МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ УКРАИНЫ ЗАПОРОЖСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ОРГАНИЧЕСКОЙ И БИООРГАНИЧЕСКОЙ ХИМИИ

ПРАКТИКУМ

для самостоятельной подготовки студентов специальности **222** «медицина»

(на базе среднего специального образования) к практическим занятиям по биоорганической химии

Модуль 1. Биоорганическая химия

Запорожье 2016

практикум для самостоятельной подготовки студентов к занятиям по биоорганической химии составили:

Коваленко С.И.— д.фарм.н., профессор Прийменко Б.А. — д.фарм.н., професор Кандыбей К.И. — к.фарм.н., доцент Воскобойник А.Ю. — к.фарм.н., доцент Антипенко Л.Н. — к.фарм.н., доцент Казунин М.С. — к.фарм.н., ст.преп Билый А.К. — к.фарм.н., ст.преп Холодняк С.В. - ассистент

Под общей редакцией заведующего кафедрой органической и биоорганической химии д.фарм.н., профессора **Коваленко С.И.**

Рецензенты:

Заведующая кафедрой биологической химии и лабораторной диагностики, д.х.н., профессор Александрова Е.В.

Заведующий кафедрой токсикологической и неорганической химии, д. фарм. н., профессор Панасенко А.И.

ТЕМАТИЧЕСКИЙ ПЛАН ПРАКТИЧЕСКИХ ЗАНЯТИЙ ПО БИООРГАНИЧЕСКОЙ ХИМИИ МЕДИЦИНА (НА БАЗЕ СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ)

No	<u>т. — т. </u>	Кол-во
п/п	Тема практического занятия	часов
1	Принципы номенклатуры и пространственного строения органических соединений.	
2	Электронное строение химических связей и взаимное влияние атомов	
3	в органических молекулах. Исследование реакционной способности углеводородов. Реакции радикального замещения (S_R) в алканах и электрофильного присоединения (A_E) в алкенах.	2
4	Исследование реакционной способности ароматических углеводородов. Реакции S_E .	2
5	Практические навыки и решение ситуационных задач: «Реакционная способность углеводородов»	2
6	Реакционная способность спиртов, фенолов, простых эфиров и их тиоаналогов.	2
7	Исследование кислотных и основных свойств органических соединений.	2
8	Практические навыки и решение ситуационных задач: «Спирты, фенолы и кислотно-основные свойства органических соединений»	
9	Исследование химических свойств альдегидов и кетонов. Реакции $A_{\rm N}$.	
10	Практические навыки и решение задач по теме: «Биологически важные реакции оксосоединений»	
11	Карбоновые кислоты и их функциональные производные.	
12	Гетерофункциональные карбоновые кислоты. α-,β-,γ- Гидрокси-, амино- и оксокислоты.	
13	Практические навыки и решение задач по теме: «Карбоновые и гетерофункциональные карбоновые кислоты»	
14	Исследование химических свойств моносахаридов.	
15	Исследование структуры и химических свойств дисахаридов и полисахаридов.	
16	Практические навыки и решение ситуационных задач по теме: «Углеводы»	
17	α-Аминокислоты, пептиды, белки.	
18	Нуклеозиды, нуклеотиды. Первичная и вторичная структура нуклеиновых кислот.	
19	Практические навыки и решение ситуационных задач по теме: «Биополимеры и их структурные компоненты».	
20	Итоговый модульный контроль	2
	ИТОГО	40

ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ ДЛЯ СТУДЕНТОВ, РАБОТАЮЩИХ В ЛАБОРАТОРИЯХ КАФЕДРЫ ОРГАНИЧЕСКОЙ И БИООРГАНИЧЕСКОЙ ХИМИИ

- 1. Каждый студент должен работать на закрепленном за ним рабочем месте.
- 2. Рабочее место должно содержаться в чистоте и порядке.
- 3. При работе необходимо надевать халат.
- 4. В лаборатории необходимо соблюдать тишину и порядок. Не следует допускать торопливости она приводит к неудачам в работе, а иногда и к несчастным случаям.
- 5. Посторонним лицам запрещается находиться в лаборатории. Не разрешается отвлекать друг друга посторонними разговорами.
- 6. Нельзя работать в лаборатории одному, а также в отсутствии лаборанта или преподавателя.
- 7. В лаборатории запрещается принимать пищу.
- 8. Курение строго запрещено.
- 9. Не разрешается бросать в водопроводные раковины бумагу, фильтры, осадки с фильтров. Пахнущие и горючие жидкости следует сливать в специальные емкости.
- 10. В случае обнаружения неисправностей электропроводки или водопроводной сети необходимо немедленно сообщить об этом лаборанту или преподавателю.
- 11. Следует бережно обращаться с лабораторной посудой и реактивами.
- 12. Категорически запрещается выполнять в лаборатории экспериментальные работы, не связанные с выполнением учебного практикума.
- 13. При нагревании в пробирках жидких или твердых веществ нельзя направлять отверстие пробирки или открытую часть прибора на себя или на соседей при выбросе нагретого вещества может произойти несчастный случай.
- 14. Особое внимание уделяйте защите глаз. При работе с концентрированными кислотами надевайте защитные очки.
- 15. По окончании работы следует оставить рабочее место в чистоте и порядке.

ПЕРВАЯ ПОМОЩЬ ПРИ ОЖОГАХ, ОТРАВЛЕНИЯХ И ДРУГИХ НЕСЧАСТНЫХ СЛУЧАЯХ

- 1. Перевязочные средства и медикаменты находятся в лаборантской комнате.
- 2. При термических ожогах необходимо сделать примочки этиловым спиртом или раствором перманганата калия, смазать место ожога специальной мазью, стараясь не повредить обожженную кожу.
- 3. 1При ожогах кислотами необходимо немедленно обмыть обожженное место большим количеством воды из под крана, а затем 3%-ным раствором NaHCO₃.
- 4. При ожогах щелочами промыть обожженное место большим количеством воды, затем 1%-ным раствором уксусной кислоты. Глаза следует промыть водой, затем насыщенным раствором борной кислоты, после чего ввести в глаза каплю касторового масла. Затем следует обратиться к врачу.
- 5. При порезах стеклом обязательно удалить осколки стекла из раны, смазать пораненное место йодом.

ТУШЕНИЕ МЕСТНЫХ ЗАГОРАНИЙ

- 1. При возникновении пожара немедленно выключить электронагревательные приборы. Убрать подальше от огня склянки с горючими жидкостями. Быстро засыпать очаг пожара песком, который находится в специальном ящике.
- 2. Используйте асбестовые одеяла, которые имеются у лаборанта, для ликвидации очагов пожара.

- 3. Нельзя заливать водой загоревшийся эфир, бензол, смеси, содержащие металлический натрий во всех случаях используйте песок.
- 4. Большие очаги пожара ликвидируйте с помощью огнетушителей. В случае обширного загорания следует известить пожарную охрану по телефону 01.
- 5. В случае загорания одежды не следует бегать по комнате, надо немедленно набросить на себя асбестовое одеяло или какую-то верхнюю одежду, чтобы прекратить доступ воздуха к загоревшейся одежде. Можно потушить пламя, отбежав от очага и перекатываясь по полу.

	_ с правилами ТБ ознакомлен (на) _	
Ф.И.О.	- ·	Подпись

<u>Тема:</u> Принципы номенклатуры и пространственного строения органических соединений.

Мотивация темы: Бурное развитие теоретической и прикладной органической химии создало серьезные проблемы для быстрого освоения огромного потока новой информации и теоретического осмысления всего фактического материала. В связи с этим усвоение химического языка, номенклатурных правил, формирование представлений о единстве строения, конфигурации, конформации органических молекул имеет первостепенное значение для успешного изучения и обмена химической информацией, понимания связи "структура-биологическая активность".

<u>**Цель:**</u> Сформировать знание основных принципов классификации, химической номенклатуры, пространственного строения органических соединений и умение использовать их в решении номенклатурных, структурных задач, функциональном анализе лекарственных вешеств.

Вопросы для самостоятельной подготовки студентов:

те вопросы для самостоятельной подготовки студентов.		
Учебное задание	Конкретизация задания	
1. Структурная теория А.М.	Сформулируйте основные положения теории строения	
Бутлерова.	органических соединений А.М. Бутлерова.	
2. Строение метана.	Напишите электронно-структурную формулу атома углерода. объясните его валентность и электронное строение σ-связи. Тетраэдрическая модель метана.	
3. Строение этилена.	Объясните электронное строение π -связи. Напишите структурные формулы соединений: бутен-1, цис-бутен-2, транс-бутен-2, пропин, бутин-1, бутин-2. Конкретизируйте различия понятий "структрурные изомеры" и "цис-, трансизомеры".	
4. Номенклатура органических соединений.	Изучите основные правила конструирования систематических названий органических соединений: а) Назовите по системе IUPAC следующие соединения: СН ₃ -СН ₂ -Вг, НООС-СООН, СН ₂ (ОН)-СН(ОН)-СН ₂ OH;СН ₂ =СН-СІ; Н ₂ N-СН ₂ -СООН; СН ₃ -С(О)-СООН; б) Напишите структурные формулы соединений: бутен-2-диовая-1,4 кислота; пропанон-2; 2-амино-3-меркапто-3-метилбутановая кислота.	
5. Конформация этана и их энергетические характеристики.	Изобразите в проекции Ньюмена заторможенную и заслоненную конформации этана. Какому положению на энергетической кривой (максимуму или минимуму) соответствуют эти конформации.	
6. Конформации циклогексана и метилциклогексана.	Изобразите предпочтительную конформацию циклогексана, метилциклогексана. Объясните ее предпочтительность.	

Задачи для самостоятельного решения.

- 1. В результате углеводного обмена образуется α-кетоглутаровая кислота, являющаяся 2- оксопентандионовой кислотой. Напишите ее структурную формулу.
- 2. Изобразите в проекции Ньюмена заторможенную и заслонённую конформацию хлорэтана, 2-аминоэтанола, 1,2-дибромэтана
- 3. Изобразите наиболее предпочтительную конформацию для молекулы бромциклогексана, гидроксициклогексана.

4. Назовите следующие вещества по номенклатуре IUPAC:

- 1. Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. с.16-39, 54-62.
- 2. Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3. Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. с.9-29,51-67.
- 4. Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985. С.24-33.

<u>Тема:</u> Электронное строение химических связей и взаимное влияние атомов в органических молекулах.

Мотивация темы: Электронное строение атомных орбиталей и их гибридизация, ковалентная связь, сопряжение, электронные эффекты как основной способ передачи взаимного влияния относятся к фундаментальным понятиям и являются основой системных знаний о реакционной способности биологически важных органических соединений, дают возможность качественно проводить сравнение термодинамической устойчивости соединений, интерпретировать механизмы биохимических реакций.

<u>**Цель:**</u> Сформировать знания о строении химических связей, электронных эффектах заместителей и строении молекул с сопряженными связями как термодинамически устойчивых систем, используемых при построении биологически важных структур.

Вопросы для самостоятельной подготовки студентов:

Учебное задание	Конкретизация задания
1. Строение химических связей.	Напишите формулы и объясните электронное строение ковалентной химической связи в молекулах: метана, этена, этина, 2-бутена, бутадиена-1,3, пентадиена-1,4, гексатриена-1,3,5.
2. Понятие гибридизации.	Определите тип гибридизации атомов углерода в молекулах метана, этена, пропина, бутадиена-1,3, бензола.
3. Природа водородной связи.	Объясните причину образования водородной связи. Как водородная связь изображается графически? Напишите примеры ассоциатов молекул метанола, этановой и салициловой кислот.
4. Сопряженные системы, энергия сопряжения, π-π и р-π сопряжение.	Дайте определение понятиям: сопряжение, энергия сопряжения, делокализация. Напишите формулы и укажите тип сопряжения в молекулах следующих сооединений: бутадиен-1,3, бензол, пропеналь, винилхлорид, фенол, аминобензол, бензальдегид.
5. Электронные эффекты заместителей.	Объясните электронные эффекты заместителей в алифатических соединениях. Определите вид и знак электронных эффектов заместителей в: хлороэтане, бромоэтене, диэтиламине, анилине, этанале, пропановой кислоте. Объясните индуктивный и мезомерный эффекты в сопряженных системах ароматического и гетероциклического ряда: анилине, бензальдегиде, феноле, нитробензоле, бензолсульфокислоте, бензойной кислоте, хлоробензоле, толуоле.

Задачи для самоконтроля.

- 1. Определите состояние гибридизации атомов углерода в молекулах следующих соединений: 1-пентен-3-ин, пентадиен-2,3, бензойная кислота, бутадиен-1,3, пропен, этин, гексановая кислота, толуол, фенол.
- 2. Сравните распределение электронной плотности в молекуле гепта-диен-2,4-овой кислоты, бутадиена-1,3 и этандиовой кислоты.
- 3. Ретиналь, принимающий участие в процессе зрения, содержит сопряженную систему с открытой цепью. Обозначьте сопряженную цепь и укажите вид и знак электронных эффектов альдегидной группы.

4. Укажите индуктивный и мезомерные эффекты в следующих соединениях:

ÇH₃

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. с.31-43
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985. С.34-42.
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. с. 29-49.

<u>Тема</u>: Исследование реакционной способности углеводородов. Реакции радикального замещения (S_R) в алканах и электрофильного присоединения (A_E) в алкенах

Мотивация темы: Ациклические и циклические углеводороды широко распространены в природе: входят в состав природного газа, нефти твердых горючих ископаемых. Они лежат в основе всех классов биологически активных веществ, находят широкое применение в органическом синтезе и медицине (кверцит, инозит, стрептидин и т.д.).

<u>**Цель:**</u> Сформировать умение прогнозировать способность основных групп углеводородов к гомолитическому или гетеролитическому превращению во взаимосвязи с электронным строением атома углерода и электронными эффектами заместителей или гетероатомов, введенных в ароматическое ядро.

Вопросы для самостоятельной подготовки:

№	Учебное задание	Конкретизация задания
1.	Номенклатура насыщенных	Напишите формулы следующих насыщенных
	ациклических и	углеводородов: пропан, 2-метилпентан, изобутан,
	циклических	циклопропан, метилциклогексан.
	углеводородов. Реакция S_R	Опишите механизм реакции хлорирования метана,
		пропана.
2.	Номенклатура	Напишите формулы следующих ненасыщенных
	ненасыщенных	углеводородов и назовите их по международной
	ациклических	номенклатуре: этилен, бутадиен, 2-метилпропен, ацетилен,
	углеводородов.	циклогексен.
3.	Способы получения	Напишите схемы реакций получения бутена-1, пропена
	ненасыщенных	дегидратацией спиртов, отщеплением галогеноводорода от
	углеводородов.	галогенопроизводных; ацетилена из карбида кальция,
		пиролизом метана.
4.	Химические свойства	Напишите реакции этилена, пропена, 2-метилпропена,
	алкенов. Реакция АЕ.	бутена-1, бутена-2 с галогенами, галогеноводородами,
		водой. Назовите продукты реакций, укажите механизм.
		Дайте обоснование правилу Марковникова на примере
		реакции пропеновой кислоты и пропена с HCl.
5.	Реакция гидрирования	Напишите реакции каталитического гидрирования этилена,
		пропена, 2-метилпропена.
6.	Реакции окисления	Напишите реакции окисления перманганатом калия (реакция
		Вагнера) этилена, пропена. Какое практическое значение
		имеет эта реакция?
7	Реакции полимеризации	Напишите реакции полимеризации этилена, пропена,
		хлороэтена (винилхлорида), бутадиена-1,3, а также
		реакцию тримеризации ацетилена.
8	Химические свойства	Напишите реакции галогенирования,
	алкинов	гидрогалогенирования и гидратации ацетилена. Сравните
		реакционную способность алкинов и алкенов в реакциях
		А _Е Напишите реакции ацетилена и пропина с хлоридом
		меди (I) в аммиачном растворе. Какое практическое
		значение имеет эта реакция?
9	Лабораторная работа	1) Получение метана из ацетата натрия
		1) Бромирование непредельных соединений
		2) Реакция Вагнера на двойную связь

Задачи для самоконтроля:

- 1. Объясните механизм реакции хлорирования пропана, изобутана.
- 2. Напишите схемы реакции бутена-2, этена с бромом, водой, HCl.
- 3. Напишите реакцию гидратации ацетилена (реакция Кучерова). Какой конечный продукт образуется в результате реакции?

Практические работы, выполняемые на занятии:

Протокол № 3	Дата
количество ацетата натрия. Закройте проб нагревании смеси на светящемся пламени горпри поджигании сгорает голубоватым пламенет Уравнение реакции:	нков сухого NaOH и добавьте к нему такое же ирку пробкой с газоотводной трубкой. При елки образуется газ без цвета и запаха, который м. ————— СН ₄ + Na ₂ CO ₃
Выводы:	
четыреххлористом углероде (CCl ₄). Уровень од Добавьте в пробирку 4–5 капель 5% раствора наблюдаемые изменения. Уравнение реакции:	ний. олеиновой кислоты и растворите ее в кидкости в пробирке должен составлять 0,5 см. брома в четыреххлористом углероде. Отметьте СН ₃ (CH ₂) ₇ CH-CH(CH ₂) ₇ COOH
Наблюдения:	_, _, _, _, _, _, _, _, _, _, _, _, _, _
Выводы:	

Опыт № 3

Реакция с раствором КМпО4

В пробирку поместите 2 капли олеиновой кислоты и 2 капли 2% раствора перманганата калия. Встряхните пробирку несколько раз. Отметьте, какие изменения происходят с первоначальной фиолетовой окраской раствора.

Уравнение реакции:

$$3\text{CH}_3(\text{CH}_2)_7\text{CH}=\text{CH}(\text{CH}_2)_7\text{COOH} + 2\text{KMnO}_4 + 4\text{H}_2\text{O} \xrightarrow{\hspace{1cm}}$$

$$3\text{CH}_3(\text{CH}_2)_7\text{CH}-\text{CH}(\text{CH}_2)_7\text{COOH} + 2\text{MnO}_2 \downarrow + 2\text{KOH}$$

$$0\text{HOH}$$

Наблюдения:

Выводы:

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. с. 72-74.
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985. С. 66, 79, 80, 136
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. С. 45-49, 117-146

<u>Тема:</u> Исследование реакционной способности ароматических углеводородов. Реакции Se.

Мотивация темы: Ненасыщенные ациклические углеводороды характеризуются высокой реакционной способностью и часто используются в качестве исходных продуктов для получения веществ, применяемых в технике, медицине, фармации. Алкены и алкадиены являются мономерами, занимающими видное место в химии высокомолекулярных соединений, широко применяемых как основа для различных лекарственных форм, упаковочный материал, предметы санитарии и гигиены, хирургический материал и т.д.

<u>**Цель:**</u> Сформировать знания о химическом поведении непредельных алифатических углеводородов во взаимосвязи с электронным строением атома углерода и его химических связей.

Вопросы для самостоятельной подготовки студентов

$N_{\underline{0}}$	Учебное задание	Конкретизация задания
1.	Строение и номенклатура	Напишите формулы бензола, нафталина,
	ароматических углеводородов	изопропилбензола, трифенилметана, бензойной
		кислоты, фенола.
2.	Способы получения аренов	Написать схемы реакций получения бензола
		тримеризацией ацетилена, этилбензола по Фриделю-
		Крафтсу, толуола дегидрированием метилцикло-
		гексана.
	Реакции электрофильного	Напишите реакции галогенирования бензола,
3.	замещения (S_E) в аренах.	фенола, сульфирование фенола, нитрование
		бензойной кислоты. Опишите механизм реакций.
		Сравните реакционную способность фенола,
		толуола, анилина, бензойной кислоты с бензолом в
		реакциях электрофильного замещения.
4	Ориентирующее действие	Обоснуйте направленность реакций S _E при наличии
	заместителей в реакциях S _E	донорных или акцепторных групп в ароматическом
		кольце.
5	Реакции окисления	Напишите схемы реакции окисления толуола р-ром
	ароматических углеводородов	КМпО4, бензола кислородом. Объясните отношение
		этих соединений к окислению.
6	Реакции восстановления аренов	Изобразите схему каталитического восстановления
		водородом бензола, этилбензола.
7	Лабораторная работа	1. Образование 2,4,6-триброманилина
		2. Сульфирование нафталина.
		3. Окисление боковых цепей гомологов бензола р-
		ром КМпО4

Задачи для самоконтроля:

- 1. При бромировании этилбензола замещение может происходить в ароматическом ядре и в боковой цепи. Проведите бромирование этилбензола по каждому из этих направлений и назовите продукты реакции. Укажите условия и механизмы этих реакций.
- 2. Напишите формулы фурана, тиофена, пиррола, пиразола, имидазола, пиридина, пиримидина, пурина. Приведите нумерацию атомов. Покажите соответствие этих соединений критериям ароматичности.

3. Сравните способность к нитрованию у бензойной кислоты и фенола. Напишите схемы реакций нитрования, алкилирования по Фриделю-Крафтсу и сульфирования хлорбензола, нитробензола, толуола.

Протокол № 4

Дата

<u>Опыт № 1</u>

Образование 2,4,6-триброманилина.

В пробирку поместите одну каплю анилина и 5–6 капель воды, хорошо взболтайте и к эмульсии прибавьте несколько капель бромной воды до появления белого осадка 2,4,6-триброманилина. Реакция бромирования анилина протекает количественно и используется в фармацевтическом анализе для открытия анилина и ряда его производных.

Уравнение реакции:

Наблюдения:

Выводы:

Опыт № 2

Сульфирование нафталина.

В сухую пробирку поместите 1 лопаточку нафталина. Нагрейте пробирку до расплавления нафталина. Затем дайте ей остыть и добавьте к затвердевшему нафталину 10 капель концентрированной серной кислоты (добавление проводить в вытяжном шкафу!). Осторожно нагрейте пробирку над пламенем горелки, постоянно встряхивая до достижения полной однородности смеси. Затем дайте смеси остыть, добавьте к ней 10 капель воды и снова слегка нагрейте. При последующем охлаждении выделяются кристаллы β-нафталинсульфокислоты (β-сульфонафталина)

Уравнение реакции:

Наблюдения:

Выводы:

Опыт № 3

Окисление боковых цепей гомологов бензола.

В пробирку поместите 5 капель воды, 3 капли 2% раствора перманганата калия КМпО₄ и 1 каплю 10% раствора серной кислоты. Добавьте 1–2 капли толуола и, энергично встряхивая, нагревайте пробирку над пламенем горелки. Отметьте, какие изменения произошли с первоначальной окраской раствора. В результате окисления каждая боковая цепь в кольце бензола независимо от ее длины в конечном счете образует карбоксильную группу. Поэтому, пользуясь реакцией окисления, можно установить наличие боковых цепей в ароматических углеводородах.

Уравнение реакции:

Наблюдения:

Выводы:

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005.
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985. С. 68-81
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. с. 134-146

<u>Тема:</u> Практические навыки и решение ситуационных задач: «Реакционная способность углеводородов».

Знание Мотивация темы: номенклатуры органических соединений, их конформационных и конфигурационных особенностей, взаимного влияние атомов в молекулах - является определяющим при прогнозировании физико-химических свойств, реакционной способности того или иного класса органических веществ, способствует глубокому пониманию механизмов радикальных, электрофильных реакций, протекающих in vivo, in vitro, а также формированию представлений 0 фармакотерапевтических свойствах лекарственных препаратов.

<u>**Цель:**</u> Закрепление и творческое развитие знаний о закономерностях в химическом поведении основных классов органических соединений во взаимосвязи с их химическим строением.

Вопросы для самоподготовки:

- 1. Дайте определение понятию «конформеры». Изобразите в проекции Ньюмена заслоненную и заторможенную конформации этана, хлористого этила, этанола, и сравните их энергетическое состояние. Изобразите возможные конформации открытой шестиугольной цепи. Чем обусловлено стремление к образованию пяти- и шестичленных циклов?
- 2. Изобразите циклогексан, метилциклогексан, 1,4-дихлорциклогексан в конформации «кресла». У кажите аксиальные и экваториальные связи.
- 3. Какой вид стереоизомерии характерен для алкенов и циклоалканов? Дайте определение понятию диастереомеров. Напишите цис- и транс-изомеры для этилендикарбоновой и циклогександикарбоновой-1,4 кислот.
- 4. Приведите электронное строение С-С- связи в алканах. Какой тип реакции по направлению и механизму характерен для алканов. Приведите схему гемолитического (радикального) и гетеролитического (ионного) разрыва ковалентной связи.
- 5. Что такое радикальные цепные реакции? Напишите реакции галогенирования (бромирования) пропана, циклогексана и опишите механизм (S_R) .
- 6. Приведите электронное строение этилена и бутадиена-1,3. Какие реакции по направлению и механизму характерны для алкенов? Какие реагенты называются электрофильными? Напишите реакцию электрофильного присоединения (A_E) галогенов, галагеноводородов и воды (с кислотным катализатором) к этилену, пропилену, бутену-2, бутандиену-1,3. Опишите механизм.
- 7. Дайте определение понятию «сопряжение» и укажите особенность реакции A_E в сопряженных диенах. Может ли продукт реакции гидрирования бутадиена-1,3 существовать в виде цис-, транс-изомеров?
- 8. Объясните влияние заместителей на реакционную способность двойной связи в реакциях $A_{\rm E}$. Объясните правило Марковникова.
- 9. Напишите реакцию бромирования циклопропана. Укажите особенности ее протекания, связанные с электронным строением.
- 10. Приведите электронное строение бензола. Дайте определения понятиям «энергия сопряжения» (стабилизации) и «ароматичность».
- 11. Охарактеризуйте отношение к окислению перманганатом калия алканов, алкенов и аренов. Напишите эту реакцию для пропилена. Почему она используется как качественная
- 12. При бромировании этилбензола замещение может происходить в ароматическом ядре и в боковой цепи. Проведите бромирование этилбензола по каждому из этих направлений и назовите продукты реакции. Укажите условия и механизмы этих реакций.
- 13. Напишите формулы фурана, тиофена, пиррола, пиразола, имидазола, пиридина, пиримидина, пурина. Приведите нумерацию атомов. Покажите соответствие этих соединений критериям ароматичности.

- 14. Сравните способность к нитрованию у бензойной кислоты и фенола. Напишите схемы реакций нитрования, алкилирования по Фриделю-Крафтсу и сульфирования хлорбензола, нитробензола, толуола.
 - 15. Объясните механизм реакции хлорирования пропана, изобутана.
 - 16. Напишите схемы реакции бутена-2, этена с бромом, водой, HCl.
- 17. Напишите реакцию гидратации ацетилена, пропина, бутина-2 (реакция Кучерова). Какие продукты образуются в результате реакции?
- 18. Определите состояние гибридизации атомов углерода в молекулах следующих соединений: 1-пентен-3-ин, пентадиен-2,3, бензойная кислота, бутадиен-1,3, пропен, этин, гексановая кислота, толуол, фенол.
- 19. Сравните распределение электронной плотности в молекуле гепта-диен-2,4-овой кислоты, пентадиена-1,3 и бутендиовой кислоты.
- 20. Ретиналь, принимающий участие в процессе зрения, содержит сопряженную систему с открытой цепью. Обозначьте сопряженную цепь и укажите вид и знак электронных эффектов альдегидной группы.

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. с.16-112.
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985. С. 24-92.
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. С. 16-178, 214-224

<u>Тема</u>: Реакционная способность спиртов, фенолов, простых эфиров и их тиоаналогов.

Мотивация темы: Представители классов спиртов, фенолов, простых эфиров и их тиоаналогов являются важными природными и синтетическими лекарственными средствами наркотического (низшие спирты), антисептического (тимол, салициловая кислота, резорцин), противогистаминного (димедрол) действия. Функциональные группы перечисленных классов соединений содержатся в витаминах, алкалоидах, гормонах, незаменимых аминокислотах, сердечных гликозидах и других биологически важных соединениях. Спирты, фенолы, простые эфиры и их тиоаналоги широко используются в органическом синтезе. Знание взаимосвязи химического строения и свойств рассматриваемых классов дает возможность решать вопросы идентификации и совместимости фармпрепаратов, прогнозировать условия их синтеза, анализа и хранения.

<u>**Цель:**</u> Сформировать знание реакционной способности спиртов, фенолов, простых эфиров и их тиоаналогов, обуславливающих протекание многих химических реакций в живых организмах. Выработать умение прогнозировать химическое поведение органических соединений в связи с их химическим строением.

Вопроса для самостоятельной подготовки:

	Учебное задание	и для самостоятельной подготовки.
1		Конкретизация задания
1.	Номенклатура спиртов,	Напишите формулы: бутанола-1, пропанола-2, фенола,
	эфиров и их тиоаналогов.	бензилового спирта, гидрохинона, дифенилового эфира,
		этантиола, диметилсульфида.
2.	Способы получения А)	бутанол-2 из соответствующего алкена;
	спиртов	изобутиловый спирт гидролизом соответствующего
		алкилхлорида. Какие спирты образуется при восстановлении
		пропаналя и гидролизе изопропил-ацетата?
	Б) фенолов	Напишите схемы реакции получения фенола и β-нафтола из
		солей соответствующих сульфокислот,
		галогенопроизводных углеводородов, солей арилдиазония.
		Назовите исходные соединения
	В) простых эфиров	Получите: метилфениловый эфир действием метилбромида
		на фенолят натрия; диизопропиловый эфир межмолекулярной
		дегидратацией спирта. Назовите эфиры по системе IUPAC
3.	Влияние молекулярной	Сформулируйте понятие молекулярной водородной связи и
	водородной связи на	объясните её влияние на физические свойства этанола.
	физические свойства	Изобразите примеры межмолекулярных ассоциатов
	веществ	метанола, фенола.
4.	Реакции окисления.	Напишите реакции окисления пропанола-1, пропанола-2,
	Окислительные агенты.	гидрохинона, этантиола.
		Объясните устойчивость к окислению третичных спиртов.
5.	Реакции элиминирования	Напишите уравнение реакции вторичного
		бутилового спирта с концентрированной
		H ₂ SO ₄ при нагревании. Опишите её механизм
6.	Реакции электрофильного	Напишите уравнения реакций нитрования, сульфирования,
	замещения (S_E) .	бромирования фенола. Назовите продукты реакции.
7.	Лабораторная работа.	Запишите наблюденияи выводы в протокол.
		а) окисление этилового спирта бихроматом калия;
		в) получение этилхлорида из этилового спирта,
		б) образование трибромфенола,
		в) дегидратация этилового спирта;
		1 / 1

Задачи для самоконтроля:

- 1. Опишите реакцию взаимодействия этилового спирта с галогеноводородами. Опишите межмолекулярную и внутримолекулярную дегидратацию этанола, изопропилового спирта и назовите продукты реакции. Укажите условия и механизмы этих реакций.
- 2. Опишите реакции фенола с концентрированной серной кислотой, галогенами, азотной кислотой. Опишите окисление гидрохинона в хинон.

Протокол № 6 Дата _____

Опыт № 1

Окисление этилового спирта хромовой смесью.

В пробирку поместите 2 капли этилового спирта, добавьте 1 каплю 10% раствора серной кислоты H_2SO_4 и 2 капли 10% раствора дихромата калия $K_2Cr_2O_7$. Полученный оранжевый раствор нагрейте над пламенем горелки до начала изменения окраски. Через несколько секунд раствор становится синевато-зеленым (цвет образующегося сульфата хрома (III) $Cr_2(SO_4)_3$). Одновременно ощущается характерный запах уксусного альдегида (запах прелых яблок).

Уравнение реакции:

$$3 H_3C-CH_2-OH + K_2Cr_2O_7 + 4 H_2SO_4 \longrightarrow$$

$$\longrightarrow$$
 3 H₃C-C H + 7 H₂O + K₂SO₄ + Cr₂(SO₄)₃

Наблюдения:

Выводы:

Опыт № 2

Получение этилхлорида из этилового спирта:

В пробирку насыпьте 2 лопаточки NaCl, прилейте 5-6 капель этанола, затем добавьте 3-4 капли H_2SO_4 . При нагревании на слабом пламени горелки и поднесении пламени к пробирке образующийся хлорэтан сгорает пламенем с зеленоватой каймой.

$$H_3C-CH_2-OH+HCI \longrightarrow H_3C-CH_2-CI+H_2O$$

Наблюдения:

Выводы:

Опыт № 3

Образование 2,4,6-трибромфенола:

В пробирку поместите пять капель 0,5% водного раствора фенола и прибавьте несколько капель бромной воды до обесцвечивания и появления белого осадка 2,4,6-трибромфенола. Реакция бромирования фенола протекает количественно и используется в анализе для открытия фенола и некоторых его производных.

Уравнение реакции:

Наблюдения:

Выводы:

<u>Опыт № 4</u>

Дегидратация этилового спирта:

В пробирку поместите 8 капель H_2SO_4 , 4 капли этанола и немного оксида алюминия Al_2O_3 . Закройте пробирку пробкой с газоотводной трубкой и медленно нагревайте над пламенем горелки. Выделяющийся газообразный этилен при пропускании в бромную воду вызывает ее обесцвечивание. При поджигании выделяющегося газа он сгорает светящимся пламенем.

$$H_{3}C-CH_{2}-OH \xrightarrow{H_{2}SO_{4}} H_{2}C=CH_{2} + H_{2}O$$

$$H_{2}C=CH_{2} + Br_{2} \xrightarrow{H_{2}C-CH_{2}} H_{2}C-CH_{2}$$

$$H_{3}C-CH_{2} + Br_{2} \xrightarrow{H_{2}C-CH_{2}} H_{2}C$$

Наблюдения:

Выводы:

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. с.16-112.
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985. С. 24-92.
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. С. 16-178

Тема: Исследование кислотных и основных свойств органических соединений.

Мотивация темы: Кислотность и основность органических соединений относятся к числу фундаментальных понятий, необходимых для изучения большинства разделов курса и специальных дисциплин. Знание этих свойств используется для правильного прогнозирования механизмов реакций, понимания сущности кислотного и основного катализа, оценки совместимости лекарственных препаратов и т.д.

<u>**Цель:**</u> Сформировать знания о кислотности и основности органических соединений как важных понятиях, обусловливающих их физико-химические и биологические свойства.

Вопросы для самостоятельной подготовки студентов.

№ п/п	Учебное задание	Конкретизация задания
1.	Кислотность.	Понятие кислотности по Бренстеду Расположите в ряд по уменьшению кислотности такие соединения: метанол, пропанол-2, трет-бутанол, этиленгликоль, глицерин, этанол, фенол, пнитрофенол, уксусная, щавелевая, муравьиная кислоты. Приведите примеры СН-, ОН-, NH-, SH-кислот.
2.	Основность.	Дайте определение понятия основание Бренстеда. Приведите типы оснований. Сравните основность следующих оснований: метиламин, диметиламин, анилин, п-аминофенол, пнитроанилин.
3.	Теория кислот и оснований Льюиса	Дайте определение кислот и оснований по Льюису. Разделите на кислоты и основания такие соединения - метанол, диэтиловый эфир и бензол.
4.	Жесткие и мягкие кислоты и основания.	Определите понятия жесткая и мягкая кислота, жесткое и мягкое основание.
5.	Водородная связь	Объясните природу водородной связи на примере этанола и уксусной кислоты
6.	Лабораторная работа	1. Получение этилата натрия и его гидролиз; 2. Получение этиленгликолята меди (II); 3. Изучение основности аминов.

Протокол	N	<u>ò</u>	7
----------	---	----------	---

Дата

<u>Опыт № 1</u>

Получение этилата натрия и его гидролиз.

В сухую пробирку поместите 3 капли абсолютного этанола и внесите кусочек металлического натрия (размером со спичечную головку), предварительно отжатый от керосина на фильтровальной бумаге. Соберите выделяющийся водород, прикрыв пробирку пробкой. Затем уберите пробку и поднесите пробирку отверстием к пламени горелки. Смесь водорода с воздухом сгорает с характерным "лающим" звуком. Белый осадок этилата натрия растворите в 2—4 каплях этанола и добавьте 1 каплю 1% спиртового раствора фенолфталеина. После этого внесите в пробирку 1—2 капли воды. Объясните появление малиновой окраски.

Уравнение реакции:

$$2 H_3 C - CH_2 - OH + 2 Na$$
 \longrightarrow $2 H_3 C - CH_2 - ONa + H_2$
 $H_3 C - CH_2 - ONa + H_2 O$ \longrightarrow $H_3 C - CH_2 - OH + NaOH (pH>7)$

Наблюдения:

Выводы:

Опыт № 2

Получение этиленгликолята меди (II).

В пробирку внесите 2 капли 2% раствора сульфата меди (II) CuSO₄ и 2 капли 10% раствора гидроксида натрия NaOH. Образуется голубой хлопьевидный осадок гидроксида меди (II) Cu(OH)₂. Добавьте к нему 1 каплю этиленгликоля и встряхните пробирку. При взаимодействии гидроксида меди (II) с этиленгликолем образуется гликолят меди, раствор которого имеет синюю окраску. Эта реакция используется для обнаружения органических соединений, содержащих диольный фрагмент (две гидроксильные группы у соседних атомов углерода).

Уравнение реакции:

$$CuSO_4 + 2NaOH \longrightarrow Cu(OH)_2 \downarrow + Na_2SO_4$$

$$2 \mid CH_2-OH \atop CH_2-OH \atop$$

Наблюдения:

Выводы:

Опыт № 3

Изучение основности аминов:

Основность алифатических и ароматических аминов.

- 1. В две пробирки внесите по 2 капли воды. Затем в первую пробирку поместите 1 каплю анилина $C_6H_5NH_2$, а во вторую 1 каплю диэтиламина $(C_2H_5)_2NH$ и взболтайте. Сравните растворимость этих аминов в воде. По 1 капле содержимого каждой пробирки нанесите на полоску универсальной индикаторной бумаги. Определите pH растворов анилина и диэтиламина.
- 2. К эмульсии анилина в воде добавьте 1 каплю 10% раствора хлороводородной кислоты. Образуется прозрачный раствор. К раствору диэтиламина прибавьте 3 капли насыщенного водного раствора пикриновой кислоты и перемешайте. Пробирку поместите в стакан с холодной водой. Через некоторое время образуется осадок пикрата диэтиламина.

Уравнение реакции:

Наблюдения:

Выводы:

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. с.16-112.
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985. С. 24-92.
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. С. 16-178, 214-224

<u>Тема:</u> Практические навыки и решение ситуационных задач по теме: "Спирты, фенолы и кислотно-основные свойства органических соединений".

Актуальность темы: Кислотность и основность органических соединений это фундаментальные понятия, знание которых используются для правильного прогнозирования механизмов реакции, понимания сущности кислотного и основного катализа. Спирты, фенолы, простые эфиры и их тиоаналоги широко используются в органическом синтезе. Представители классов спиртов, фенолов, простых эфиров и их тиоаналогов являются важными природными и синтетическими лекарственными средствами наркотического (низшие антисептического (тимол, карвакрол, резорцин), противогистаминного (димедрол) действия. Знание взаимосвязи химического строения и свойств рассматриваемых классов дает решать вопросы идентификации И совместимости фармпрепаратов, возможность прогнозировать условия их синтеза, анализа и хранения.

<u>Цель</u>:Сформировать знание реакционной способности спиртов, фенолов, простых эфиров и их тиоаналогов, обуславливающих протекание многих химических реакций в живых организмах. Выработать умение прогнозировать химическое поведение органических соединений в связи с химическим строением.

Вопросы для самостоятельной подготовки

- 1. Определение кислотности и основности по Бренстеду –Лоури.
- 2. Влияние электронных и структурных факторов на силу кислот и оснований.
- 3. Сравнить кислотность: этанола и этантиола; метанола, фенола, п-нитрофенола.
- 4. Сравнить основность: метиламина, метанола и фторметана; метанола и метантиола; метанола, фенола, диэтилового эфира.
- 5. Способы получения спиртов:
- гидролизом галогенопроизводных углеводородов;
- гидратацией алкенов;
- восстановлением альдегидов, кетонов, карбоновых кислот и сложных эфиров.
- 6. Способы получения фенолов:
- сульфированием или хлорированием бензола;
- окислительным декарбоксилированием ароматических карбоновых кислот
- из кумола (изопропилбензола)
- 7. Способы получения простых эфиров:
- взаимодействием алкоголятов и фенолятов натрия с галогеналканами;
- межмолекулярной дегидратацией спиртов в присутствии кислот.
- 8. Химические свойства спиртов:
- взаимодействие этилового спирта с азотной и уксусной кислотами;
- -межмолекулярная и внутримолекулярная дегидратация этилового спирта:
- взаимодействие спиртов с галогенангидридами неорганических кислот (PCI_3 , PCI_5 , PBr_3 , $SOCI_2$)
- реакции окисления: этанола, пропанола-1; пропанола-2; гидрохинона, этантиола. Назовите продукты реакций.
- 9. Химические свойства фенолов:
- взаимодействие с водными растворами щелочей:
- реакции галогенирования, сульфирования и алкилирования (с этиловым спиртом).
- 10. Химические свойства простых эфиров:
- образование оксониевых солей с концентрированными минеральными кислотами (HCI, H_2SO_4 , HNO₃).
- расщепление простых эфиров (ацидолиз) йодоводородной кислотой;
- 11. Влияние молекулярной водородной связи на физические свойства спиртов. Изобразить примеры ассоциатов для метанола, трет-бутанола.

12. Написать уравнение реакции вторичного бутилового спирта с концентрированной серной кислотой при нагревании. Укажите тип реакции. Правило Зайцева.

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. с.16-112.
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985. С. 24-92
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. С. 16-178, 214-224.

Тема: Исследование химических свойств альдегидов и кетонов. Реакции An.

Мотивация темы: Альдегидный и кетонный карбонилы содержатся в многочисленных биологически важных соединениях растительного и животного происхождения (витамины, гормоны, кортикостероиды, сердечные гликозиды, углеводы и др.) Высокая реакционная способность оксосоединений широко используется в тонком органическом синтезе для получения эффективных фармацевтических препаратов. Знание особенностей электронного строения и химии альдегидов и кетонов является основной для осмысленного понимания и условия биохимических процессов, вопросов фармакокинетики, прогнозирования совместимости лекарственных средств.

<u>**Цель:**</u> Сформировать знания об основных химических превращений оксосоединений, имеющих важное знание в биологических системах, и умение. Проводить качественные реакции на отдельные представители альдегидов и кетонов.

Вопросы для самостоятельной подготовки студентов

1. Номенклатура альдегидов и Напишите формулы метаналя кетонов ацетона, диэтилкетона, метилфе 2. Строение и химическая Дайте объяснение изменению	этаналя бензальлегила
	. Statiani, ochsandernaa,
2 Строния и униционая Пайта общения наменации	енилкетона.
2. Строение и химическая Дайте объяснение изменению	реакционной способности
активность оксогруппы в связи	с электронными и
альдегидах и кетонах пространственными факторами	
– хлорэтаналь; формальдегид	ц – уксусный альегид –
ацетон. 3. Способы получения Привести способы синтеза: эта	
J 1	÷ '
альдегидов и кетонов гидратацией ацетилена; соответствующего спирта, гидр	ацетона окислением
кумольным способом.	ратациси метил-ацетилена,
4. Реакции окисления Напишите схемы реакций окис	сления пропаналя оксидом
серебра в водном раство	оре аммиака (реакция
"серебрянного зеркала") и	гидроксидом меди (II).
Назовите продукты реакций.	
5. Реакция нуклеофильного Напишите схемы реакций: в	
присоединения (A _N). альдегида алюмогидридом ли	
Механизм A _N полуацеталей пропаналя с	
спиртами, присоединение син	
щелочной среде к ацетону, бенз	ž
6. Реакции альдольного Напишите схему реакции альдо	-
присоединения уксусного альдегида. Опишите	
7. Реакции Напишите схему реакции	диспропорционирования
диспропорционирования формальдегида, бензальдегида.	
8. Реакции нуклеофильного Напишите уравнения реакций	-
присоединения и отщепления альдегида с метиламином, ани	• •
с аминокомпонентами Как получается уротропин и	і как он применяется в
(гидразином, гидроксиламином, аминами) медицине.	
	рормного расщепления
9. Талоформное расщепление папишите схему иодоц ацетальдегида, ацетона. Объясн	
даст йодоформную пробу: диэти	
10. Лабораторная работа 1. Диспропорционирование фор	
растворах;	The state of the s

	2. Окисление формальдегида раствором Ag(NH ₃) ₂ OH и
	Cu(OH) ₂ .;
	3. Образование 2,4 - динитро-фенилгидразона
	формальдегида;
	4. Получение оксима ацетона;
	5. Открытие ацетона переводом его в йодоформ

Задачи для самоконтроля.

- 1. Опишите механизм превращения уксусного и бензойного альдегида в диметилацеталь. Какова роль кислого катализатора и отношение ацеталя к гидролизу?
- 2. При действии на организм больших доз гидразина наблюдаются нервные расстройства. Опишите химизм взаимодействия гидразина (NH₂-NH₂), если известно, что он реагирует с коферментом пиридоксальфосфатом.
- 3. Опишите реакцию диспропорционирования для метаналя, 4-метилбензальдегида.

Протокол №	עפ	
------------	----	--

Дата _____

Опыт 1

Диспропорционирование формальдегида в водных растворах.

Поместите в пробирку 2–3 капли 40% раствора формальдегида. Добавьте 1 каплю 0,2% раствора индикатора метилового красного. Покраснение раствора указывает на кислую реакцию среды.

Уравнение реакции:

Наблюдения:

Выводы:

Опыт № 2

Отношение формальдегида и ацетона к окислению щелочными растворами оксидов тяжелых металлов.

1. Окисление гидроксидом серебра.

Возьмите две пробирки и в каждую поместите по 1 капле 5% раствора нитрата серебра AgNO₃ и 10% раствора гидроксида натрия NaOH. К полученному бурому осадку добавьте по каплям 10% водный раствор аммиака до полного растворения осадка. Затем в первую пробирку прибавьте 2 капли 40% раствора формальдегида, а во вторую – 2 капли ацетона. В первой пробирке образуется осадок черного цвета, который при осторожном нагревании может выделиться на стенках пробирки в виде блестящего зеркального налета. Во второй пробирке образования осадка не наблюдается.

Уравнение реакции:

AgNO₃ + NaOH
$$\longrightarrow$$
 AgOH + NaNO₃

2 AgOH \longrightarrow Ag₂O \downarrow + H₂O

Ag₂O + 4 NH₃⁺ H₂O \longrightarrow 2 (Ag(NH₃)₂)OH

H-C $\stackrel{O}{\longleftarrow}$ + 2 (Ag(NH₃)₂)OH \longrightarrow H-C $\stackrel{O}{\longleftarrow}$ + 2 Ag \downarrow + 3 NH₃ + H₂O

Наблюдения:

Выводы:

2. Окисление гидроксидом меди(II).

Поместите в пробирку по 5 капель 10% раствора гидроксида натрия и воды, добавьте 1 каплю 2% раствора сульфата меди (II) CuSO₄. К выпавшему осадку гидроксида меди (II) прибавьте 3 капли 40% раствора формальдегида. Пробирку осторожно нагрейте до кипения. В пробирке осадок приобретает сначала желтый цвет, затем – красный и, если пробирка чистая, на ее стенках может выделиться металлическая медь ("медное зеркало").

Уравнение реакции:

$$CuSO_4 + 2NaOH$$
 — $Cu(OH)_2 \downarrow + Na_2SO_4$ — $CuHu\check{u}$ — $CuHu\check{u}$ — $CuOH$ — — $CuOH$ —

Наблюдения:

Выводы:

Опыт № 3

Образование 2,4-динитрофенилгидразона формальдегида.

В пробирку поместите 5 капель раствора 2,4-динитрофенилгидразина. Добавьте 1–2 капли 40% раствора формальдегида до появления желтого осадка.

Уравнение реакции:

$$H-C \stackrel{O}{\longleftarrow} H$$
 + H_2N-HN NO_2 NO_2 H H_2O

Наблюдения:

Выводы:

Опыт № 4

Получение оксима ацетона.

В пробирку поместите 1 лопаточку гидрохлорида гидроксиламина H₂NOH·HCl, 1 лопаточку кристаллического карбоната натрия и растворите в 10–25 каплях воды. После выделения основной массы диоксида углерода охладите пробирку и добавьте при хорошем перемешивании 15 капель ацетона. Смесь разогревается, и выпадают белые кристаллы.

Уравнение реакции:

$$2H_2N - OH \cdot HCI + Na_2CO_3 \longrightarrow 2H_2N - OH + 2 NaCI + H_2O + CO_2$$
 $H_3C = O + H_2N - OH \longrightarrow H_3C = N - OH + H_2O$

Наблюдения:

Выводы:

Опыт № 5

Открытие ацетона переводом его в йодоформ.

В пробирку поместите 1 каплю раствора йода в йодиде калия и прибавьте почти до обесцвечивания по каплям 10% раствор гидроксида натрия. К обесцвеченному раствору добавьте 1 каплю ацетона. При слабом нагревании выпадает желтовато-белый осадок с характерным запахом йодоформа. Эта реакция используется в клинических лабораториях и имеет практическое значение для диагностики сахарного диабета.

Уравнение реакции:

Наблюдения:

Выводы:

- 1. Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия. М.: Медицина, 1985.- с. 188-203.
- 2. Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3. Артемьев Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по органической химии. М.: Медицина, 1985. с.92-108.
- 4. Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005 с.114-126

<u>Тема:</u> Практические навыки и решение ситуационных задач по теме «Биологически важные реакции оксосоединений».

Мотивация темы: Альдегидный и кетонный карбонилы содержатся в многочисленных биологически важных соединениях растительного и животного происхождения (витамины, гормоны, кортикостероиды, сердечные гликозиды, углеводы и др.). Высокая реакционная способность оксосоединений широко используется в тонком органическом синтезе для получения эффективных фармацевтических препаратов. Знание особенностей электронного строения и химии альдегидов и кетонов является основой для осмысленного понимания и усвоения биохимических процессов, вопросов фармакокинетики, прогнозирования совместимости лекарственных средств.

<u>**Цель:**</u> Сформировать знания об основных химических превращениях оксосоединений, имеющих важное значение в биологических системах, и умение проводить качественные реакции на отдельные представители альдегидов и кетонов.

Вопросы для самостоятельной подготовки студентов

- 1. Карбонилсодержащие соединения. Химические свойства и биологическое значение альдегидов и кетонов.
- 2. Механизмы реакций нуклеофильного присоединения (A_N) и нуклеофильного присоединения с последующим отщеплением (A_NE) . Особенности взаимодействия альдегидов и кетонов с спиртами, окислителями, восстановителями, первичными и вторичными аминами.
- 3. Методы идентификации альдегидов и кетонов. Реакции с реактивами Толленса, Фелинга (Троммера, Бенедикта). Йодоформная проба.
- 4. Напишите формулы формальдегида, уксусного альдегида, бензальдегида, ацетона, диэтилкетона, метилфенилкетона.
- 5. Дайте объяснение изменения реакционной способности оксогруппы во взаимосвязи с электронными и пространственными факторами структуры в ряду: этаналь хлорэтаналь; формальдегид уксусный альегид ацетон.
- 6. Привести способы синтеза: этаналя окислением спирта, гидратацией ацетилена; ацетона окислением соответствующего спирта, гидратацией метил-ацетилена, кумольным способом.
- 7. Напишите схемы реакций окисления пропаналя оксидом серебра в водном растворе аммиака (реакция "серебрянного зеркала") и гидроксидом меди (II). Назовите продукты реакций.
- 8. Напишите схемы реакций: восстановлений уксусного альдегида алюмогидридом лития (LiAIH₄); получение полуацеталей пропаналя с этиловым и метиловым спиртами, присоединение синильной кислоты (HCN) в щелочной среде к ацетону, бензальдегиду.
- 9. Напишите схему реакции альдольного присоединения для уксусного альдегида.
- 10. Напишите схему реакции диспропорционирования формальдегида, бензальдегида.
- 11. Напишите уравнения реакций уксусного и бензойного альдегида с метиламином, анилином, гидроксиламином. Как получается уротропин? Какое он имеет применение в медицине.
- 12. Напишите схему йодоформного расщепления ацетальдегида, ацетона. Объясните, какое из соединений даст йодоформную пробу: диэтилкетон, метилкетон.

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. с.114-126.
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985. с.92-108.
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. с.188-203

Занятие 11

Тема: Карбоновые кислоты и их функциональные производные.

<u>Мотивация темы:</u> Высокая реакционная способность карбоновых кислот, их функциональных производных широко используется в органическом синтезе, промышленности лекарственных средств. Карбоновые кислоты играют исключительно важную роль в обменных процессах растительных и животных организмов. Будучи промежуточными соединениями, в ходе окисления углеводов, жиров, белков, они участвуют в биосинтезе аминокислот, стероидов, алкалоидов, сапонинов и т.п.

<u>**Цель:**</u> Сформировать знания закономерностей и особенностей в химическом поведении карбоновых кислот и их функциональных производных, лежащих в основе процессе метаболизма.

Вопросы для самостоятельной подготовки

No	Учебное задание	Конкретизация задания			
1.	Классификация	Систематизируйте основные правила конструирования			
	номенклатура	названий карбоновых кислот по заместительному методу			
	карбоновых кислот	(система IUPAC). Напишите структурные формулы			
		следующих соединений: муравьиная, уксусная, пропановая,			
		щавелевая, малоновая, янтарная, о-фталевая, акриловая,			
		стеариновая, олеиновая кислоты. Проведите их классфикацию.			
		Перечислите основные способы получения карбоновых			
2.	Способы получения	кислот. Напишите схемы получения: бензойной кислоты			
	карбоновых кислот	окислением соответствующего углеводорода; щавелевой			
		кислоты окислением соответствующего альдегида.			
		Приведите электронное строение -СООН группы и			
3.	Электронное строение	карбоксилат-аниона. Покажите влияние электронодонорных и			
	карбоксильной группы и	электроноакцепторных заместителей в радикале на изменение			
	карбоксилат-аниона	кислотности на примере: HCOOH и CH ₃ COOH и CI-			
		CH ₂ COOH; CH ₃ COOH и HOOC-COOH; CH ₃ COOH и			
		C ₆ H ₅ COOH.			
4.	Функциональный анализ	Напишите схемы получения: солей уксусной, стеариновой			
	СООН- группы	кислот; сложных эфиров, хлорангидридов, ангидридов			
		уксусной, бензойной кислот, амида уксусной кислоты.			
5.	Механизм реакции	Опишите механизм реакции нуклеофильного замещения на			
	нуклеофильного	примере реакции этерификации этилового спирта и уксусной			
	замещения(S _N)	кислотой; а так же щелочного гидролиза этилацетата.			
6.	Реакция	Напишите реакцию декарбоксилирования щавелевой,			
	декарбоксилирования	бензойной кислот.			
7.	Реакция	Определите І-, М- эффекты СООН- группы. Напишите			
	галогенирования кислот	реакцию хлорирования пропионовой кислоты хлором,			
		гидрохлорирования пропеновой кислоты. Объясните			
		дезактивирующее, м- ориентирующее влияние СООН- группы			
		в реакциях (S _E) для бензойной кислоты.			
8.	Химические свойства	Напишите реакцию гидролитического расщепления в			
	строение липидов	щелочной среде дипальмитоил-стеароилглицерина. Напишите			
		структурные формулы фосфатидилколаминов (кефалины) и			
		фосфатилхолинов (лецитины), содержащих остатки олеиновой			
		и стеариновой кислот. Какие продукты реакции образуется в			
		результате их гидролиза?			

9	Лабораторная работа	 Открытие уксусной кислоты Образование нерастворимых кальциевых солей высши жирных кислот 			
		3. Открытие щавелевой кислоты в виде кальциевой соли			
		4. Получение этилацетата			

Задачи для самоконтроля.

- 1. Синтезируйте этиловый эфир уксусной кислоты, используя в качестве исходного соединения малоновую кислоту. С полученным этилацетатом осуществите реакции гидролиза и аммонолиза.
- 2. Оливковое масло используется для приготовления инъекционных растворов. В его состав входят олеиновая (80%) и линолевая (7%) кислоты. Исходя из химического строения, объясните причину жидкой консистенции оливкового масла (т.пл. 6° С). В результате, какого химического превращения может измениться консистенция этого масла?
- 3. Постройте формулу молекулы фосфолипида на основе фосфатидной кислоты, проэтерифицированной коламином (2-аминоэтанолом). Назовите этот фосфолипид и охарактеризуйте его отношение к гидролизу.

Протокол №

Лата		

Опыт № 1

Открытие уксусной кислоты.

В пробирку поместите по 3 капли уксусной кислоты и воды. Испытайте реакцию раствора на лакмус. К раствору прибавьте 2–3 капли 10% раствора гидроксида натрия до полной нейтрализации уксусной кислоты. После этого добавьте 2–3 капли 1% раствора хлорида железа (III) FeCl₃. Появляется желто-красное окрашивание ацетата железа (III). Подогрейте раствор до кипения, выделяется красно-бурый осадок нерастворимого в воде гидроксида диацетата железа. Раствор над осадком становится бесцветным.

Уравнение реакции:

Наблюдения:

Выводы:

Опыт № 2

Образование нерастворимых кальциевых солей высших жирных кислот.

В пробирку поместите 5 капель раствора мыла и добавьте 1 каплю раствора хлорида кальция CaCl₂. Взболтайте содержимое пробирки. Появляется белый осадок.

Уравнение реакции:

Наблюдения:

Выводы:

Опыт № 3

Открытие щавелевой кислоты в виде кальциевой соли.

В пробирку поместите лопаточку натриевой соли щавелевой кислоты и прибавьте 4–5 капель воды до полного растворения. Пипеткой возьмите 1 каплю раствора и нанесите на предметное стекло. Добавьте к ней 1 каплю раствора хлорида кальция. Происходит образование кристаллического осадка. С кристаллами оксалата кальция можно встретиться при клиническом исследовании мочи. Они имеют форму почтовых конвертов и хорошо видны под микроскопом.

Уравнение реакции:

Наблюдения:

Выводы:

Опыт № 4

Получение этилацетата.

В сухую пробирку поместите порошок безводного ацетата натрия (высотой около 2 мм) и 3 капли этилового спирта. Добавьте 2 капли концентрированной серной кислоты (добавление проводить в вытяжном шкафу!) и осторожно нагрейте над пламенем горелки (осторожно! раствор может выплеснуться!). Через несколько секунд появляется приятный запах этилацетата. Реакция используется для открытия этилового спирта.

Уравнение реакции:

2
$$H_3C-C_{ONa}^{O}$$
 + H_2SO_4 \longrightarrow 2 $H_3C-C_{OH}^{O}$ + Na_2SO_4 \longrightarrow $H_3C-C_{OH}^{O}$ + H_2SO_4 \longrightarrow $O-C_2H_5$ \longrightarrow $O-C_2H_5$

Наблюдения:

Выводы:

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. С.126-140, 251-268.
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985. с. 117-118
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. с.191-220, 427-440

ЗАНЯТИЕ 12

<u>Тема:</u> Гетерофункциональные карбоновые кислоты. α-,β-,γ- Гидрокси-, амино- и оксокислоты.

Мотивация темы: Аминокислоты, окси-, амино- и оксокислоты являются структурными компонентами чрезвычайно важных для жизнедеятельности живых биологических систем (белки, нуклеиновые кислоты, липиды и т.д). К тому же, многие гетерофункциональные органические соединения и их производные применяются в медицинской практике как лекарственные препараты (ацетилхолина хлорид, димедрол, лактат кальция)

<u>**Цель:**</u> Сформировать знания по стереохимии и реакционной способности с учетом взаимного влияния функциональных групп аминоспиртов, амино-, окси- и оксокислот как основу биохимических процессов и выработать умение выполнять и интерпретировать их качественные реакции.

Вопросы для самостоятельной подготовки

	Учебное задание	Конкретизация задания
1.	Номенклатура, структура и изомерия амино- , гидрокси- и	Напишите структурные формулы следующих соединений: молочной, яблочной, лимонной,
	оксокислот	пировиноградной, ацетоуксуной,β- окси(амино-)масляной кислот.
2.	Пространственное строение	Опишите признаки хиральности молекул и дайте
	гетерофункциональных кислот	определение энантиомеров на примере α-амино-
		пропионовой, α-оксимасляной кислот. Укажите
		принадлежность этих соединений к
		стереохимическим рядам (D, L- стереохимические
		ряды). Дайте определение понятию "рацематы". Напишите проекционные формулы диастереомеров
		винной, яблочной кислот.
3.	Специфические свойства	Напишите реакции, протекающие при нагревании
J.	гетерофункциональных кислот	а-окси (амино) пропановой, β-окси (амино)
	(отношение α-, β-, γ- окси- и	бутановой, ү-окси(амино) бутановой кислот.
	аминокислот к нагреванию)	
4.	Химические свойства	Напишите реакции кислотного гидролиза лактона ү-
	гетерофункциональных кислот и их	оксивалериановой кислоты. Напишите реакции
	производных.	взаимодействия β-оксипропановой кислоты, α-
		аминоуксусной, γ- оксимасленой, β-оксимасляной,
		α- оксивалериановой, β- аминомасляной кислот со
		следующими реагентами: КОН, С2Н5ОН, СН3-
		СОСІ. Напишите продукты, которые образуются при нагревании молочной и лимонной кислот с
		концентрированной серной кислотой. Дайте
		названия продуктам реакций.
5.	Получение и химические свойства	Напишите структурные формулы следующих
	биогенных аминов	биогенных аминов: коламина, холина,
		норадреналина, адреналина. Дайте название этим
		соединениям по системе IUPAC. Приведите схемы
		реакций получения аминоспиртов. Напишите
		реакции:
		а) метилирования коламина и норадреналина;
		б) ацетилирования холина;
		в) кислотно гидролиза ацетилхолина;

		г) образования солянокислых солей норадреналина и адреналина.
6.	Таутомерия оксокислот	Дайте определение понятию "таутомерия". Напишите таутомерные формы ацетоуксусного эфира и щавелевоуксусной кислоты. Докажите химическим путем наличие двух таутомерных форм ацетоуксусного эфира.
7.	Лабораторная работа	1. Доказательство наличия двух карбоксильных групп в винной кислоте 2. Доказательство наличия гидроксильных групп в винной кислоте 3. Разложение лимонной кислоты 4. Кетонное расщепление ацетоуксусного эфира

Задачи для самоконтроля.

- 1. Применяемая в медицине молочная кислота выпускается промышленностью в виде 40% водного раствора. Почему нецелесообразно дальнейшее сгущение растворов путем упаривания при нагревании?
- 2. Напишите формулы всех возможных продуктов, образующихся при нагревании смеси α-аминопропионовой и α-аминоуксусной кислот.
- 3. Один из стереоизомеров 2-амино-3-метилпентановой кислоты входит в состав белков. Напишите формулы всех возможных стереоизомеров данной кислоты и назовите их.

Протокол № 12	Дата
---------------	------

Опыт №1

Доказательство наличия двух карбоксильных групп в винной кислоте.

В пробирку поместите 1 каплю 15% раствора винной кислоты, 2 капли 5% раствора гидроксида калия и встряхните. Постепенно начинает выделяться белый кристаллический осадок малорастворимой в воде кислой калиевой соли винной кислоты (гидротартрат калия). Если осадок не выпадает, охладите пробирку под струей воды и потрите внутреннюю стенку пробирки стеклянной палочкой. Добавьте в пробирку еще 4–5 капель раствора гидроксида калия. Кристаллический осадок постепенно растворяется, так как образуется хорошо растворимая в воде средняя калиевая соль виной кислоты (тартрат калия). Раствор тартрата калия сохраните для следующего опыта.

Уравнение реакции:

Наблюдения:

Выволы:

Опыт № 2

Доказательство наличия гидроксильных групп в винной кислоте.

В две пробирки поместите по 2 капли 2% раствора сульфата меди (II) CuSO₄ и 10% раствора гидроксида натрия NaOH. Выпадает голубой осадок гидроксида меди (II) Cu(OH)₂. В первую пробирку добавьте раствор тартрата калия, полученный в предыдущем опыте. Осадок гидроксида меди (II) растворяется с образованием синего раствора. Жидкости в обеих пробирках нагрейте до кипения. В первой пробирке цвет жидкости не изменяется, во второй – голубой осадок гидроксида меди (II) превращается в оксид меди (II) черного цвета. Образовавшийся в первой пробирке синий раствор носит название реактива Фелинга и применяется для обнаружения глюкозы в моче.

Уравнение реакции:

$$CuSO_4 + 2NaOH$$
 — $Cu(OH)_2$ $+ Na_2SO_4$ — $Cu(OH)_2$ $+ Cu(OH)_2$ — $Cu(OH)_2$ — $Cu(OH)_2$

Наблюдения:

Выводы:

Опыт № 3

Разложение лимонной кислоты.

В сухую пробирку, снабженную газоотводной трубкой, поместите лопаточку лимонной кислоты и 10 капель концентрированной серной кислоты, нагрейте. Конец газоотводной трубки опустите в первую пробирку с 5 каплями раствора гидроксида бария. после того, как раствор помутнеет, перенесите газоотводную трубку во вторую пробирку, содержащую капли раствора йода в йодиде калия, предварительно обесцвеченного добавлением нескольких капель 10% раствора гидроксида натрия. Во второй пробирке выпадает бледно-желтый осадок йодоформа.

Уравнение реакции:

$$H_2C$$
—СООН t H_2C —СООН t CH_3 t $C=0$ t CH_3 $C=0$ t $C=0$ CH_3 $C=0$ CH_3 $C=0$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

$$CO_{2} + Ba(OH)_{2} \longrightarrow BaCO_{3} + H_{2}O$$

$$H_{3}C - C - CH_{3} \xrightarrow{+3} \frac{I_{2}; +3 \text{ NaOH}}{-3 \text{ NaI}; -3 \text{ H}_{2}O} \xrightarrow{H_{3}C - C - CI_{3}} \xrightarrow{+ \text{ NaOH}} CHI_{3}$$

Наблюдения:

Выводы:

<u>Опыт № 4</u>

Кетонное расщепление ацетоуксусного эфира.

В пробирку с газоотводной трубкой поместите 5 капель ацетоуксусного эфира и 5 капель 10% раствора серной кислоты, нагрейте. Конец газоотводной трубки опустите в первую пробирку с 5 каплями раствора гидроксида бария, после того как раствор помутнеет, перенесите газоотводную трубку во вторую пробирку, содержащую капли раствора йода в йодиде калия, предварительно обесцвеченного добавлением нескольких капель 10% раствора гидроксида натрия. Во второй пробирке выпадает бледно-желтый осадок йодоформа.

Уравнение реакции:

Наблюдения:

Выводы:

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005.с 153-171
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985. с. 138-139.
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. с.230-263

<u>Тема:</u> Практические навыки и решение ситуационных задач по теме: "Карбоновые и гетерофункциональные карбоновые кислоты".

Мотивация темы: Гетерофункциональные органические соединения участвуют в различного рода тканевых, цитозольных и генетических процессах, оказывая выраженное влияние на жизненно важные функции организмов. Многие из соединений данного класса являются сильными биорегуляторами физиологических процессов и важными лекарсьвенными препаратами. Липиды являются необходимыми структурными компонентами клеточных мембран.

Цель: Закрепить знания o структуре химических свойствах основных И гетерофункциональных органических соединений взаимного учетом влияния характеристических групп как основу биохимических процессов.

Вопросы для самостоятельной подготовки:

- 1. Карбоновые кислоты, их строение и классификация.
- 2. Основные методы получения карбоновых кислот.
- 3. Электронное строение карбоксильной группы. Кислые свойства карбоновых кислот.
- 4. Реакции нуклеофильного замещения как основной тип превращений карбоновых кислот. Реакции этерификации и кислотного и щелочного гидролиза
- 5. Производные карбоновых кислот. Особенности строения и химических свойств сложных эфиров, амидов, ангидридов, галоген ангидридов и амидов карбоновых кислот. Реакции ацилирования и ацилирующие агенты.
- 6. Гетерофункциональные производные карбоновых кислот.
- 7. Особенности строения, основные методы получения, физико-химические свойства галогенпроизводных карбоновых кислот.
- 8. Особенности строения, основные методы получения, физико-химические свойства гидроксипроизводных карбоновых кислот.
- 9. Особенности строения, основные методы получения, физико-химические свойства оксопроизводных карбоновых кислот.
- 10. Особенности строения, основные методы получения, физико-химические свойства аминопроизводных карбоновых кислот.
- 11. Приведите электронное строение карбоксильной группы и карбоксилат-аниона. На примере уксусной кислоты напишите схемы получения функциональных производных: солей, сложных эфиров, амидов, ангидрида, хлорангидрида.
- 12. Напишите натриевую соль пальмитиновой, стеариновой кислот (мыла).
- 13. Расположите в ряд по увеличению силы следующие кислоты: уксусная, хлоруксусная, щавелевая, гидроксиуксусная, трихлоруксусная. Объясните изменение кислотности в этом ряду.
- 14. На примере реакции этерификации и кислотного гидролиза этилового эфира уксусной кислоты опишите механизм S_N у тригонального атома углерода.
- 15. Напишите схему реакции этерификации 4-аминобензойной кислоты этанолом (получение анестезина), диэтиламиноэтанолом (получение новокаина).
- 16. Напишите схему получения ацетилсалициловой кислоты реакцией этерификации.
- 17. Приведите общую структурную формулу триацилглицеринов (нейтральных жиров, кефалинов, лецитинов).
- 18. Напишите схему омыления, окисления, гидрогенизации жидких жиров.
- 19. Напишите схему реакций декарбоксилирования щавелевой, салициловой, бензойной кислот, гистидина, триптофана, а также ацетоуксусной и щавелевоуксусной кислот.
- 20. Объясните отношение к ангидридизации одноосновных и двухосновных кислот жирного и ароматического ряда. Напишите и сравните формулы уксусного, малеинового, янтарного, фталевого ангидридов.

- 21. Объясните амфотерность аминокислот, образование биполярных ионов.
- 22. Дайте определение понятию таутомерия.
- 23. Объясните наличие кето-енольной таутомерии у ацетоуксусной, щавелевоуксусной, барбитуровой, мочевой кислот.
- 24. С помощью каких химических реакций можно доказать наличие 2-х таутомерных форм ацетоуксусного эфира?
- 25. Дайте определение понятию таутомерия. Объясните наличие кето-енольной таутомерии у ацетоуксусной и щавелевоуксусной кислот. С помощью каких химических реакций можно доказать наличие 2-х таутомерных форм ацетоуксусного эфира?
- 26. Объясните оптическую активность окси- и аминокислот. Дайте полную характеристику оптическим изомерам (энантиомерам): D-, L- ряды. Напишите D-молочную кислоту, L-аланин, L-триптофан, L-гистидин.
- 27. Объясните появление СН-кислотного центра у а-углеродного атома карбоновых кислот.
- 28. Напишите реакцию галогенирования кротоновой и изовалериановой кислот.

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. С.114-167, 183-189, 213-216
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985.
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. с.40-49.. 51-82,268-309.

Тема: Исследование химических свойств моносахаридов.

Мотивация: Среди природных соединений важное место занимают углеводы. Они принимают участие в построение важных структур, служат материалом для биосинтеза соединений различных классов, им принадлежит важная роль в биоэнергетике клетки. Углеводы входят в состав физиологически активных гликозидов, нуклеиновых кислот, полисахаридов, гликолипидов и гликопротеидов. С ними связаны иммунохимические свойства тканей, специфические реакции организма на внешние химические раздражители.

<u>**Цель:**</u> Сформировать знания принципов стереохимического строения, таутомерного равновесия, химических свойств моносахаридов и умения проводить качественные реакции обнаружения важнейших моносахаридов.

Вопросы для самостоятельной подготовки:

<u>No</u>	Учебное задание	Конкретизация задание
1.	Номенклатура и	Напишите структурные формулы (Фишера) D- глюкозы,
	классификация углеводов.	D- маннозы, D-галактозы, D-рибозы, D- ксилозы, D-
		фруктозы. Приведите классификацию углеводов.
2.	Стереоизомерия	Напишите формулы и объясните строение α – и β –
	моносахаридов	аномеров D -ряда глюкопиранозы, глюкофуранозы,
		рибофуранозы (формулы Хеуорзса). Объясните,
		конфигурация какого атома углерода определяет
		принадлежность к ряду D - ряду? Объясните сущность
-	77	кольчато-цепной таутомерии и явление мутаротации.
3.	Химические свойства	Напишите схемы реакций α-D – клюкопиранозы и β-D –
	моносахаридов	рибофуранозы со следующими реагентами:
		•этиловый спиртом (HCl)
		•избытком йодистого метила
		•избытком уксусного ангидрида •фосфорной кислотой
		Назовите продукты реакции
		пазовите продукты реакции
4.	Реакции окисления и	Напишите схемы реакций получения глюконовой,
	восстановления	глюкаровой и глюкуроновой кислот из глюкозы.
		Объясните влияние природы окислителя на продукты
		реакции. Напишите формулы и назовите продукты
		восстановления ксилозы и глюкозы.
5.	Лабораторная работа	1.Доказательство наличия гидроксильных групп в
		глюкозе.
		2. Восстановление гидроксида меди (II) глюкозой в
		присутствии щелочи (проба Троммера).
		3.Восстановление аммиачного раствора оксида серебра
		(реактив Толленса) глюкозой.
		4. Реакция Селиванова на фруктозу.

Задачи для самостоятельного решения

- 1. Дайте определение аномерам. Напишите α и β -D-галактопиранозу, α и β -D галактофуранозу, α и β -D-маннопиранозу.
- 2. Напишите схемы реакций D-галактопиранозы и D-рибофуранозы с избытком диметилсульфата и назовите продукты реакции.

- 3. Какие продукты образуются при гидролизе метил- 2,3,4,6-тетра-О-метил-β-D-глюкопиранозида в кислой среде?
- 4. Какая качественная реакция служит доказательством наличия нескольких гидроксильных групп в глюкозе?

Протокол № 14

Дата _____

Опыт № 1

Доказательство наличия гидроксильных групп в D-глюкозе.

В пробирку поместите 1 каплю 0,5% раствора D-глюкозы и 6 капель 10% раствора NaOH. К полученной смеси добавьте 1 каплю 2%раствора сульфата меди (II) CuSO₄. Образующийся осадок гидроксида меди (II) Cu(OH)₂ быстро растворяется и получается прозрачный раствор синего цвета. Полученный раствор сохраните для следующего опыта.

Уравнение реакции:

Наблюдения:

Выводы:

Опыт № 2

Восстановление гидроксида меди (II) глюкозой в щелочной среде (проба Троммера).

К полученному в предыдущем опыте синему раствору добавьте несколько капель воды до высоты слоя жидкости в пробирке 15–20 мм. Нагрейте ее над пламенем горелки, держа пробирку наклонно так, чтобы нагревалась только верхняя часть раствора, а нижняя оставалась для контроля (без нагревания). Нагревать только до начала кипения, но не кипятить. При нагревании цвет верхней части раствора изменяется от синего до желто-красного. Эта реакция называется пробой Троммера и используется для открытия глюкозы в моче.

Уравнение реакции:

$$H_{C}$$
 О H_{C} Н H_{C} Си G Н H_{C} Си G Н H_{C} Си G Н H_{C} Си G Н H_{C} Си H_{C} Си

Наблюдения:

Выводы:

<u>Опыт № 3</u>

Восстановление аммиачного раствора гидроксида серебра глюкозой.

В пробирку поместите 1 каплю 5% раствора нитрата серебра AgNO₃, прибавьте 2 капли 10% раствора гидроксида натрия NaOH и 3–4 капли 10% водного раствора аммиака до растворения образующегося осадка гидроксида серебра. Полученный прозрачный аммиачный раствор гидроксида серебра является реактивом, окисляющим глюкозу (реактив Толленса). Добавьте к полученному реактиву 1 каплю 0,5% раствора глюкозы и слегка подогрейте пробирку над пламенем горелки до начала побурения раствора. Далее реакция идет без нагревания и металлическое серебро выпадает либо в виде черного осадка, либо осаждается на стенках пробирки в виде зеркального налета.

Уравнение реакции:

Наблюдения:

Выводы:

Опыт № 4

Реакция Селиванова на фруктозу.

В пробирку поместите крупинку сухого резорцина и 2 капли концентрированной хлороводородной кислоты. Добавьте 2 капли 0,5% раствора фруктозы и нагрейте до начала кипения. Постепенно жидкость приобретает красное окрашивание. Реакция обусловлена образованием нестойкого соединения — гидроксиметилфурфурола. Под действием концентрированной хлороводородной кислоты гидроксиметилфурфурол конденсируется с резорцином, давая окрашенное соединение.

Уравнение реакции:

$$HO-H_2C$$
 ОН $HO-H_2C$ ОН HO

Наблюдения:

Выводы:

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005.с 217-243
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985.
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. с.377-395

<u>Тема:</u> "Исследование структуры и химических свойств дисахаридов и полисахаридов".

Мотивация: Углеводы широко распространены в природе и играют важную роль в метаболизме растительных и животных организмов. Процессы жизнедеятельности сопровождаются сложными химическими превращениями углеводов (углеводный обмен). Особое место занимают углеводы, выполняющие в организме высокоспециализированные функции (нуклеотиды - носители генного кода; специфические полисахариды- антигены, обуславливающие иммунитет; гликопротеины - специфические групповые вещества крови и т.д.) Некоторые виды углеводов входят в состав оболочек растительных клеток и играют опорную роль.

Глубокие знания в области структуры и химии углеводов необходимы для приобретения профессиональных навыков изучения соответствующих разделов биологической химии, фармакологии, терапии и других дисциплин.

<u>**Цель:**</u> Сформировать знания принципов стереохимического строения и основных химических превращений ди-, гомо- и гетерополисахаридов во взаимосвязи с их биологическими функциями.

Вопросы для самостоятельной подготовки:

№	Учебное задание	Конкретные задания
1.	Олигосахариды	Напишите структурные формулы мальтозы, лактозы,
		целлобиозы, сахарозы. Дайте полное химическое название
		дисахаридов.
2.	Химические свойства	Объясните сущность понятия "восстанавливающие"
	дисахаридов и	дисахариды. Напишите схему реакции лактозы с оксидом
	полисахаридов	серебра; напишите схему гидролиза мальтозы, лактозы,
		сахарозы, целлобиозы. Напишите схему реакции целлобиозы
		с этиловым спиртом. В какой среде идёт данная среда?
3.	Гомополисахариды	Какие полисахариды называются гомополисахаридами?
		Объясните строение и характер гликозидных связей
		амилозы, амилопектина, целлюлозы, гликогена.
4.	Химические свойства	Напишите схему гидролиза целлюлозы, крахмала. Напишите
	гомополисахариды	схемы получения нитратов, ацетатов, ксантогенатов
		клетчатки. Объясните их народно- хозяйственное значение.
5.	Гетерополисахариды	Дайте определение гетерополисахаридам. Назовите
		составные компоненты мукополисахаридов:
		хондроитинсульфата гепарина и характер их гликозидной
		СВЯЗИ.
6.	Лабораторная работа	Отсутствие восстановительной способности у сахарозы
		Восстановительная способность лактозы
		Кислотный гидролиз крахмала
		Качественная реакция на крахмал

Задания для самостоятельного решения.

- 1. Напишите структурную и конформационную формулы молочного сахара (лактозы). Дайте полное название. Проведите гидролиз лактозы.
- 2. Напишите реакцию взаимодействия мальтозы с избытком диметилсульфата. Назовите полученное соединение, проведите его гидролиз. Будет ли обладать восстанавливающими свойствами полученное в результате гидролиза соединение?

3. Напишите структурную формулу дисахарида, состоящего из D-глюкуроновой кислоты и N-ацетилглюкозамина, связанных β-1,3-гликозидной связью. В состав какого биополимера входит этот фрагмент?

Протокол № 15

Дата				
Zara	 	 		

Опыт № 1

Отсутствие восстанавливающей способности у сахарозы.

В пробирку поместите 1 каплю 1% раствора сахарозы и 6 капель 10% гидроксида натрия NaOH. Добавьте для разбавления 5–6 капель воды (высота слоя жидкости 15–20мм). Прибавьте 1 каплю 2% раствора сульфата меди (II) CuSO₄. Образуется прозрачный синий раствор комплексной соли меди (II) с сахарозой. Осторожно нагрейте пробирку над пламенем горелки так, чтобы нагревалась только верхняя часть раствора, а нижняя оставалась без нагревания (для контроля). Нагревать только до начала кипения, но не кипятить. Изменения окраски раствора не происходит.

Вспомните (*протокол № 14, опыт № 2*), что с D-глюкозой в аналогичных условиях происходило изменение окраски верхней части раствора в желто-красную.

Наблюдения:

Выводы:

Опыт № 2

Восстанавливающая способность лактозы.

В пробирку поместите 1 каплю 1% раствора лактозы и 4 капли 10% гидроксида натрия NaOH. Добавьте 1 каплю 2% сульфата меди CuSO4. Образующийся голубой осадок гидроксида меди (II) при встряхивании пробирки растворяется, образуя синий раствор комплексной соли меди (II) с лактозой. Добавьте для разбавления несколько капель воды до высоты слоя жидкости 15–20мм. Осторожно нагрейте пробирку так, чтобы нагревалась только верхняя часть раствора, а нижняя оставалась без нагревания (для контроля). Нагревайте до кипения. При нагревании цвет верхней части раствора изменяется в желто-красный. Вспомните (*протокол №* 11, опыт № 2), что с D-глюкозой в аналогичных условиях также происходило изменение окраски верхней части раствора в желто-красную.

Уравнение реакции:

$$CuSO_4 + 2NaOH \longrightarrow Cu(OH)_2 \downarrow + Na_2SO_4$$

$$CH_2OH \qquad CH_2OH$$

$$OH \qquad OH \qquad OH \qquad OH$$

$$OH \qquad OH \qquad OH$$

Наблюдения:

Выволы:

Опыт № 3

Качественная реакция на крахмал.

В пробирку поместите 5 капель 0.5% крахмального клейстера и 1 каплю сильно разбавленного раствора йода. Раствор окрашивается в синий цвет (предполагается, что крахмал с йодом образует соединения-включения (клатраты), окрашенные в характерные цвета - синий ($\lambda_{\text{макс}} = 620\text{-}680$ нм) для амилозы и красный ($\lambda_{\text{макс}} = 520\text{-}555$ нм) для амилопектина. Молекулы амилозы в этих комплексах образуют вокруг молекулы йода спираль, каждый виток которой содержит 6 остатков глюкозы. При нагревании окрашенного раствора крахмала с йодом окраска исчезает, а при охлаждении появляется вновь, что связано, по-видимому, с раскручиванием спирали амилозы).

Наблюдения:

Выводы:

<u>Опыт № 4</u>

Кислотный гидролиз крахмала.

В пробирку поместите 1 каплю 0,5% крахмального клейстера. Добавьте 2 капли 10%серной кислоты H₂SO₄ и поместите пробирку в кипящую водяную баню. Мутный раствор клейстера становится прозрачным через 20 минут. Пипеткой нанесите 1 каплю гидролизата на предметное стекло и добавьте 1 каплю разбавленного раствора йода в йодиде калия. Если проба не дает положительной йодкрахмальной реакции (синее окрашивание), добавьте в пробирку 8 капель 10% гидроксида натрия NaOH для создания щелочной среды. Затем добавьте 1 каплю 2% раствора сульфата меди (II) CuSO₄. Будет ли положительной проба Троммера?

Уравнение реакции:

$$(C_6H_{10}O_5)$$
n $\xrightarrow{H_2O; H^+}$ $(C_6H_{10}O_5)$ x $\xrightarrow{H_2O; H^+}$ $(C_{12}H_{22}O_{11})$ x $\xrightarrow{H_2O; H^+}$ $C_6H_{12}O_6$ D -глюкоза $X < D$

TT	_		
Ha	ЛПЦ	ΛΠΑΙ	ния:
11a	OJII	одсі	III.

Выводы:

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. С. 217-250
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985.
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. С. 349-399

<u>Тема:</u> Практические навыки и решение ситуационных задач по теме: "Углеводы"

Мотивация темы: Углеводы входят в состав физиологически активных гликозидов, нуклеиновых кислот; гетерополисахаридов, гликолипидов и гликопротеидов. С ними связаны иммунохимические свойства тканей, специфические реакции организма на внешне химические раздражители. Особое место занимают углеводы, выполняющие в организме высоко специфические функции (нуклеотиды носители генного кода; специфические полисахариды-антигены, обуславливающие иммунитет; гликопротеины - специфические групповые вещества крови и т.д.). Глубокие знания в области структуры и химии углеводов необходимы для приобретения профессиональных навыков и являются базой при изучении соответствующих разделов биологической химии, фармакологии, патофизиологии и других дисциплин.

<u>**Цель:**</u> Закрепить и углубить знания стереохимического строения, химических превращений углеводов, уметь проводить качественные реакции обнаружения и идентификации углеводов во взаимосвязи с их биологическими функциями.

Вопросы для самостоятельной подготовки:

- 1. Углеводы. Классификация углеводов.
- 2. Моносахариды, особенности строения и классификация.
- 3. Явление цикло-оксо таутомерии. Эпимеризация моносахаридов. Мутаротация.
- 4. Реакционная способность моносахаридов.
- 5. Реакции идентификации моносахаридов.
- 6. Природа гликозидной связи.
- 7. Олигосахариды. Дисахариды.
- 8. Восстанавливающие и невосстанавливающие дихахариды.
- 9. Полисахариды, их классификация и особенности строения.
- 10. Биологическая роль углеводов.
- 11. Напишите структурные формулы (Фишера) D- глюкозы, D- маннозы, D-галактозы, D- рибозы, D- ксилозы, D- фруктозы. Приведите классификацию (пентозы, гексозы, альдозы, кетозы)
- 12. Напишите формулы и объясните строение α и β –аномеров D –ряда глюкопиранозы, глюкофуранозы, рибофуранозы (формулы Хеуорса). Объясните, конфигурация какого атома углерода определяет принадлежность углерода D –ряду?
- 13. Напишите схемы реакций α -D глюкопиранозы и β D -рибофуранозы со следующими реагентами: этиловый спиртом, избытком йодистого метила, избытком уксусного ангидрида, фосфорной кислотой
- 14. Напишите схемы реакций получения глюконовой, глюкаровой и глюкуроновой кислот. Объясните влияние природы окислителя на продукты реакции. Напишите формулы и назовите продукты восстановления ксилозы и глюкозы.
- 15. Напишите структурные формулы мальтозы, лактозы, целлобиозы, сахарозы. Дайте полное химическое название дисахаридов.
- 16. Напишите схему реакции лактозы с реактивом Толленса; напишите схему гидролиза мальтозы, лактозы, сахарозы, целлобиозы. Напишите схему реакции целлобиозы с этиловым спиртом (HCl). В какой среде идёт данная реакция?
- 17. Напишите схему гидролиза целлюлозы, крахмала. Напишите схемы получения нитратов, ацетатов, ксантогенатов клетчатки.
- 18. Дайте определение понятию гетерополисахарид. Назовите составные компоненты мукополи-сахаридов: гиалуроновой кислоты, хондроитинсульфата, гепарина и характер их гликозидных связей.

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. С. 217-250
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985.
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. С. 349-399

Тема: "α-Аминокислоты, пептиды и белки"

Мотивация темы: Природными белками, состоящим из α- аминокислот, присуще выполнение множества разнообразных функций, характерных для живых организмов: каталитическая функция - универсальная, несвойственная другим полимерным молекулам, питательная (резервная), транспортная, защитная, сократительная, структурная, гормональная и др. Аминокислоты состоятельно используются как эффективные лекарственные средства (метионин, сарколизин, аминалон).

Знания особенностей строения и химии α-аминокислот и пептидов необходимы для успешного усвоения белков на молекулярном уровне.

<u>**Цель:**</u> Сформировать знания строения и свойств важнейших α - аминокислот и пептидов, а также химических превращений этих соединений in vivo и in viro.

Вопросы для самостоятельной подготовки

No	Учебное задание	Конкретизация задания
1.	Номенклатура и классификация α-аминокислот	Напишите структурные формулы следующих аминокислот: глицин, аланин, валин, лейцин, изолейцин, лизин, серин, цистеин, фенилаланин, тирозин, пролин, триптофан, аспарагиновая и глутаминовая кислоты. Приведите классификацию вышеназванных кислот: а). по числу -СООН и -NH2 групп; б).укажите жирные, ароматические и гетероциклические аминокислот. Какие из них являются незаменимыми?
2.	Способы получения аминокислот	Получите: аланин из пропаналя циагидридным способом; валин аммонолизом 2-бромо-3метилбутановой кислоты. Назовите известные способы образования аминокислот in vivo.
3.	Химические свойства α-аминокислот а)реакции карбоксильной группы	Напишите: схему взаимодействия валина с гидроксидом меди (II); аланина и этилового спирта в присутствии НСІ (сухой); защищенного по аминогруппе аланин с РОСІ ₃ ; реакции декарбоксилирования триптофана. Назовите продукты реакции.
	б).реакции аминогрупп	а) взаимодействие лейцина с хлорангидридом уксусной кислоты, бензилоксикарбонилхлоридом; б) гистидина с азотистой кислотой, формальдегидом; в) аланина с 2,4-динитрофторбензолом (реактив Сенгера); г) валина с фенилизотиоцианатом (реакция Эдмана). Какие продукты образуются при дезаминировании in vivo? Какие реакции используются в биохимическом анализе?
4.	Амфотерные свойства	Напишите схемы реакций аланина, валина, глицина: а) с разбавленным раствором NaOH при комнатной температуре; б) с соляной кислотой.
5.	Пептиды и полипептиды	Напишите дипептид с последовательностью лейцинвалин (Лей-Вал), трипептид гистидин-серин-триптофан (Гис-Сер-Три). Обозначьте пептидную связь. Объясните понятия "первичная", "вторичная" структура белка.

6.	Лабораторная работа	1.Образование комплексной соли меди глицина.
		2. Ксантопротеиновая реакция.
		3. Осаждение белка солями тяжелых металлов.
		4. Биуретовая реакция на пептидную связь.

Задания для самостоятельного решения

1. При биуретовой реакции образуется окрашенное комплексное соединение

Объясните химическую сущность данной реакции на пептидную связь.

- 2. Напишите синтез дипептида лейцин-тирозин (Лей-Тир) с использованием операций «активации» и «защиты». Укажите N- и C-концевые АК.
- 3. Какие продукты образуются при окислительном и неокислительном дезаминировании триптофана, изолейцина?
- 4. Какое соединение получится при действии азотистой кислоты на аланин, фенилаланин?
- 5. Объясните появление желтой окраски в реакции белка с HNO₃.
- 6. На примере реакций докажите амфотерные свойства аланина.

Дата

Опыт 1.

Образование медной комплексной соли глицина.

В пробирку помещают 1 мл 2 %-ного раствора глицина. Добавляют лопаточку сухого карбоната меди и нагревают. Смесь окрашивается в синий цвет благодаря образованию комплексного соединения.

Уравнение реакции:

Наблюдение:

Выводы:

Опыт 2.

Осаждение белков концентрированными минеральными кислотами. Ксантопротеиновая реакция.

В пробирку с 1 мл раствора яичного белка прибавляют 1 мл концентрированной азотной кислоты и перемешивают. Образуется белый хлопьевидный осадок, при нагревании переходящий в ярко-желтый. При добавлении 2-3 мл 10% раствора NaOH появляется оранжевое окрашивание.

$$HO$$
 CH_2 CH $COOH$ HNO_3 HO CH_2 CH $COOH$ H_2O HO O_2N желтое окрашивание CH_2 CH $COOH$ O_2N O_2N

Наблюдение:

Выводы:

<u>Опыт 3</u>

Осаждение белков солями тяжелых металов.

В одну пробирку к 1 мл раствора яичного белка по каплям, при встряхивании, до выпадения осадка прибавляют насыщенный водный раствор меди (II) сульфата, а в другую, к такому же количеству белка, аналогичным способом прибавляют 20 %-ный водный раствор свинца (II) ацетата. В обеих пробирках происходит образование осадков.

Наблюдение:

Выводы:

Опыт 4.

Биуретовая реакция на пептидную связь.

В пробирку поместите 5-6 капель раствора яичного белка, добавьте равный объем 10% раствора NaOH и 1-2 капли раствора CuSO₄. Наблюдается появление красно-фиолетовой окраски.

комплексное соединение

Наблюдение:

Выводы:

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. С.236-281
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985.
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. С.312-361

<u>Тема:</u> "Нуклеотиды, нуклеозиды. Первичная и вторичная структура нуклеиновых кислот"

Мотивация темы: Знание структурных и стереохимических особенностей строения нуклеозидов, нуклеотидов и нуклеиновых кислот способствует пониманию механизма биосинтеза белков, передачи наследственной информации, выполнения ими коферментных функций, а также роли $AT\Phi$ как энергетического "поставщика" в различных биохимических процессах.

<u>**Цель:**</u> Закрепить знания о принципах строения нуклеиновых кислот — клеточных компонентов на стадии их первичной и вторичной структуры, являющихся необходимой предпосылкой к пониманию их биосинтеза и биологической роли.

Вопросы для самостоятельной подготовки:

No	Учебное задание	Конкретизация задания
1.	Классификация и номенклатура	Дайте химические название следующим основаниям:
	нуклеиновых оснований.	урацил, тимин, цитозин, аденин, гуанин: напишите их
	Лактим-лактамная таутомерия.	таутомерные пары оснований А-Т, Г-Ц.
	Комплементарность оснований.	
2.	Строение нуклеозидов	Напишите схемы реакций гидролиза аденозина и
		дезоксиаденозина, гуанозина и дезоксигуанозина,
		цитидина и дезоксицитидина, уридина и тимина.
3.	Строение нуклеотидов	Напишите структурные формулы и осуществите
		гидролиз следующих нуклеотидов: адениловой,
		гуаниловой, цитидиловой, тимидиловой, дезокси-
		цитидиловой, уридиловой кислот. Строение, свойства
		АТФ и её значение.
4.	Первичная и вторичная	Напишите строение участка ДНК со следующей
	структура РНК и ДНК	последовательностью оснований: АТ, ГТ, АЦ; РНК-
		ГУ, УГ. Напишите схему взаимодействия АТФ с Гли,
		Ала, Вал, Лей.
5.	Значение нуклеиновых кислот в	Укажите на роль нуклеиновых кислот в биосинтезе
	жизнедеятельности	белков и в передаче наследственной информации.
	растительных и животных	
	организмов.	

Задания для самостоятельного решения

1. Напишите схему гидролитического расщепления в кислой среде аденозинтрифосфорной кислоты в щелочной среде и назовите продукты реакции.

- 2. Напишите таутомерные превращения тимина. Какой из таутомеров преобладает в равновесной смеси?
- 3. Какая из двух комплементарных пар УА или ТА входит в состав ДНК? Напишите строение этой пары.

4. Напишите строение участка цепи РНК с последовательностью оснований: ГУА и выделите сложноэфирные связи.

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. С. 320-343
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985.
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. С. 400-412

<u>Тема:</u> Практические навыки и решение ситуационных задач по теме: «Биополимеры и их структурные компоненты».

Мотивация темы: С биологической точки зрения большое значение имеют аминокислоты, которые являются простейшими компонентами белков — важнейших соединений служащих для построения тканей человеческого и животного организма. Некоторые пептиды представляют самостоятельный интерес (гормоны окситоцин, вазопрессин, инсулин). Познание основ строения и свойств нуклеиновых кислот, позволяет понимать сущность нормальных и патологических процессов в организме, подойти к перспективным проблемам управления некоторыми процессами жизнедеятельности.

<u>**Цель:**</u> Объяснять электронное и пространственное строение пептидной связи и первичной структуры белковых молекул. Закрепить знания о принципах строения биополимеров - клеточных компонентов на стадии их первичной и вторичной структуры.

Вопросы для самостоятельной подготовки:

- 1. α-Аминокислоты. Классификация протеиногенных аминокислот.
- 2. Кислото-основные свойства аминокислот. Природа цвиттер-иона.
- 3. Оптическая изомерия α-аминокислот.
- 4. Химические свойства α-аминокислот.
- 5. Особенности строения полипептидов, природа пептидной связи.
- 6. Синтез полипептидов.
- 7. Белки. Первичная, вторичная, третичная и четвертичная структура белковых молекул.
- 8. Установление строения белковых молекул. Секвенирование белков.
- 9. Биологическая роль белковых молекул.
- 10. Особенности строения нуклеиновых кислот.
- 11. Особенности строения нуклеотидов и нуклеозидов.
- 12. Гидролиз нуклеотидов и нуклеозидов.
- 13. Комплементарность.
- 14. Особенности строения и биологическая роль аденозинтрифосфата и циклических нуклеотидов.

- 1 Губський Ю.І., Біоорганічна хімія. Вінниця: Нова книга, 2005. С.236-281
- 2 Зіменковський Б.С., Музиченко В.А., Біоорганічна хімія.- К.: Вид. "Кварт", 2009.
- 3 Артемьева Н.Н., Белобородов В.Л. и др. Руководство к лабораторным занятиям по биоорганической химии.- М.: Медицина, 1985.
- 4 Тюкавкина Н.А., Бауков Ю.И. Биоорганическая химия .- М.: Медицина, 1991. С.312-361

Итоговый модульный контроль: «Биологически важные классы биоорганических соединений. Биополимеры и их структурные компоненты».

Перечень

контрольных вопросов к сдаче итогового модуля по курсу биоорганической химии.

- 1. Биоорганическая химия как наука: определение, предмет и задачи, разделы, методы исследования. Значение в системе высшего медицинского образования.
- 2. Классификация органических соединений по строению углеродного радикала и природой функциональных групп.
- 3. Строение важнейших классов биоорганических соединений по природе функциональных групп: спиртов, фенолов, тиолов, альдегидов, кетонов, карбоновых кислот, сложных эфиров, амидов, нитросоединений, аминов.
- 4. Номенклатура органических соединений: тривиальная, рациональная, международная. Принципы образования названий органических соединений по номенклатуре ИЮПАК: заместительной, радикало-функциональной.
- 5. Теория строения органических соединений. Химическое строение молекул; понятие про структурные изомеры.
- 6. Природа химической связи в органических соединениях: гибридизация орбитале, электронное строение соединений углерода.
- 7. Делокализация электронов и сопряженные системы в органических соединениях. Сопряжённые системы с открытой цепью: электронное строение и химические свойства 1,3-диенов.
- 8. Сопряженные системы с замкнутой цепью: электронное строениебензола; ароматичность у ряда одно- и многоядерных аренов, гетероциклических соединений.
- 9. Взаимное влияние атомов в органических молекулах: поляризация связей; индуктивный (I±) и мезомерный (М±) эффекты. Влияние электронодонорных и электроноакцепторных заместителей на реакционную способность молекул.
- 10. Пространственное строение биоорганических соединений: формулы стереохимий; конфигурация и конформация. Стереоизомеры: геометрические, оптические, поворотные (конформеры).
- 11. Геометрическая изомерия в замещенных алкенах, циклоалканах, ненасыщенных высших жирных кислотах, дикарбоновых кислотах. *Цис-, транс-* и E/Z-номенклатурные системы.
- 12. Оптическая изомерия; хиральность молекул органических соединений. D/L- и R/S- стереохимические номенклатуры. Энантиомеры и диастерео меры биоорганических соединений. Связь пространственного строения с физиологической активностью.
- 13. Поворотные (конформационные) изомеры; проекционные формулы Ньюмена. Энергетические характеристики конформационных изомеров углеводородов в *син-, анти-* и *гош-* конформации.
- 14. Конформационные изомеры циклических углеводородов; аксиальные и экваториальные связи в молекуле циклогексана. Значения конформационной изомерии для образования пространственной структуры биомолекул.
- 15. Типы реакций в биоорганической химии: классификация по результатам (направленностью) и механизмом реакции.
- 16. Характеристика и примеры отдельных типов реакций в биоорганической химии: присоединение, замещение, отщепление (элиминирование), перегруппировка, окисление и .
- 17. Характеристика и примеры гомолитических (радикальных) и гетеролитических (ионных) реакций в биоорганической химии. Электрофильные и нуклеофильные реагенты.
- 18. Окислительно-восстановительные реакции в биоорганической химии. Свободнорадикальные реакции образования пероксидных соединений, их

- биомедицинское значение в норме и при условиях патологии клетки.
- 19. Кислотные и основные свойства биоорганических соединений: протонная теория Бренстеда; теория кислот и аний Льюиса.
- 20. Гидроксилсодержащие соединения спирты и тиолы в биоорганической химии: строение, свойства, биомедицинское значение отдельных представителей.
- 21. Фенолы: строение, свойства, биомедицинское значение. Характеристика представителей одноатомных (фенол, крезол) и двухатомных (пирокатехин, резорцин, гидрохинон) фенолов.
- 22. Тиолы (меркаптаны), сульфиды и дисульфиды в биоорганической химии: строение, свойства.
- 23. Карбонильные соединения в биоорганической химии. Химические свойства и биомедицинское значение альдегидов и кетонов.
- 24. Карбоновые кислоты в биоорганической химии: строение и химические свойства; функциональные производные карбоновых кислот (ангидрид, амиды, сложные эфиры). Реакции декарбоксилирования.
- 25. Строение и свойства дикарбоновых кислот: щавелевой, малоновой, янтарной, глутаровой, фумаровой.
- 26. Строение и свойства угольной кислоты и ее производных. Уретаны, уреиды кислот, мочевина.
- 27. Сложные эфиры карбоновых кислот: номенклатура, образование, свойства.
- 28. Амины: номенклатура, свойства. Биомедицинское значение биогенных аминов (адреналина, норадреналина, дофамин, триптамин, серотонина, гистамина) и полиаминов (спермидина, спермина, путресцина, кадаверина).
- 29. Ароматические амины: строение, свойства. Анилин как предшественник в синтезе лекарственных средств сульфаниламида, фенацетина, анестезина, новокаина.
- 30. Аминоспирты: строение, свойства. Биомедицинское значение этаноламина (коламина), холина, ацетилхолина.
- 31. Гидроксикислоты в биоорганической химии: строение и свойства монокарбоновых (молочной, гидроксимасляной) дикарбоновых (яблочной, винной) и трикарбоновых (лимонной, цис-аконитовой) гидроксикислот.
- 32. Аминокислоты: строение, стереоизомерия, химические свойства. Биомедицинское значение L-аминокислот. Реакции биохимических превращений аминокислот: дезаминирование, трансаминирование, декарбоксилирование.
- 33. Строение и свойства наиболее распространенных в биообъектах оксокислот: пировиноградной, ацетоуксусной, щавелевоуксусной, кетоглутаровой. Понятие о кетоновых телах.
- 34. Фенолокислоты. Салициловая кислота и ее производные как противоспалительные (ацетилсалициловая кислота, метилсалицилат, салицилат натрия) и противомикробные (фенилсалицилат) средства.
- 35. Пятичленные гетероциклы с одним гетероатомом (, фуран, тиофен). Биомедицинское значение тетрапиррольных соединений; порфина, порфиринов, гема.
- 36. Индол и его производные: триптофан и реакции образования триптамина и серотонина; индоксил, скатол значение в процессах гниения белков в кишечнике.
- 37. Пятичленные гетероциклы с двумя гетероатомами азота. Пиразол, пиразолон; производные пиразолона-5 как лекарственные средства (антипирин, амидопирин, анальгин). Имидазол и его производные: гистидин, гистамин.
- 38. Пятичленные гетероциклы с двумя гетероатомами: тиазол, оксазол. Тиазол как структурный компонент молекулы тиамина (витамина В).
- 39. Шестичленные гетероциклы с атомом азота: пиридин. Никотинамид (витамин PP) как составная часть окислительно восстановительных пиридиновых коферментов. Пиридоксин и молекулярные формы витамина B_6
- 40. Шестичленные гетероциклы с двумя атомами азота. Диазины: пиримидин, пиразин, пиридазин. Азотистые основания производные пиримидина (урацил, цитозин, тимин)
- 41. Производные пиримидина как лекарственные средства: 5-фторурацил, оротат калия.

- Барбитуровая кислота: барбитураты как снотворные и противоэпилептические средства (фенобарбитал, веронал).
- 42. Шестичленные гетероциклы с гетероатомами. Фенотиазины аминазины др. как психотропные (нейролептические) средства.
- 43. Семичленные гетероциклы с двумя гетероатомами. Диазепины: бензо-1,4-диазепины как наиболее распространенные транквилизаторы и анксиолитики.
- 44. Пурин и его производные. Аминопроизводные пурина (аденин, гуанин), их таутомерные формы; биохимическое значение в образовании нуклеотидов и коферментов.
- 45. Гидроксипроизводные пурина: гипоксантин, ксантин. мочевая кислота. Метилированные производные (кофеин, теофиллин. теобромин) ксантина физиологическиактивные соединения с действием на центральную сердечнососудистую системы.
- 46. Углеводы: определение, классификация. Моносахариды (альдозы и кетозы; триозы, тетрозы, пентозы, гексозы, гептозы), биомедицинское значение отдельных представителей.
- 47. Моносахариды: пентозы (рибоза, 2-дезоксирибоза, ксилоза), гексозы (глюкоза, галактоза, манноза, фруктоза) строение, свойства. Качественные реакции на глюкозу.
- 48. Строение и свойства производных моносахаридов. Аминопроизводные: глюкозамин, галактозамин. Уроновые кислоты. L-аскорбиновая кислота (витамин С). Продукты моносахаридов: сорбит, маннит.
- 49. Олигосахариды: строение, свойства. Дисахариды (сахароза, лактоза, мальтоза), их биомедицинское значение.
- 50. Полисахариды. Гомополисахариды: крахмал, гликоген, целюлоза, декстраны строение, гидролиз, биомедицинское значение. Качественная реакция на крахмал.
- 51. Гетерополисахариды: определение, структура. Строение и биомедицинское значение глюкозаминогликанов (мукополисахарида) гиалуроновой кислоты, хондроитинсульфатов, гепарина.
- 52. Липиды: определение, классификация. Высшие жирные кислоты: пальмитиновая, стеариновая, олеиновая, линолевая, линоленовая, арахидоновая. Простые липиды. Триацилглицеролы (нейтральные жиры): строение, физиологичное значение, гидролиз.
- 53. Сложные липиды. Фосфолипиды, фосфорная кислота, фосфатидилэтаноламин, фосфатидилхолин, фосфатидилсерин. Сфинголипиды. Гликолипиды. Роль сложных липидов в строении биомембран.
- 54. Стероиды как производные циклопентанпергидрофенантрена (стерана). Строение биологически важных представителей стероидов: холестерина, витамина D, желчных кислот, кортикостероидов, половых гормонов.
- 55. Аминокислотный состав белков и пептидов; классификация L-аминокислот. Химические и физико-химические свойства протеиногенных аминокислот. Нингидриновая реакция, ее значение, в анализе аминокислот.
- 56. Белки и пептиды: определение, классификация, биологические функции. Типы связи между аминокислотными остатками в белковых молекулах. Пептидная связь: образование и структура. Биуретовая реакция.
- 57. Уровни структурной организации белков: первичная, вторичная, третичная и четвертичная структуры. Олигомерные белки.
- 58. Физико-химические свойства белков; их молекулярная масса. Методы осаждения. Денатурация белков.
- 59. Методы фракционирования и анализа белков и пептидов (седиментация, хроматография, электрофорез). Анализ первичной структуры белков и пептидов: методы Сенгера и Эдмана.
- 60. Нуклеозиды, нуклеотиды. Азотистые основания пуринового и пиримидинового ряда, которые входят в состав нуклеотидов.
- 61. Нуклеозиды. Нуклеотиды как фосфорилированые производные нуклеозидов (нуклеозидмоно-, ди- и трифосфаты). Номенклатура нуклеозидов и нуклеотидов как компонентов РНК и ДНК.
- 62. Строение и биохимические функции свободных нуклеотидов: нуклеотидкоферменты;

- циклические нуклеотиды 3',5'-АМФ, 3',5'-ГМФ.
- 63. Нуклеиновые кислоты (дезоксирибонуклеиновые, рибонуклеиновые) как полинуклеотиды. Полярность полинуклеотидных цепей ДНК и РНК.
- 64. Строение и свойства ДНК; нуклеотидный состав, комплементарность азотистых . Первичная, вторичная и третичная структура ДНК.
- 65. РНК: строение, типы РНК и их роль в биосинтезе белков.
- 66. Витамины: общая характеристика: понятие коферментного действия витаминов. Строение и свойства витаминов B_1 , B_2 , B_6 , PP.
- 67. Гормоны: понятие о гормонах как биорегуляторах. Общая характеристика гормонов белково-пептидной группы, производных аминокислот, стероидов.
- 68. Алкалоиды: определение: значение алкалоидов как действующих веществ лекарственных средств (классов пиридина и пиперидина, хинолина и изохинолина, индола).
- 69. Антибиотики: общее понятие; характеристика антибиотиков классов антибиотиков: пенициллинов, цефалоспоринов, стрептомицинов

ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ НАВЫКОВ, КОТОРЫМИДОЛЖНЫ ОВЛАДЕТЬ СТУДЕНТЫ ПОСЛЕ ИЗУЧЕНИЯ КУРСА БИООРГАНИЧЕСКОЙ ХИМИИ

- 1. Проведение реакции Вагнера с олеиновой кислотой.
- 2. Образование этилата натрия и его гидролиз.
- 3. Проведение реакции Cu(OH)₂ с формальдегидом.
- 4. Доказательство ненасыщенности жира реакцией с бромной водой.
- 5. Доказательство наличия свободного фенольного гидроксила в салициловой кислоте.
- 6. Образование триброманилина.
- 7. Окисление боковых цепей гомологов бензола.
- 8. Сульфирование ароматических соединений.
- 9. Проведение йодоформной реакции на ацетон.
- 10. Окисление первичных спиртов до альдегидов хромовой смесью.
- 11. Реакция этерификации этанола уксусной кислотой
- 12. Декарбоксилирование лимонной кислоты и ацетоуксусного эфира.
- 13. Цветные реакции антипирина и амидопирина с раствором хлорида железа
- 14. Образование солей мочевой кислоты
- 15. Мурексидная проба.
- 16. Получение динитрофенилгидразона ацетона.
- 17. Окисление глюкозы и лактозы реактивом Фелинга
- 18. Проведение реакции реактивом Толленса с глюкозой, лактозой.
- 19. Проведенной качественной реакции на крахмал с раствором йода.
- 20. Получение этиленгликолята меди.
- 21. Проведение нингидриновой реакции с белками.
- 22. Проведение ксантопротеиновой реакции с раствором белка.
- 23. Проведение реакции с серусодержащими аминокислотами, пептидами, белками.
- 24. Проведение биуретовой реакции с пептидами и белками.
- 25. Осаждение белков неорганическими кислотами и солями тяжелых металлов.
- 26. Кислотный гидролиз крахмала.
- 27. Реакция Селиванова на фруктозу.