УДК 616.127-007.61-06:616.126]-074:577.112]-053.2 DOI

©А. В. Каменщик

Запорожский государственный медицинский университет

БЕЛОК S100 КАК МАРКЕР ГИПЕРТРОФИИ МИОКАРДА У ДЕТЕЙ С ДВУХСТВОРЧАТЫМ АОРТАЛЬНЫМ КЛАПАНОМ СЕРДЦА

БЕЛОК S100 КАК МАРКЕР ГИПЕРТРОФИИ МИОКАРДА У ДЕТЕЙ С ДВУХСТВОРЧАТЫМ АОРТАЛЬНЫМ КЛАПАНОМ СЕРД-ЦА – В статье приведены результаты изучения сывороточных концентраций белка S100 у детей с двухстворчатым аортальным клапаном сердца (ДАК). Отмечено повышение сывороточных концентраций указаного маркера у детей с ДАК. Проведен корреляционный анализ полученных данных с основными допплерографическими параметрами у данной категории больных детей. По результатам допплерографии выявлено изменение структурной геометрии правых отделов сердца с преобладанием продольного размера правого предсердия и получены уникальные отрицательные корреляции концентраций белка S100 с указанными параметрами допплерэхокардиографии.

БІЛОК S100 ЯК МАРКЕР ГІПЕРТРОФІЇ МІОКАРДА У ДІТЕЙ ІЗ ДВОСТУЛКОВИМ АОРТАЛЬНИМ КЛАПАНОМ СЕРЦЯ — У статті наведено результати вивчення сироваткових концентрацій білка S100 у дітей із двостулковим аортальним клапаном серця (ДАК). Відмічено підвищення сироваткових концентрацій вказаного маркера у дітей із ДАК. Проведений кореляційний аналіз отриманих даних з основними доплерографічними параметрами у даної категорії хворих дітей. За результатами доплерографії виявлено зміни структурної геометрії правих відділів серця з переважанням подовженого розміру правого передсердя та отримані унікальні негативні концентрації білка S100 з вказаними параметрами доплерехокардіографії.

S100 PROTEIN AS A MARKER OF MYOCARDIUM HYPER-TROPHY IN CHILDREN WITH BICUSPID AORTIC VALVE OF THE HEART – The article presents the results of a study of serum S100 protein concentrations in children with bicuspid aortic valve of the heart (BAV). An increase in serum concentrations of a specified marker in children with BAV was admitted. The correlation analysis of the obtained data to the main dopplerographic parameters in this group of patients was conducted. As a result of conducted Doppler ultrasonography the changes in the structural geometry of the right heart with a predominance of the longitudinal dimension of the right atrium was revealed with unique negative correlation of S100 protein concentrations to these Doppler parameters.

Ключевые слова: белок S100, двухстворчатый аортальный клапан, допплерография, дети, геометрия правых отделов сердца.

Ключові слова: білок S100, двостулковий аортальний клапан, доплерографія, діти, геометрія правих відділів серця. Key words: S100 protein, bicuspid aortic valve, Doppler ultrasonography, children, right heart geometry.

ВВЕДЕНИЕ Врожденные пороки сердца (ВПС) занимают ведущее место среди врожденной патологии у детей. При этом патология двухстворчатого аортального клапана (ДАК) является наиболее частым ВПС, с популяционной частотой 1–2 %. В детском возрасте в большинстве случаев клинические проявления порока маломанифестны и проявляются в старших возрастных категориях у взрослых в виде острых сердечно-сосудистых событий и расслоения аорты [1, 3, 4, 6, 10]. С другой стороны, у пациентов с ДАК установлены полиморфизмы генов, участвующих в эмбриогенетическом формировании клапанов сердца [11]. Одними из ключевых генов при этом являются гены семейства NFATC (NFATC1-NFATC4), нуклеарного фактора активированных Т-клеток [11].

Регулятором убиквитарной экспрессии этих генов, в том числе и в миокарде, в постнатальном периоде являются кальцийзависимые фосфатазы, такие, как кальмодулин и кальциневрин, что приводит, при соответствующей активации NFATC, к ассиметричной дезадаптивной миокардиальной гипертрофии [5]. В то же время, белки \$100, относящиеся к семейству кальмодулинов, являются наиболее изученной группой протеинов при острых сердечно-сосудистых состояниях и поражениях мозга [2, 7, 8, 13, 14]. С этой точки зрения представляется перспективным выявление протеинов \$100 в качестве ранних маркеров формирования миокардиальной гипертрофии у детей с ДАК.

Целью исследования было исходя из вышеизложенного, целью данного исследования стало изучение уровней белка \$100 в сыворотке крови у детей с двухстворчатым аортальным клапаном сердца и сопоставление полученных данных с основными допплерографическими показателями у данной категории больных.

МАТЕРИАЛЫ И МЕТОДЫ Для реализации указанной цели исследовния были изучены сывороточные уровни белков S100 у 28 детей с ДАК иммуноферментным методом при помощи тест-системы "Fujirebio Diagnostics" (Швеция). Ультразвуковая допплерография сердечной гемодинамики проводилась с помощью сканера "Medison-8000" датчиком 2,5 МГц с определением стандартных допплерографических параметров. Группу сравнения составили 20 условно здоровых детей релевантных по возрасту ((10,2±0,7) лет та (10,9±0,8) лет соответственно; p>0,05) и полу, с преобладанием 75 и 62 % мальчиков в основной и сравниваемой группах соответственно (р>0,05). Расчет массы миокарда левого желудочка производился по формуле R. B. Devereux— 1,04[КДР+МЖП+3СЛЖ) 3 -КДР 3] -13,6 [12], где КДР — конечный диастолический размер, МЖП — толщина межжелудочковой перегородки, ЗСЛЖ – толщина задней стенки левого желудочка и индекса массы миокарда левого желудочка по формуле Р. Gosse [13] – М/H^{2,7}, где М – масса миокарда левого желудочка, Н – рост. При этом у всех больных с ДАК признаков сердечной недостаточности выявлено не было. Результаты исследования были обработаны при помощи стандартного статистического пакета Statistica 6.0.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕ- НИЕ На первом этапе исследования мы провели сравнительное исследование базовых допплерографических параметров в указанных двух группах детей. Эти данные представлены в таблице 1.

Как следует из таблицы 1, у детей с двухстворчатым аортальным клапаном сердца, по отношению к группе сравнения, имело место достоверное увеличение продольного размера правого предсердия ((38,9 \pm 2,09) мм и (23,4 \pm 1,73) мм соответственно, р<0,05), увеличение скорости кровотока и градиента давления на аортальном клапане ((1,73 \pm 0,18) м/с и 0,85 м/с \pm 0,02 м/с соответственно, (p<0,05) и (14,69 \pm 2,84) мм рт. ст. и (2,71 \pm 0,17) мм рт. ст. соответственно, p<0,05).

В то же время, у детей с ДАК также достоверно возрастали и показатели, свидетельствующие о гипертрофии миокарда. Отмечалось утолщение межжелудочковой

Таблица 1. Наиболее значимые показатели допплерэхокардиоскопии, массы миокарда и индекса массы миокарда левого желудочка у детей с ДАК

	Показатели допплерэхокардиоскопии (M±m)								
Группа больных	ПрПП	ЛЖСР	AoC	АоГ	ПЖМ	зслж	ММЛЖ	иммлж	
	(MM)	(MM)	(M/C)	(мм рт. ст)	(MM)	(MM)	(r)	(Γ/M²)	
Дети с ДАК (n=28)	38,9±2,09*	22,85±1,54	1,73±0,18*	14,69±2,84*	8,78±0,47*	8,78±0,47*	146,51±30,40*	61,37±17,51**	
Дети из группы	23,4±1,73	27,38±2,0	0,85±0,02	2,71±0,17	7,26±0,31	7,25±0,30	80,13±12,01	27,97±4,46	
сравнения (n=20)									

Примечания: 1) * - p < 0.05; ** - p = 0.07;

- 2) ПрПП продольный размер правого предсердия;
- 3) ЛЖСР систолический размер левого желудочка;
- 4) АоС скорость кровотока на аортальном клапане;
- 5) АоГ градиент давления на аортальном клапане;
- 6) МЖП размер межжелудочковой перегородки;
- 7) ЗСЛЖ размер задней стенки левого желудочка;
- 8) ММЛЖ масса миокарда левого желудочка;
- 9) ИММЛЖ индекс массы миокарда левого желудочка.

перегородки ((8,78 \pm 0,47) и (7,26 \pm 0,31) мм соответственно, p<0,05), задней стенки левого желудочка ((8,78 \pm 0,47) мм и (7,25 \pm 0,30) мм соответственно, p<0,05), существенное увеличение массы миокарда левого желудочка ((146,51 \pm 30,40) г и (80,13 \pm 12,01) г соответственно, p<0,05) с тенденцией к увеличению индекса массы миокарда ((61,37 \pm 17,51) г/м² и (27,97 \pm 4,46) г/м² соответственно, p=0,07).

В этой связи следует отметить, что значительное превышение градиента давления на аортальном клапане у детей с ДАК при менее выраженном приросте скорости кровотока на фоне возрастания массы миокарда со снижением систолического объема левого желудочка и увеличением продольного размера правого предсердия могло свидетельствовать о начальном формировании асимметричной гипертрофии миокарда у этой категории больных детей, происходящей, в свою очередь, при сти-

муляции белками семейства кальмодулина экспрессии генов NFATC.

В этой связи, на следующем этапе исследования было изучено содержание белков \$100 в сыворотке крови пациентов с ДАК. При этом, у детей с данной патологией мы отметили достоверное увеличение концентрации \$100, составившее (184,53±11,75) нг/л, в то время как в группе сравнения этот показатель составил (149,61±10,32) нг/л (р<0,05). Указанные изменения явились подтверждением данных литературы о повышенном уровне регуляции с участием белков \$100 у пациентов с гипертрофией правых камер сердца. Полученные данные также позволили нам провести корреляционный анализ взаимозависимости концентраций белка \$100 и показателей допплерографии в указанных двух группах детей. Эти данные представлены в таблице 2.

Таблица 2. Коэффициенты корреляции между концентрациями белка S100 в сыворотке крови у детей с двухстворчатым клапаном аорты и основными показателями допплерэхокардиоскопии

Помолотоли	Дети с ДАК (n=28)	Группа сравнения (n=20)		
Показатель допплерэхокардиоскопии	коэффициент корреляции (R)	р	коэффициент корреляции (R)	р	
1	2	3	4	5	
Лег арт. (мм)	-0,02	0,93	- 0,52	0,02	
Аорта (мм)	-0,04	0,81	-0,43	0,06	
Лев. предс. прод. (мм)	-0,40	0,03	-0,34	0,23	
Лев. предс. поперечн.(мм)	0,23	0,21	- 0,47	0,09	
Прав. предс. продольн. (мм)	-0,41	0,02	- 0,20	0,49	
Прав. предс. поперечн. (мм)	-0,29	0,10	- 0,37	0,20	
Прав.жел. продольн.(мм)	0,05	0,81	- 0,54	0,04	
Прав. жел. поперечн.(мм)	-0,09	0,82	- 0,33	0,25	
ЛЖ КДР (мм)	- 0,05	0,78	-0,39	0,1	
ЛЖ КСР (мм)	0,06	0,75	- 0,40	0,09	
ЛЖ КДО (мм)	0,05	0,77	- 0,30	0,21	
ЛЖ КСО (мм)	0,11	0,55	-0,21	0,38	
ЛЖ УО (мм)	0,01	0,95	-0,28	0,29	
ЛЖ ФВ (мм)	-0,15	0,42	0,009	0,97	
МЖП (мм)	0,02	0,92	-0,40	0,08	
ЗСЛЖ (мм)	0,02	0,90	-0,37	0,12	
МКск. (м/с)	0,12	0,53	0,09	0,77	
Мкгрдавл. (мм рт ст.)	0,08	0,66	0,06	0,85	
АоКск.	- 0,05	0,81	- 0,09	0,78	
АоКгрдавл. (мм рт ст.)	-0,12	0,51	- 0,09	0,78	
ТкКск. (м/с)	- 0,02	0,93	0,58	0,04	

ISSN 1681-276X. ВІСНИК НАУКОВИХ ДОСЛІДЖЕНЬ. 2016. № 1

Продолжение табл. 2

1	2	3	4	5
ТкКгрдавл. (мм рт ст.)	-0,14	0,46	0,11	0,74
КлЛаск. (м/с)	- 0,22	0,25	-0,05	0,86
КлЛагрдавл. (мм рт ст.)	- 0,22	0,24	- 0,20	0,53

Примечания: 1) лег арт. – диаметр легочной артерии; лев. предс. прод. – продольный размер левого предсердия; лев.предс.поперечн. – поперечный размер левого предсердия; прав. предс. поперечн. – поперечный размер правого предсердия; прав. жел. поперечн. – поперечный размер правого желудочка; прав. жел. поперечн. – поперечный размер правого желудочка;

- 2) МКск скорость кровотока на митральном клапане;
- 3) Мкгрдавл. градиент давления на митральном клапане;
- 4) АоКск. скорость кровотока на аортальном клапане;
- 5) АоКгрдавл. градиент давления на аортальном клапане;
- 6) ТкКгрдавл. градиент давления на трикуспидальном клапане;
- 7) ТкКск. скорость кровотока на трикуспидальном клапане;
- 8) КлЛаск. скорость кровотока на клапане легочной артерии;
- 9) КлЛагрдавл. градиент давления на клапане легочной артерии;
- 10) МЖП размер межжелудочковой перегородки;
- 11) ЗСЛЖ размер задней стенки левого желудочка.

Как видно из таблицы 2, у детей с двухстворчатым клапаном аорты наиболее значимые корреляции сывороточных концентраций белков S100 были получены с продольным размером левого предсердия (R=-0.40; p=0.03). продольным размером правого предсердия (R= -0,41; р=0.02) и поперечным размером правого предсердия (R= - 0,29; p= 0,02), тогда как у детей группы сравнения указанные корреляции также были отрицательными, но касались диаметра аорты и легочной артерии (R=- 0,43 и R = - 0,52 соответственно), поперечного размера левого предсердия (R=- 0,47), продольного размера правого желудочка (R=-0,54), конечного систолического размера левого желудочка (R=-0,40) и толщины межжелудочковой перегородки (R=-0,40). Следует также отметить, что в этой группе детей имелась единственная положительная корреляция концентрации в сыворотке крови белка S100 со скоростью кровотока на трикуспидальном клапане (R=0,58).

Таким образом, у детей с двухстворчатым аортальным клапаном сердца имели место отрицательные корреляции между сывороточными концентрациями белка S100 и размерами предсердий, преимущественно правых камер сердца, в то время, как у детей группы сравнения эти изменения касались диаметра магистральных сосудов, сократительной способности левого желудочка и толщины межжелудочковой перегородки. Указанные изменения, с одной стороны, могли свидетельствовать об адаптивном регулятивном воздействии белков S100 при формировании физиологической структурной геометрии миокарда у детей группы сравнения при равномерной вовлеченности как камер сердца, так и сократительной активности миокарда, а с другой, о дезадаптивных проявлениях у детей с ДАК при формировании асимметричной гипертрофии с участием преимущественно правых камер, что подтверждалось также преобладанием продольного размера правого предсердия в указанной категории больных. Следует также отметить, что выявленные отрицательные корреляции сывороточных концентраций белка S100 с указанными допплерографическими параметрами могли свидетельствовать и о его повышенном потреблении в миокарде связанном, в свою очередь, с положительной регуляцией экспрессии генов гипертрофического ответа.

ВЫВОДЫ 1. У детей с двухстворчатым аортальным клапаном сердца, протекающем без проявлений сердечной недостаточности, имеет место гипертрофия миокарда при соответствующем увеличении массы миокарда левого желудочка.

- 2. У детей с двухстворчатым аортальным клапаном сердца отмечается изменение геометрии правых отделов сердца с преобладанием продольного размера правого предсердия.
- 3. У детей с ДАК наблюдается увеличение сывороточной концентрации белка \$100 и имеются уникальные корреляции этого маркера с допплерографическими параметрами правых отделов сердца.
- 4. Определение сывороточных концентраций белка S100 является перспективным при выявлении ранних проявлений гипертрофии миокарда у детей с двухстворчатым аортальным клапаном сердца.

СПИСОК ЛИТЕРАТУРЫ

- 1. Benson D. Woodrow. Genetic Origins of Pediatric Heart Disease / D. Woodrow Benson // Pediatr. Cardiol. 2010. Vol. 31. P. 422–429.
- 2. S100 protein family in human cancer / H. Chen, C. Xu, Q. Jin, Z. Liu // Am. J. Cancer Res. 2014. Vol. 1. No 4(2). P. 89–115.
- 3. Hales A. R. Echocardiography screening of siblings of children with bicuspid aortic valve / A. R. Hales, W. T. Mahle // Pediatrics $2014. Vol.\ 133. P.\ 1212.$
- 4. Nishimura R. A. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines / R. A. Nishimura, C. M. Otto, R. O. Bonow [et al.] // J. Am. Coll Cardiol. 2014. Vol. 63. P. 57.
- 5. Leptin-induced cardiomyocyte hypertrophy reveals both calcium-dependent and calcium-independent/RhoA-dependent calcineurin activation and NFAT nuclear translocation / V. Rajapurohitam, F. Izaddoustdar, E. Martinez-Abundis [et al.] // Cell Signal. 2012. Vol. 24(12). P. 2283–2290.
- 6. Roberts W. C. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation / W. C. Roberts, J. M. Ko // Circulation 2005. Vol. 111. P. 920.
- 7. Schaub M. C. Calcium, troponin, calmodulin, S100 proteins: from myocardial basics to new therapeutic strategies / M. C. Schaub, C. W. Heizmann // Biochem. Biophys Res. Commun. 2008. Vol. 369. P. 247–226.
- 8. Sedaghat F. S100 protein family and its application in clinical practice / F. Sedaghat, A. Notopoulos // Hippokratia. 2008. Vol. 12(4). P. 198–204.
- 9. Siu Samuel C. Candice. Bicuspid Aortic valve disease / Siu C. Samuel, K. Silversides // J. Am. Coll Cadriol. 2010. Vol. 55(2). P. 2789–2800.doi:10.1016/j.jacc.2009.12.068

ISSN 1681-276X. ВІСНИК НАУКОВИХ ДОСЛІДЖЕНЬ. 2016. № 1

- 10. Tzemos N. Outcomes in Adults With Bicuspid Aortic Valves / N. Tzemos, J. Therrien // JAMA. 2008. Vol. 300(11). P. 1317-1325.
- 11. Xiu-jie Wang The S100 protein family and its application in cardiac diseases. Vini rewiew / Xiu-jie Wang, Man Wang // World J. Emerg Med. 2010. Vol 1, No. 3. P. 165–168.
- 12. High-resolution analysis of copy number variants in adults with simple-to-moderate congenital heart disease / W. Zhao, G. Niu, B. Shen [et al.] // Am. J. Med. Genet. A. 2013. Vol. 161A. P. 3087–3094.
- 13. Козлова Ю. В. Сучасні уявлення про кардіоцеребральну патологію (патогенетичні механізми ушкодження головного мозку при серцевих захворюваннях) / Ю. В. Козлова // Таврический медико-биологический вестник. 2012. Т. 15, № 3, Ч. 2 (59). С. 132—136.
- 14. Чехонин В. П. Достижения молекулярной и клеточной нейробиологии и роль медицинских биотехнологий в ее развитии (Актовая речь) / В. П. Чехонин. М. : ИНЭК, 2010. 64 с.

Отримано 04.02.16