endothelial dysfunction following intrauterine hypoxia. Endothelial dysfunction
after prenatal hypoxia develops against a background of HIF-1α deficiency (a factor that
activates eNOS expression through serine residue phosphorylation) and nitrosative stress,
which also leads to HSP70 deficiency, glutathione system depletion, reduced NO bioavail-
ability, and suppression of gene transcription by cytotoxic NO products [12,16,25].

Our research findings also confirm that this model of PH leads to pathological changes
in the cardiovascular system of newborns and the development of endothelial dysfunction.
EPCR levels increase in endothelial cells during post-ischemic neovascularization. It is
important to note that the exogenous addition of NO significantly enhanced the formation
of endothelial angiogenic sprouts from aortic rings and primary endothelial cells isolated
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from mice with a PAR1 mutation. Thus, maintaining NO bioavailability during angiogenic
processes is a primary function of EPCR-PAR1 endothelial signaling [26,27].

The release of EPCR from the endothelium often leads to the formation of the soluble
form of EPCR (sEPCR). It was found that SS mice had higher levels of soluble EPCR (sEPCR)
in plasma compared to their AA counterparts. The endothelial protein C receptor (EPCR)
plays a crucial role in the anticoagulant and anti-inflammatory effects of the protein C
pathway, whereas its soluble form (sEPCR) exhibits opposing properties. High levels of
sEPCR in plasma and tissues have been observed in individuals with the A3 haplotype of
the PROCR gene, the EPCR gene. Elevated levels of sEPCR in plasma have also recently
been reported in women with preeclampsia (PE), a multisystem syndrome involving
inflammation, endothelial dysfunction, and thrombosis [28].

Tie2 plays an important role in providing barrier protection to prevent excessive vas-
cular permeability and maintains an antithrombotic surface to improve blood circulation. It
remains activated throughout the healthy vascular system of an adult due to the continuous
secretion of angiopoietin-1 from perivascular cells and platelets, promoting endothelial
stability by inhibiting the inflammatory NF-κB [29]. In animal models simulating critical
illness, Tie2 levels in organs are temporarily reduced. The functional consequences of these
reduced Tie2 levels for microvascular endothelial behavior are associated with increased
microvascular inflammation [30]. It has been shown that mice with null Tie-2 exhibit severe
vascular damage and cardiac abnormalities, leading to embryonic lethality, as Tie-2 is
essential for supporting the development and stabilization of fetoplacental vessels and
regulating NO production [31]. Data have been obtained demonstrating the potential of
activating Tie2 with a pharmacological agent, leading to a reduction in the thromboinflam-
matory state of the endothelium in COVID-19 [29]. VEGF-B is a powerful survival factor for
various cell types, inhibiting apoptosis by suppressing the expression of apoptosis-related
proteins and genes, and is crucial for the survival of blood vessels; however, it does not
induce blood vessel growth. Pharmacological modulation of VEGF-B results in a strong
cytoprotective and anti-apoptotic effect without triggering general angiogenic activity [32].
The heart expresses a high level of VEGF-B, which exerts a strong anti-apoptotic effect on
cardiomyocytes by suppressing the expression of pro-apoptotic genes (BMF, BAD, BID,
BAX, CASP9, DCN, TP53INP1, TNF). VEGF-B induces several antioxidant genes (GPX1,
GPX4, SOD-1, SOD-2, etc.) and suppresses genes responsible for oxidative stress. VEGF-
B reduces endothelial cholesterol content by inhibiting the recirculation of low-density
lipoprotein receptors, influences uptake, and increases the utilization of fatty acids by the
myocardium for energy production [33]. Our results are consistent with other studies
presented in a review [5]; these studies demonstrated that prenatal hypoxia leads to en-
dothelial dysfunction, reduced NO production, decreased expression and concentration
of VEGF, and thickening and deposition of fibrils in the intima, as well as migration and
proliferation of smooth muscle cells into the intima of myocardial vessels. The morphologi-
cal changes in the heart are mediated by endothelial dysfunction. Suppression of VEGF-B
expression results in mitochondrial dysfunction, metabolic disorders, and an increased risk
of heart failure development [34]. A possible reason for the suppression of VEGF-B mRNA
expression during prenatal hypoxia may be an excess of reactive oxygen species (ROS) [35].

Preclinical studies have demonstrated the therapeutic potential of VEGF-B in revas-
cularizing ischemic myocardium by modulating endothelial cell proliferation and migra-
tion [36]. It has been established that VEGF-B primarily interacts with Flt-1 (vascular
endothelial growth factor receptor) and sFlt-1 (soluble vascular endothelial growth factor
receptor-2) and inhibits vascular endothelial dysfunction in preeclampsia. Administration
of a recombinant VEGF-B preparation to rodents with experimental preeclampsia restored
the angiogenic environment in plasma, normalized blood pressure, and reduced the sever-
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ity of ischemia [37]. VEGF is indeed an attractive target for our NO modulators (L-arginine,
Thiotriazoline and Angiolin), as a NO-dependent mechanistic regulation of VEGF expres-
sion has been described [38]. The reduced expression of the main antioxidants, which we
have found in the previously detected increase in nitrotyrosine in the myocardium of 1-
and 2-month-old rats following PH [12], shows a significant activation of oxidative stress
after PH. Oxidative stress in the fetal heart and vasculature underlies the mechanism by
which prenatal hypoxia programs cardiovascular pathology and endothelial dysfunction
later in life [4]. Our present study and previously published results are not contradicted
by other investigators who have shown that PH contributed to aortic thickening with
enhanced nitrotyrosine staining and increased expression of cardiac HSP70, as well as
marked impairment of NO-dependent relaxation in arteries and increased myocardial
contractility with sympathetic dominance [39].

GPX-4 is most important for cellular protection under oxidative stress, directly reduc-
ing phospholipid hydroperoxides, even when incorporated into membranes and lipopro-
teins. GPX-4 can also restore fatty acid hydroperoxide, cholesterol hydroperoxide, and
thymine hydroperoxide. It plays a key role in protecting cells from oxidative damage by
preventing membrane lipid peroxidation. GPX-4 is required to prevent cells from ferropto-
sis, non-apoptotic cell death resulting from iron-dependent accumulation of lipid reactive
oxygen species [40,41]. GPx4 is required to prevent the death of mitochondrial cells by
mediating the reduction in cardiolipin hydroperoxides. GPx4 is involved in the direct
detoxification of lipid peroxides in the cell membrane and is an inhibitor of ferroptosis
induced by lipid peroxidation. The cytosolic isoform of GPx4 plays a key role in inhibit-
ing ferroptosis in somatic cells, while the mitochondrial isoform of GPx4 (mGPx4) may
play a role in reducing the risk of mitochondrial dysfunction [42]. It has been discovered
for the first time that PH can lead to ferroptosis in human trophoblast cells, which may
subsequently cause miscarriage. This underscores the importance of GPX-4 [43]. GPx-1 is
an intracellular antioxidant enzyme that enzymatically reduces H2O2 to H2O to limit its
harmful effects, as well as regulates H2O2-dependent signaling mechanisms mediated by
growth factors, mitochondrial function, and the maintenance of normal thiol redox balance.
Our findings indicate that the decreased expression of GPx-1 in the hearts of rats after PH
may be associated with an excess of cytotoxic forms of NO in the context of high iNOS
expression [44], as we found in a previous study [12]. GPx-1 plays an important role in
maintaining endothelial function and NO bioavailability [44] GPx-1 deficiency leads to
marked vasoconstriction and forms endothelial dysfunction [45].

SODs are generally classified into four groups: manganese SOD (MnSOD), copper–
zinc SOD (Cu/ZnSOD), iron SOD (FeSOD) and nickel SOD (NiSOD). Cu/ZnSOD and
MnSOD localize in the cytoplasm, serve as the major radical scavengers in the intracellular
environment, and have attracted much attention because of their physiological function and
therapeutic potential [46]. Our studies showing a low concentration of Cu/ZnSOD in the
rat cytosol after PH are supported by other studies showing that PH reduces Cu/ZnSOD
expression at both transcriptional and post-translational levels. In addition, PH decreases
Cu/ZnSOD activity and may be a cause of subsequent cardiovascular disease [47] and
endothelial dysfunction [48]. There is strong evidence of a proven link between reduced
activity of antioxidant enzymes and the occurrence of adverse pregnancy outcomes, as
oxidative stress has a deleterious effect on maternal physiology, pregnancy, and fetal devel-
opment, impairing placental function and impairing oxygen and nutrient delivery to the
developing fetus and contributing to cardiovascular disorders, in particular cardiomyopa-
thy and endothelial dysfunction [49]. Positive modulators of NO, by increasing physiologic
concentrations of this messenger, participate in the mechanisms of the S-nitrosation of
a cysteine residue and regulate post-translational modification of various proteins, in-
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cluding eNOS [50]. All of this, as well as our previous research [11,12,16], allowed us
to justify the use of positive NO modulators in the experimental therapy of cardiovascu-
lar complications after PH. Pharmacological agents that elevate nitric oxide (NO) levels
and extend its activity can stimulate NO-dependent mechanisms involved in endothe-
lial growth. These agents regulate the expression of vascular endothelial growth factor
(VEGF) family proteins, including placental growth factor (PGF), angiopoietins (ANG-1 and
ANG-2), and their soluble receptors (sFLT-1 and sTIE-2). Additionally, they promote NO-
dependent expression of proangiogenic factors such as VEGF-A, cardioprotective VEGF-B,
and PGF, while mitigating NO-dependent expression of endothelial adhesion molecules
and proinflammatory cytokines. The highest activity in this study was demonstrated by
Angiolin (S)-2,6-diaminohexanoic acid 3-methyl-1,2,4-triazolyl-5-thioacetate, which has
NO-scavenging properties, in which fragments of the chemical structure of the molecule
take part. Angiolin can form nitrothiols and increase NO bioavailability. The interactions
between the Angiolin molecule and NO can be realized by electron transfer from the higher
occupied molecular orbital of the “spin trap” to the lower unoccupied molecular orbital of
the nitrogen monoxide radical to form a more stable complex compound (Figure 1).
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Figure 1. Hypothetical mechanism of (S)-2,6-diaminohexanoic acid 3-methyl-1,2,4-triazolyl-5-
thioacetate (Angiolin) interaction with NO. The NO scavenger properties of Angiolin are realized
through the reactivity of both the cationic and anionic parts of the molecule (S)-2,6-diaminohexanoic
acid 3-methyl-1,2,4-triazolyl-5-thioacetate. Specifically, L-lysine interacts with NO via the ε-amino
group, resulting in the corresponding N-nitrosated derivative. Simultaneously, the anionic part of
the molecule (S)-2,6-diaminohexanoic acid 3-methyl-1,2,4-triazolyl-5-thioacetate (Angiolin) likely
forms S-nitro derivatives, as described elsewhere. The NO scavenger properties of both the anionic
and cationic parts of (S)-2,6-diaminohexanoic acid 3-methyl-1,2,4-triazolyl-5-thioacetate appear to
be synergistic, which accounts for the outstanding effect observed with the investigated Angiolin.
The mechanism of interaction between the Angiolin molecule and NO may involve the transfer of
an electron from the highest occupied molecular orbital of the “spin trap” to the lowest unoccupied
molecular orbital of the radical, forming a more stable radical complex. We performed calculations of
quantum-mechanical energy descriptors for the frontier molecular orbitals, the energy of the highest
occupied molecular orbital (EHOMO) and the energy of the lowest unoccupied molecular orbital
(ELUMO), using the WinMopac software package (version 7.2, descriptors HOMOEnergy, LUMOEn-
ergy, AM1 method, with settings: Calculation = SinglePoint, Wavefunction = ClosedShell (RHF)).
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Additionally, the following characteristics were calculated: the energy gap (the difference between the
HOMO and LUMO energies); absolute hardness using the formula η = − (EHOMO − ELUMO)/2;
and absolute electronegativity using the formula χ0 = − (EHOMO + ELUMO)/2. The quantum
chemical parameters of the Angiolin molecule correlate with our earlier studies and show that the
EHOMO parameter (HOMOEnergy descriptor) has the greatest influence on the oxidative stress
marker nitrotyrosine, which is directly proportional to the concentration of the NO-peroxynitrite
degradation product. The interaction mechanism of the Angiolin molecule with NO can be realized
through the transfer of an electron from the highest occupied molecular orbital of the “spin trap” to
the lowest unoccupied molecular orbital of the radical, forming a more stable radical complex. Thus,
Angiolin may act as an NO transporter molecule, potentially playing a crucial role in the endothelial
defense mechanism. The obtained results are consistent with computational findings [51].

Angiolin normalizes eNOS/iNOS expression. In studies on the model of cerebral
ischemia in rats, the endothelioprotective activity of Angiolin was also demonstrated, i.e.,
an increase in the density of endotheliocytes of muscle-type vessels and microcirculatory
channel, an increase in the density of proliferating endotheliocytes, and an increase in
the expression of vascular endothelial growth factor (VEGF) and receptor-binding coeffi-
cient [11,18]. There is evidence that VEGF enhances the regulation of the enzyme ecNOS
and induces a biphasic stimulation of endothelial NO production [52]; this suggests a
possible VEGF-mediated expression of eNOS under the action of Angiolin. Angiolin can
influence the expression of endotheliotropic factors and antioxidative components through
the influence on the thiol–disudyphide system by increasing the level of glutathione and reg-
ulating post-translational mechanisms. There is evidence of positive effects on Cu/ZnSOD,
GPX1, and GPX4 activity in the cytosol of rat myocardium and brains during cardiac or
cerebral ischemia. This may be due to the interruption of NO-dependent mechanisms of
suppression of the expression of these enzymes [11,51].

Thiotriazoline, a drug registered in many countries as a methiabolitotropic cardiopro-
tective agent, also exhibits NO scavenger properties, but more moderate effects on eNOS
expression in cardiocytes under conditions of myocardial ischemia. Thiotriazoline can
increase the endothelioprotective properties of L-arginine by increasing NO bioavailabil-
ity. Thiotriazoline increases NO bioavailability, preventing its interaction with ROS and
conversion into peroxynitrite. This protection is realized due to the co-storage of reduced
thiols. Thiotriazoline itself can be a carrier of NO, forming stable S-nitrosyl complexes
with it. Thiotriazoline inactivates ROS due to the strong reductive properties of the thiol
group (Figure 2). By regulating the ROS level, Thiotriazoline can prevent the inactivation
of enzymes, including eNOS, as well as influence red/oxi-dependent mechanisms of gene
expression regulation (Figure 3) [15,53,54]. Thiotriazoline exhibits antioxidant properties;
in many studies, its ability to reduce the formation of oxidative and nitrosative stress end
products and increase the activity of Cu/ZnSOD, GPX1, and GPX4 in the liver, heart, and
brain of animals with various experimental pathologies has been established [53].
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of the sulfur atom in the morpholino-thiazotate molecule. In the presence of peroxynitrite, the
sulfur atom of the thiazotate anion interacts with the positively charged nitrogen atom, forming the
corresponding adduct. This adduct then releases a hydroxyl anion, leading to the formation of an
S-nitro derivative, which upon hydrolysis gives a sulfoxide and a nitrite anion.
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Figure 3. The effect of Thiotriazoline on red/oxi-dependent mechanisms of gene expression. Thiotria-
zoline prevents the oxidation of cysteine and the formation of cysteine sulfoxide, and inhibits the
formation of nitrotyrosine. Based on this, Thiotriazoline prevents the irreversible inactivation of the
transcription factor NF-kappa B, protecting the cysteine residues sensitive to ROS—Cys 252, Cys 154,
and Cys 61—in its DNA-binding domains (Figure 2). Moreover, Thiotriazoline may participate in the
reduction of these groups during reversible inactivation, taking on the role of Redox Factor-1. By
inhibiting the oxidative inactivation of the NF-kappa B transcription factor under conditions of excess
ROS, Thiotriazoline likely enhances the activation of redox-sensitive gene expression, which is neces-
sary to protect cells from the toxic effects of oxidative stress. Among these genes are those responsible
for the synthesis of superoxide dismutase. The protective effect of Thiotriazoline on the sulfhydryl
groups of cysteine and methionine fragments of protein molecules has been studied. Thiotriazoline
competes with these structures for the superoxide radical, thereby preventing both reversible and
irreversible modification. By inhibiting reversible modification, the formation of disulfide bonds
(-S-S-) in cysteine regions is prevented. More significant, in terms of efficacy, is Thiotriazoline’s action
against the irreversible modification of sulfhydryl groups in several protein molecules under the
influence of ROS. Thiotriazoline inhibits the formation of irreversible sulfoxides and sulfonic groups
in proteins, which are further prone to oxidation. By exerting an inhibitory effect on the irreversible
oxidative modification of sulfhydryl groups in cysteine fragments of protein molecules, Thiotriazoline
normalizes redox regulation shifts under oxidative stress conditions. Primarily, Thiotriazoline prevents
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the disruption of the thiol–disulfide system balance during ROS hyperproduction, ensuring functions
such as cellular signal transmission through receptor–ion channel complexes, maintaining the activity
of proteins, enzymes, and transcription factors, and the integrity of cell membranes.

Mildronate (3-(2,2,2,2-trimethylhydrazine) propionate) reversibly blocks gamma-
butyrobetaine hydroxylase, which catalyzes the conversion of gamma-butyrobetaine into
carnitine and thereby significantly inhibits the entry of carnitine, which provides transport
of fatty acids across the membrane into the cells of muscle tissue. This effect of Mildronate
is accompanied by a decrease in the carnitine-dependent oxidation of free fatty acids (FFAs)
and, consequently, leads to activation of glucose oxidation, which is more economical in
conditions of ischemia. An important feature of the action of Mildronate, distinguishing
it from other drugs affecting myocardial metabolism, is the absence of accumulation of
underoxidized fatty acids inside mitochondria, increasing NO production [19]. Our studies
have confirmed the antihypoxic activity of Mildronate in PH [16]. The endothelioprotective
effect of Mildronate has not been established by our studies and the present work. Course
administration of Mildronate to rats after PH resulted in increased expression of various
forms of glutathione peroxidase, which is consistent with other studies on its antioxidative
activity [11,55].

However, this alone is insufficient to exert a protective effect on the cardiovascular
system. In this study, we did not observe a significant positive effect of Mildronate on the
NO system parameters in the myocardium of animals that underwent PH. L-arginine is a
common substrate for NO and polyamines (putrescine, spermine, and spermidine). NO
and polyamines play important roles in reproduction, embryogenesis, reducing neona-
tal mortality, and embryonic angiogenesis. NO regulates gene expression and protein
synthesis, and facilitates the proliferation, growth, and differentiation of the fetus [56].
Currently, research is underway, and initial results have been obtained regarding the use of
L-arginine in neonatology as a hypoxic and endothelial-targeting agent [13]. Our presented
results, along with those from our previous studies, demonstrated the low effectiveness of
L-arginine in experimental prenatal hypoxia [12,16]. Presumably, the NO formed from ad-
ministered L-arginine becomes a target for ROS in the context of thiol compound deficiency,
thereby failing to exert a protective effect [12,54]. A certain positive effect of L-arginine on
molecular indices of endothelial dysfunction in the heart of rats after PH has been revealed.
The weaker effect of L-arginine in comparison with Angiolin and Thiotriazoline can be
explained from the point of view of NO life duration under ischemia and hypoxia accom-
panied by oxidative stress (Figure 4). “Newborn” NO immediately runs the risk of being
‘bitten’ by superoxydradicals [11,57] and converted into the sinister peroxynitrite [58–60].

Only combinations of L-arginine with SH-group donators or antioxidants can enhance
its NO-modulating activity [54].
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Figure 4. Hypothetical scheme of the mechanism of endothelioprotective action of NO modulators—
arginine, Mildronate, Thiotriazoline, and Angiolin. The result of our research is the justification
for the use of modulators of the nitric oxide (NO) system in the myocardium—Angiolin ((S)-2,6-
diaminohexanoic acid 3-methyl-1,2,4-triazolyl-5-thioacetate), Thiotriazoline (morpholino-thiazotate),
Mildronate, and L-arginine—with different mechanisms of action on NO concentration after prenatal
hypoxia (PH). By regulating NO levels in the myocardium through various mechanisms, it is possible
to interrupt NO-dependent mechanisms of endothelial dysfunction and cardiodestruction following
PH. We have shown that the pharmacological level of NO and its bioavailability can be increased by
(1) stimulating NO synthesis, for example, through therapy with the eNOS substrate L-arginine and
the eNOS cofactor Mildronate, as well as directly protecting NO and even the eNOS protein from
reactive oxygen species (ROS) using thiol-based antioxidants such as Thiotriazoline and Angiolin.
We demonstrated the ability of all studied NO modulators to affect endothelial dysfunction markers
in the myocardium after PH to varying degrees. Moderate effects of L-arginine and Mildronate
were observed, which is related to the rapid loss of endogenous NO during oxidative stress and
the low level of antioxidant protection in the myocardium after PH. Thiotriazoline and Angiolin
were particularly promising in terms of effectiveness, as they protected NO from ROS, increased its
bioavailability, prolonged its half-life, and optimized its use by various cellular systems aimed at
overcoming endothelial dysfunction. They also protected eNOS from oxidative modification and loss
of activity. Thiotriazoline and, especially, Angiolin exhibited both direct (formation of complexes) and
indirect (increasing SOD expression) protective effects on NO from ROS. Through the NO-dependent
mechanism, Angiolin and Thiotriazoline increased the nuclear density of endothelial cells in the
myocardial vessels, normalized the expression of marker proteins such as sEPCR, Tie-2, and VEGF,
and enhanced antioxidant defense tools.

4. Materials and Methods
4.1. Animal Characteristics

We employed fifty white female rats and ten males, each weighing between 220 and
240 g and about half a year old, sourced from the vivarium of the Institute of Pharmacology
and Toxicology, National Medical Academy of Ukraine. The rats were kept in typical
vivarium settings, which included a 20–25 ◦C temperature range, a 50–55% humidity level,
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a regular light cycle, and unlimited access to food and water suitable for their species.
The “European Applicable Protection of Vertebrate Animals used for Experimental and
Scientific Purposes” and the rules governing the collection of animals for biomedical
research (Strasbourg, 1986, as revised in 1998) were followed in all manipulations. The
Zaporizhzhia State Medical University Commission on Bioethics granted ethical permission
for the study (protocol No. 33, dated 26 June 2021).

4.2. Experimental Model

In order to create a model based on nitrite, we caused chronic hypoxia, which signifi-
cantly alters the histology, morphology, and metabolism of the progeny’s heart tissue [61,62].
Adult males were paired with females at a ratio of 2:4, and the first day of pregnancy was
determined by the presence of spermatozoa in the vaginal smear. Daily intraperitoneal
injections of a sodium nitrite solution at a concentration of 50 mg/kg were used to induce
moderate hypoxia between days 16 and 21 of pregnancy [21]. An equivalent volume of
physiological saline was given to control females. The offspring were separated into the
subsequent groups: healthy rats from females undergoing normal pregnancies; a control
group of pups that underwent PH and were administered physiological saline (days 1 to
30); 4 experimental groups of hypoxia-exposed pups that were treated daily with various
drugs from postnatal days 1 to 30. Some of the pups were removed from the experiment on
the 30th day, immediately after the completion of pharmacological agent administration,
while others were removed 60 days after birth (30 days following treatment). The doses of
L-arginine and Mildronate were sourced from the open literature. The doses of Thiotria-
zoline and Angiolin were determined experimentally, and these data are included in the
DCT report.

4.3. Rationale for the Chosen Medications and Their Attributes

We chose treatments known to impact the NO system based on experimental evidence:

1. The intact group consisted of rats born from females with basic pregnancies and
received a physiological solution.

2. The control group included rats born after experiencing intrauterine hypoxia and also
received a physiological solution.

3. Thiotriazoline, also known as morpholinium-3-methyl-1,2,4-triazolyl-5-thioacetic acid
(2.5% injection solution, “Arterium”, Ukraine), is an antioxidant and metabolitotropic
cardioprotector that is injected intraperitoneally at a dose of 50 mg/kg [63].

4. Angiolin, additionally known as [S]-2,6-diaminohexane acid 3-methyl-1,2,4-triazolyl-
5-thioacecate (substance, RPA “Farmatron”, Ukraine) is an endothelium-protective,
anti-ischemic injection given intraperitoneally at a dose of 50 mg/kg [64].

5. L-arginine (42% injection solution in vial, Tivortin, Yuria-pharm, Ukraine) is an NO
precursor; to decrease ischemia-related nitroxidergic system disruptions, it is given
intraperitoneally at a dose of 200 mg/kg [65].

6. As a metabolitotropic drug, Mildronate (2-(2-carboxyethyl)-1,1,1-trimethylhydrazinium)
(10% injectable solution in ampoules, Grindex (Latvia)) is injected intraperitoneally at a
dose of 100 mg/kg [66].

4.4. Anesthesia

On days 30 and 60 of the trial, rats were put to sleep using thiopental anesthesia
(40 mg/kg). For additional research, blood samples were taken from the celiac artery.
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4.5. Biological Material Preparation

The heart was washed with a 1:10 dilution of cooled 0.15 M KCl solution and kept
at 4 ◦C. After removing excess fat, connective tissue, blood vessels, and clots, the heart
was rinsed with a 1:10 dilution of 0.15 M KCl solution at 4 ◦C. Utilizing a WT500 torsion
balance (manufactured in Moscow, Russia), 100 milligrams of heart tissue was meticulously
weighed after being previously ground into a fine powder using liquid nitrogen. Next,
10.0 mL of a medium kept at 2 ◦C was thoroughly mixed with the pulverized tissue. The
concentration of the following ingredients in millimoles per liter (mmol/L) was adjusted to
pH 7.4: 250 mmol/L of sucrose, 20 mmol/L of Tris-HCl buffer, and 1 mmol/L of EDTA.
Large cell fragments were then extracted from the homogenate by pre-centrifuging it in a
Sigma 3–30 k chilled centrifuge (Osterode am Harz, Germany) for 7 min at 1000× g at +4 ◦C.
The resultant supernatant was carefully collected and put through a second centrifugation
process using the same Sigma 3–30 k refrigerated centrifuge (Germany) for 20 min at
17,000× g at +4 ◦C. Following this procedure, the supernatant was collected and refrigerated
at −80 ◦C. Subsequent to resuspension, the thick mitochondrial precipitate was employed
for additional research. The apical part of the heart was placed in Bouin’s fixative for 24 h.
After the standard tissue dehydration procedure and impregnation with chloroform and
paraffin, the myocardium was embedded in Paraplast (MkCormick, Cockeysville, MD,
USA). Serial histological sections, 5 µm thick, were prepared using a Microm-325 rotational
microtome (Microm Corp., Munich, Germany). After treatment with xylene and ethanol,
the sections were used for real-time PCR analysis and morphometric studies.

4.6. Immunoenzymatic Assay

The soluble endothelial protein C receptor (sEPCR) was measured in the cytosolic
homogenate of the heart using a solid-phase enzyme-linked immunosorbent assay (ELISA)
sandwich method. The assay was performed with the rat soluble endothelial protein C
receptor (sEPCR) ELISA Kit, Catalog #MBS265381 from MyBioSource, Inc. (San Diego, CA,
USA), following the provided instructions.

The Tie2 tyrosine kinase was also determined in the cytosolic homogenate of the heart
using a solid-phase ELISA sandwich method. The assay was conducted with the Rat Tie2
(Rat Tek Tyrosine Kinase) Endothelial ELISA Kit, Catalog #MBS036226 from MyBioSource,
Inc. (USA), in accordance with the instructions.

Vascular endothelial growth factor B (VEGF-B) was determined in the cytosol of heart
homogenate using a solid-phase sandwich ELISA method, Rat Vascular Endothelial Growth
Factor B (VEGF-B) ELISA Kit, Catalog # MBS269676 MyBioSource, Inc. (USA), according to
the instructions.

SOD1/Cu-Zn SOD was determined in the cytosol of heart homogenate using a solid-
phase sandwich ELISA method, Rat Superoxide dismutase [Cu-Zn] ELISA Kit, Catalog #
MBS761294 MyBioSource, Inc. (USA), according to the instructions.

Glutathione peroxidase 4 (phospholipid hydroperoxidase) (GPX4) was determined
in the cytosol of heart homogenate using a solid-phase sandwich ELISA method, Rat
Phospholipid hydroperoxide glutathione peroxidase, mitochondrial, GPX4 ELISA Kit,
Catalog # MBS934198 MyBioSource, Inc. (USA), according to the instructions.

Glutathione peroxidase 1 (GPX1) was determined in the cytosol of heart homogenate
using a solid-phase sandwich ELISA method, Rat Glutathione Peroxidase 1 ELISA Kit,
Catalog # MBS3809062 MyBioSource, Inc. (USA), according to the instructions. All studies
were conducted using a plate enzyme immunoassay analyzer (SIRIO S, Ravenna, Italy).
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4.7. Polymerase Chain Reaction in Real Time

The study of mRNA expression levels for VEGF and VEGF-B was conducted in
the apical part of the myocardium. Sample preparation was performed as described in
Section 4.5. The molecular–genetic study included several stages. Tissue samples were
deparaffinized by incubation in two consecutive xylene baths for 5 min each, followed
by two sequential baths of 100% ethanol for 5 min each. After deparaffinization and
centrifugation, the precipitate was air-dried to remove ethanol residues.

Total RNA extraction from rat tissues was performed using the “Trizol RNA Prep 100”
kit (“IZOGEN,” Moscow, Russia), which includes the following reagents: Trizol reagent and
ExtraGene E. RNA was isolated according to the kit’s protocol. For reverse transcription
(cDNA synthesis), the “Reagent Kit for Reverse Transcription (RT-1)” (“SINTOL”, Moscow)
was used. Preparation and execution of the reaction were carried out according to the kit’s
protocol.

Real-Time Polymerase Chain Reaction (RT-PCR)

To determine the expression levels of the studied genes, the CFX96™ Real-Time PCR
Detection System (“Bio-Rad Laboratories, Inc.”, Hercules, CA, USA) and the SYBR Green
R-402 PCR reagent kit (“Sintol”, Russia) were used. The final reaction mix for amplification
included SYBR Green dye, SynTaq DNA polymerase with antibody-inhibited enzyme
activity, 0.2 µL each of specific forward and reverse primer, dNTPs (deoxynucleoside
triphosphates), and 1 µL of cDNA template. The reaction mix was brought to a total
volume of 25 µL by adding deionized water.

Specific primer pairs (5′-3′) for analyzing the target and reference genes were de-
signed using PrimerBlast software (July 2024, https://www.ncbi.nlm.nih.gov/tools/
primer-blast/) and manufactured by ThermoScientific, USA. Amplification conditions
were as follows: initial denaturation at 95 ◦C for 10 min, followed by 50 cycles of denatura-
tion at 95 ◦C for 15 s, primer annealing at 58–63 ◦C for 30 s, and elongation at 72 ◦C for 30 s.
Fluorescence intensity was automatically recorded at the end of the elongation phase of
each cycle using the SybrGreen channel.

The beta-actin (Actb) gene was used as a reference gene to determine the relative
changes in the expression levels of the studied genes [67,68].

4.8. Morphometric Studies

Histological sections were stained with hematoxylin and eosin and embedded in the
polymer medium EUKITT (O. Kindler GmbH, Freiburg, Germany) for microscopy. The
cross-sectional area of endothelial cell nuclei in arterioles with diameters of 30–50 µm was
measured in histological samples at ×400 magnification. The study was conducted using a
Carl Zeiss Axio Scope.A1 microscope (Germany) paired with a Jenoptik Progres Gryphax®

Subra digital camera (Jena, Germany) and GRYPHAX software (version 2.2.0.1234). Mea-
surements were taken in 10 fields of view using the VideoTest-Morphology software version
5.2.0.158.

The cross-sectional area of endothelial cell nuclei in arterioles with a diameter of
30–50 µm and the area of cardiomyocyte nuclei were determined on histological slides
stained with hematoxylin and eosin at ×400 magnification. The studies were performed
using an Axio Scope A1 microscope (Carl Zeiss, Oberkochen, Germany) equipped with a
Jenoptik Progress Gryphax® SUBRA series camera (Germany).

In each case, a morphometric analysis of the structural components of the myocardium
was conducted in 10 fields of view using the VideoTest Morphology software, version 5.2.0.158.
Calibration was performed prior to the study, corresponding to the working magnification of
the microscope used to obtain the histological images. The next step involved isolating object

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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masks, distinguished by optical density parameters (Figure 5). Subsequently, the areas of the
objects were measured automatically, excluding internal cavities.

The analyzed parameters were presented in a table format (Figure 6) and exported
to Excel for further graphical processing. Statistical analysis of the obtained data was also
performed using the Statistica® for Windows 13.0 software package (StatSoft Inc., Tulsa,
OK, USA, license no. JPZ804I382130ARCN10-J).
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4.9. Statistical Analysis

Experimental data were statistically analyzed using “Statistica® for Windows 6.0”
(StatSoft Inc., Tulsa, OK, USA, AXXR712D833214FAN5), “SPSS16.0”, and “Microsoft Office
Excel 2010” software. Prior to statistical tests, we checked the results for normality (Shapiro–
Wilk and Kolmogorov–Smirnov tests). In the normal distribution, intergroup differences
were considered statistically significant based on the parametric Student’s t-test. If the
distribution was not normal, the comparative analysis was conducted using the non-
parametric Mann–Whitney U-test. To compare independent variables in more than two
selections, we applied ANOVA dispersion analysis for the normal distribution and the
Kruskal–Wallis test for the non-normal distribution. To analyze correlations between
parameters, we used correlation analysis based on the Pearson or Spearman correlation
coefficient. For all types of analysis, the differences were considered statistically significant
at p < 0.05 (95%).

5. Conclusions
We have obtained convincing results indicating that the modeled PH leads to sig-

nificant disorders in the cardiovascular system of offspring (1- and 2-month-old rats).
In the myocardium of rats that underwent PH, an increase in the marker of endothelial
dysfunction—sEPCR—was detected against a background of decreased Tie-2 and VEGF-B,
which perform protective functions, alongside antioxidant deficiency reduction as well
as Cu/ZnSOD and GPX. Our results experimentally substantiate the necessity for early
postnatal cardio- and endothelioprotection using NO modulators, considering the role
of NO-dependent mechanisms in the pathogenesis of cardiovascular system disorders
in newborns after PH. We have shown that only two representatives of this group, An-
giolin and Tiotriazoline, are capable of exerting a complete effect on the indicators of
endothelial dysfunction after PH (with a decrease in sEPCR against an increase in Tie-2,
VEGF-B, and Cu/ZnSOD, GPX), which perform protective functions and antioxidative
functions. Based on the conducted research, the feasibility of further preclinical studies
of Angiolin as a promising means of cardioprotection after PH has been experimentally
justified. Additionally, the results obtained support the potential for conducting further
preclinical and clinical studies of Tiotriazoline (as an approved medication) as a treatment
for cardiovascular system pathologies following intrauterine hypoxia.

Prospects for Future Research. In the future, we plan to conduct a more detailed
study of the endothelial-protective mechanism of Thiotriazoline and Angiolin in animals
following intrauterine hypoxia. This will involve examining their effects on the density
of proliferating endothelial cells, RNA content in endothelial cell nuclei, and the density
of VEGF- and eNOS-positive cells in various types of vessels. These studies will employ
methods such as electron microscopy, light microscopy, and immunohistochemistry.
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