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Abstract: Prenatal hypoxia (PH) adversely affects the development of the fetal heart, con-
tributing to persistent cardiovascular impairments in postnatal life. A key component in
regulating cardiac physiology is the nitric oxide (NO) system, which influences vascular
tone, myocardial contractility, and endothelial integrity during development. Exposure to
PH disrupts NO-related signaling pathways, leading to endothelial dysfunction, mitochon-
drial damage, and an escalation of oxidative stress—all of which exacerbate cardiac injury
and trigger cardiomyocyte apoptosis. The excessive generation of reactive nitrogen species
drives nitrosative stress, thereby intensifying inflammatory processes and cellular injury.
In addition, the interplay between NO and hypoxia-inducible factor (HIF) shapes adaptive
responses to PH. NO also modulates the synthesis of heat shock protein 70 (HSP70), a
critical factor in cellular defense against stress. This review emphasizes the involvement
of NO in cardiovascular injury caused by PH and examines the cardioprotective potential
of NO modulators—Angiolin, Thiotriazoline, Mildronate, and L-arginine—as prospective
therapeutic agents. These agents reduce oxidative stress, enhance endothelial performance,
and alleviate the detrimental effects of PH on the heart, offering potential new strategies to
prevent cardiovascular disorders in offspring subjected to prenatal hypoxia.

Keywords: prenatal hypoxia; cardiomyopathy; endothelial dysfunction; mitochondrial
dysfunction; oxidative stress; nitrosative stress; cardiomyocyte apoptosis; NO modulators; HSP70

1. Introduction
Introduction. Post-hypoxic disorders of the cardiovascular system are among the

leading causes of morbidity in newborns, occurring in 40–70% of children who have expe-
rienced prenatal hypoxia, according to various sources. These disorders are the starting
point for many often serious diseases in both children and adults [1–6]. To this day, the
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mechanisms of post-hypoxic cardiac disturbances remain poorly understood, making it
a relevant issue in pediatric cardiology [7,8]. The clinical presentation of this pathology
during the acute phase is highly variable and can mimic other diseases, necessitating careful
differential diagnosis from congenital heart defects, congenital myocarditis, and various
cardiomyopathies [9]. To this day, there is no consensus on the step-by-step comprehensive
therapy for post-hypoxic cardiac disorders [10]. Therefore, identifying new structural,
molecular, and biochemical features of post-hypoxic cardiovascular disorders in newborns
and developing pharmacotherapy strategies based on these findings is of scientific interest.
According to current understanding, endothelial dysfunction and the associated distur-
bances in the NO system are fundamental to the development of many cardiovascular
diseases [11,12]. Under the influence of hypoxia, infection, and other damaging factors,
the functioning of the nitric oxide system is disrupted, leading to the development of
pathology in various organs and systems, including the cardiovascular system [13,14].
However, the literature concerning the role of the NO system in the development of cardio-
vascular pathology in newborns and the potential cardioprotective effects of its modulators
is quite limited. Several investigations have demonstrated that certain pharmacological
agents exhibit cardio- and endothelium-protective effects by promoting NO synthesis and
improving its bioavailability [15–19].

2. Prenatal Hypoxia and Its Impact on Cardiovascular Development
2.1. Prenatal Hypoxia and Its Consequences

Hypoxic changes in the myocardial energy metabolism lead to a rapid decrease in its
contractile function (Figure 1). This is facilitated by certain anatomical and physiological
characteristics of newborns, such as the diffuse type of coronary arteries with numerous
anastomoses between the right and left coronary arteries, their small diameter, as well as the
predominance of sympathetic nervous system influence, the tone of which is maintained
by the preceding hypoxic condition of the central nervous system (CNS), known as the
cerebrocardiac syndrome [20–22].

Fetal hypoxia disrupts autonomic regulation of coronary vasculature, compromises
energy metabolism, and significantly reduces the production of high-energy (macroergic)
compounds in cardiomyocyte mitochondria [23–26]. Acidosis, hypercatecholaminemia,
hypoglycemia, and the deterioration of the blood’s rheological properties are key factors
in the pathogenesis of hypoxic damage to the conduction cardiomyocytes in newborns
and are the cause of various types of arrhythmias [27,28]. A well-known role in the
development of post-hypoxic cardiac rhythm disturbances is played by disruptions in
vegetative regulation [29,30]. The connection between hypoxic myocardial damage and
various disturbances in cardiac rhythm and conductivity is evidenced by morphological
and ultrastructural studies [31,32].

In the conduction system of the heart after prenatal hypoxia, signs of apoptosis and
dystrophy are observed, with a certain correlation between the severity of morphological
changes and clinically recognized cadence and conductivity unsettling influences [33,34].
The ultimate morphological result of hypoxic myocardial harm can be central dystrophy,
which has two conceivable results: either total determination and reclamation of work,
or the arrangement of central cardiosclerosis [35–37]. Currently, cardiomyopathies are
understood as diseases of unclear etiology, primarily affecting the myocardium, where
the contractile proteins of the heart muscle lose some of their properties, resulting in an
insufficiently effective contraction of the heart muscle [38–41].
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Figure 1. Prenatal hypoxia and its effects on the cardiovascular system of the fetus and off-
spring. PH causes disruption in the nitric oxide (NO) system, leading to NO deficiency, increased
reactive oxygen species (ROS) and their cytotoxic forms, and the activation of NO-dependent
molecular–biochemical mechanisms that lead to apoptosis, endothelial dysfunction, mitochondrial
dysfunction, inflammation, oxidative stress, and nitrosative stress. This initiates the foundation
for the development of cardiovascular diseases in adulthood (chronic heart failure (CHF), arterial
hypertension (AH), cerebrovascular accident (CVA), ischemic heart disease (IHD)). Arrows indicate
increase and decrease.

This, in turn, negatively impacts the entire circulatory system of the child—symptoms
of heart failure arise and gradually worsen, accompanied by blood shunting from
one circulatory circuit to another in the absence of morphological signs of active
inflammation [37,42]. Cardiomyopathies are classified into primary (idiopathic) and sec-
ondary types [43]. Transient post-hypoxic myocardial ischemia is classified as a secondary
cardiomyopathy and is predominantly observed in the first hours and days of a newborn’s
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life. Among the hemodynamic factors, transient pulmonary hypertension, increased blood
pressure, and the closure of fetal communications play a significant role in the development
of post-hypoxic cardiomyopathy, as they create an additional workload on the myocardium
with reduced functional capacity [44–46].

Since the time of birth, and depending on its outcome, the level and degree of cardio-
vascular system damage will vary: neonatal pulmonary hypertension, persistence of fetal
communications, myocardial dysfunction with chamber dilation, myocardial ischemia, and
disturbances in heart rhythm and conductivity [47–53]. Hypoxia increases the workload on
the heart, as the newborn experiences vasoconstriction in both the pulmonary and systemic
circulations, resulting from catecholamine release and the direct effects of elevated carbon
dioxide levels [23,26,54,55]. Blood return to the heart increases, raising the pressure in the
right ventricle, which may become equal to the systemic arterial pressure. Myocardial
blood flow is unable to fully supply the cardiomyocytes with oxygen, and consequently,
the demand for oxygen rises. This leads to the development of coronary insufficiency and
myocardial ischemia [37,56–59].

In children who have undergone both chronic intrauterine and perinatal hypoxia, a
cardiovascular system maladaptation syndrome is observed during the neonatal period,
accompanied by a prolonged (up to several months of life) increase in the activity of cardiac-
specific enzymes [60,61]. This period can be considered transitional in terms of myocardial
metabolism in newborns affected by hypoxia [62]. In children who underwent chronic
intrauterine hypoxia, the cardiovascular maladaptation syndrome is of a transient, benign
nature, with rapid reversal of clinical symptoms and almost complete absence of residual
phenomena [63,64]. One in three children who experienced perinatal hypoxia have residual
symptoms, such as minimal signs of pulmonary hypertension [65]. Valve insufficiency
and reduced contractile ability of the ventricular myocardium are identified much less
frequently. This dictates the need for prolonged outpatient monitoring of this group of
children and appropriate medical interventions [64–66].

Identifying the type of autonomic reactivity helps determine the leading direction
for corrective measures, preventing the formation of functional heart pathology in these
patients in the future [67]. Prenatal hypoxia leads to an increased workload on the heart, as
vasoconstriction of the vessels in both the systemic and pulmonary circulations occurs in
the child due to disruptions in the nitric oxide system, nitrosative stress, and endothelial
dysfunction [23,68–71]. All of this leads to the circulatory system failing to perform its
function of providing oxygen to the working heart, resulting in myocardial ischemia.

On average, 30% of children who have experienced intrauterine hypoxia retain resid-
ual phenomena, such as minimal signs of pulmonary hypertension, reduced heart pump
function, and disturbances in the autonomic regulation of cardiac activity [36,72]. Pre-
natal hypoxia negatively impacts the morphological and functional characteristics of the
cardiovascular system at all stages of ontogenesis and may lead to the formation of a
disproportionate development pattern of the heart, as well as morphological and functional
disturbances in the conduction system [6,8].

The functional changes in the cardiovascular system seen in the post-hypoxic maladap-
tation syndrome are based on impaired neurohumoral regulation of vascular tone, transient
neonatal pulmonary hypertension, drawn-out persistence of fetal communications (PFC),
and a delay within the arrangement of the developing sort of cardiomyocyte digestion
system [73–75]. Disarranges of the cardiovascular system are, as of now, recognized amid
the starting examination of the infant, counting inadequate pieces of the proper bundle
department of the His bundle, extrasystole, and signs of subendocardial ischemia. Subse-
quently, post-hypoxic cardiomyopathy is considered one of the hazard variables for the
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improvement of cardiovascular pathology (such as cadence unsettling influences, vascular
dystonias, and others) in afterward stages of life [6,76–78].

We have established that modeling prenatal hypoxia in rats leads to a reduced heart
rate and a critical dominance of parasympathetic innervation within the control of the
heart’s electrical movement. The diminished heart rate after encountering hypoxia may
well be caused by sinus square, which may also reflect the parasympathetic direction of
the heart rather than thoughtful control of electrical movement beneath ordinary condi-
tions. The improvement of unsettling influences within the bioelectrical movement of the
heart after PH drove an expansion of the electrical systole of the ventricles, which may
have been caused by impaired myocardial conductivity within the ventricles. Beneath
these conditions, the control of ventricular electrical repolarization expanded 5.5 times,
demonstrating noteworthy issues with the reclamation of the layer potential in ventricular
cardiomyocytes [79].

Fetal hypoxia leads to a disturbance within the autonomic control of coronary vessels,
deterioration of energy metabolism, and damage to the ultrastructure of mitochondria,
both in cardiomyocytes and in the cells of the conduction system, which may be a possible
cause of reduced myocardial contractility and impeded ordinary working of the sinoatrial
node [79]. Within the contractile myocardium and conduction system during the post-
hypoxic period, cells with signs of apoptosis and dystrophy are observed, with a certain
correlation between the seriousness of morphological changes and the bioelectrical unset-
tling influences in beat and conductivity. The result of hypoxic myocardial damage can be
focal dystrophy, which, if not adequately treated, may lead to focal cardiosclerosis [80,81].

To summarize the above, it can be said that PH is a powerful damaging factor that
triggers mechanisms such as oxidative and nitrosative stress, mitochondrial dysfunction,
disruption of energy supply to the heart, and apoptosis. Research into the molecular and
biochemical mechanisms of post-hypoxic cardiomyopathy in newborns has shown that
many of these processes are dependent on nitric oxide (NO). All of this makes the NO
system an attractive area for study from the perspective of fundamental medicine and
biology, as well as a promising target for pharmacological intervention.

2.2. Causes of Prenatal Hypoxia

PH is a consequence of a wide range of adverse processes occurring in the body of
the child or the mother or in the placenta. The probability of PH increases in maternal
diseases—anemia, cardiovascular pathology (heart defects, hypertension), kidney dis-
eases, respiratory system diseases (chronic bronchitis, bronchial asthma, etc.), diabetes
mellitus, pregnancy toxicosis, multiple pregnancy, and sexually transmitted infections.
Alcoholism, nicotine, drug, and other types of addiction in the mother also influence the
formation of PH. PH can develop due to disturbances in fetoplacental blood flow caused
by threatened miscarriage, post-term pregnancy, pathology of the umbilical cord, fetopla-
cental insufficiency, abnormal labor, and other complications of pregnancy and childbirth.
PH can be divided into preplacental hypoxia, uteroplacental hypoxia, and postplacental
hypoxia [1,6,23,25,41,52,58,65,67,70,74].

2.3. The Role of NO in Heart Regulation

The role of NO in regulating various processes in the cardiovascular system is
well known. Endothelial cells synthesize and discharge NO, which intercedes an as-
sortment of impacts, counting vascular tone, hemostasis, blood pressure, and vascular
remodeling [82–85]. The critical role of nitric oxide (NO) in cardiomyocyte function is well
established, particularly in regulating ion channels, maintaining calcium (Ca2+) homeosta-
sis, modulating contractility, supporting energy metabolism, influencing cell proliferation,
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and enhancing resistance to hypoxia [86,87]. NO exerts its metabolotropic, physiological,
and other effects through various mechanisms. For instance, NO can post-translationally
modify target proteins, primarily by adding a nitroso group to the thiol side chain of cys-
teine, a process known as S-nitrosylation, which leads to the acquisition of new properties
by the protein [88,89]. However, the spatial range of NO’s direct actions is limited due to
its short diffusion distance. Molecules of cellular carriers, such as S-nitrosoglutathione,
intervene more in removed NO signal transmission, acting as a carrier and benefactor, ex-
changing NO to more far-off targets [90–92]. Interestingly, the administration of exogenous
glutathione has been shown to modulate ventricular arrhythmias induced by mechanical
stretch, suggesting a possible connection between NO signaling cycles and the mechanical
responses of cardiomyocytes [93,94].

NO also activates the cGMP/protein kinase G (PKG)-dependent phosphorylation
pathway. Enactment of this pathway leads to the phosphorylation of target proteins,
restraint of the mitogen-activated protein kinase kinase/extracellular signal-regulated
kinase (MEK1/2/ERK1/2) pathway, and actuation of the c-Jun N-terminal kinase (JNK)1,
2, and 3 pathways. The extreme result of this process is cardioprotection and the sup-
pression of genes involved in hypertrophy, as well as the regulation of genes involved in
apoptosis [95–97]. Data has been obtained indicating that in the myocardium, the cGMP
nitrosylation pathway is mediated by eNOS (endothelial nitric oxide synthase) [89,98,99].
In healthy neonatal rat hearts, nitric oxide (NO) plays a regulatory role in the integrin com-
plex. This complex consists of cytoskeletal proteins that are essential not only for mediating
cell adhesion but also for sensing and transmitting mechanical stimuli. Integrins, which
are heterodimeric transmembrane receptors, link the extracellular matrix to the actin cy-
toskeleton, thereby facilitating mechanical signal transduction to the cytoskeleton [100–103].
In cardiomyocytes, integrins contribute to maintaining cardiac function by modulating
both mechanical and electrical coupling within the myocardium. In cardiomyocytes of
healthy newborn rats, integrins, with the participation of NO, promote the release of Ca2+

from the sarcoplasmic reticulum [86,104]. Besides modulating calcium homeostasis via
NO signaling, it has also been reported that NO can regulate integrin expression through
the cGMP pathway [105]. The functional properties of certain ion channels in the my-
ocardium can be regulated by NO through the nitrosylation of protein fragments of the
channel (nitrosylation of cysteine fragments) [106]. This nitrosylation can either enhance or
inhibit channel activity, depending on the specific ion channel involved [107]. Specifically,
there are a few channels that are both mechanically delicate and balanced by NO through
the nitrosylation of thiol bunches [108]. NO is discharged in cardiomyocytes in reaction
to mechanical boosts and can control conductivity by modulating the movement of ion
channels [109].

2.4. The Role of NO in the Heart During Fetal Development

The cardioprotective and endothelial-protective role of NO, produced by eNOS, is
well known. NO provides protection against myocardial reperfusion injury, regulates the
conduction system, participates in the synchronization of heart contraction and relaxation,
activates compensatory energy shunts, modulates platelet aggregation, regulates vascular
tone, and inhibits the proliferation of smooth muscle cells in blood vessels [110–116].

However, the global effects of NO on the developing cardiovascular system are not
fully understood. It is known that NO influences the early migration of cardiac progeni-
tor cells and vasculogenesis [117,118]. Nitric oxide stimulates soluble guanylate cyclase,
promoting the formation of cyclic GMP (cGMP), a key secondary messenger that regulates
various protein targets, including bone morphogenetic protein-4 (BMP4). BMP4 contributes
to the positioning of the heart during embryonic development by guiding the migration
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of cardiac progenitor cells toward the embryo’s left side [117,119]. Additionally, NO may
modulate BMP4 signaling through the production of reactive nitrogen species, such as
peroxynitrite [120]. NO causes organ transposition by altering the migration of cardiac
progenitor cells from blood islands. NO regulates the expression of heart-specific genes
and also affects apoptotic signaling [121]. NO promotes cardiac differentiation by both
switching towards a cardiac phenotype and inducing apoptosis in cells not committed to
cardiac differentiation [122].

It is also known that iNOS and, especially, eNOS are significantly expressed during
the early stages of cardiomyogenesis. Reduced expression of eNOS inhibits the maturation
of terminally differentiated cardiomyocytes [123]. NO positively regulates the expression
of genes involved in heart morphogenesis, as well as controlling heart contraction, cardiac
cell development, calcium signaling, and the structure and development of the heart in the
embryo [124–126].

2.5. Changes in the Nitric Oxide System in the Heart of Offspring After PH

It has been established that alterations in nitric oxide levels during pregnancy are asso-
ciated with the development of classical symptoms of eclampsia, disturbances in placental
formation, modifications in placental blood flow, embryopathy, fetopathy, intrauterine
growth restriction, and fetal demise [127]. Nitric oxide serves dual roles as both a factor in
disease pathogenesis and as a protective agent at the cellular and organ levels, including
cardioprotective and endothelioprotective functions [128,129]. Additionally, NO is crucial
for endothelial cell development and acts as a key regulator of the vascular endothelial
growth factor (VEGF) family, which includes placental growth factor (PGF), angiopoietins
(ANG-1 and ANG-2), and their soluble receptors (sFlt-1 and Tie-2) [130]. The VEGF family
plays an essential role in proper placental vascularization, angiogenesis, and remodeling
throughout pregnancy [131,132].

NO production increases pro-angiogenic VEGF-A and PGF in human trophoblast
cultures, whereas inhibition of NO synthesis leads to elevated SFLT-1 levels and hyper-
tensive reactions in pregnant mice [133–135]. Nitric oxide additionally downregulates the
expression of endothelial adhesion molecules and pro-inflammatory cytokines and can
quickly induce HIF-1α expression [136–138]. Under conditions of prenatal hypoxia, on the
one hand, NO production increases, while on the other hand, the synthesis of essential
factors for the preservation and transport of this molecule decreases, leading to NO lack
within the heart and blood vessels. Amid delayed pre-birth hypoxia, ROS can influence
NO bioavailability [139]. Increased ROS levels and an imbalance in the ROS/NO ratio
in newborns after prenatal hypoxia contribute to enhanced peripheral vasoconstriction,
causing hypoxic damage to vital organs, including the heart and brain [140].

PH also enhances the expression of iNOS mRNA and increases iNOS protein levels
in the ventricles of the fetal heart [141]. These findings were confirmed by clinical studies,
which demonstrated that hypoxia decreases eNOS action and quality expression within
the cardiac tissue of patients with cyanotic inherent heart surrenders. In differentiation,
iNOS action and expression are expanded in cyanotic children [142]. Prenatal hypoxia also
elevates NADPH oxidase 1 homolog expression, promoting superoxide generation, which
reacts with NO to produce peroxynitrite, thereby diminishing NO bioavailability [143].
Long-term alterations in the cardiac nitric oxide system following experimental prenatal
hypoxia include downregulation of eNOS mRNA and protein, upregulation of iNOS
mRNA and protein, decreased NO availability, and enhanced nitrosative stress [144].
This is also confirmed by other studies, which show a decrease in eNOS mRNA and
protein in the cardiomyocytes of adult animals exposed to PH [145]. Apparently, there is a
reduction in NO production by endothelial nitric oxide synthase, while the NO produced
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during iNOS expression activation is converted into peroxynitrite. The obtained results
indicate significant disruptions in the NO system of the myocardium in rat pups after
PH—changes in the expression pattern of NOS, reduced NO bioavailability, and activation
of nitrosative stress.

NO deficiency leads to a number of serious disturbances in the offspring’s organism
after PH [11]. Such changes in the nitric oxide system of the myocardium in the offspring af-
ter PH align with current views on the mechanisms of myocardial damage in ischemia and
hypoxia, as developed through experimental studies and clinical observations [142,146].
It is well known that PH impairs the heart’s tolerance to ischemia/reperfusion, damages
endothelial-dependent mechanisms of vasodilation/vasoconstriction, and further con-
tributes to the development of cardiovascular pathologies such as hypertension, atheroscle-
rotic vascular diseases, and congestive heart failure, which occur in the presence of NO
deficiency [147].

Data indicate that intrauterine hypoxia leads to decreased expression and activity
of endothelial nitric oxide synthase (eNOS) in both cardiomyocytes and endothelial cells,
contributing to a higher likelihood of endothelial dysfunction. The impaired function of
eNOS may result from altered interactions with its regulatory partners, including caveolin-1,
calmodulin, and Hsp90. Modifications within the phosphorylation and dephosphorylation
of key serine and threonine buildups in eNOS may also be included within the brokenness
of eNOS movement [1,148]. Disturbances in endothelial-dependent vasodilation have been
recognized within the coronary supply routes of both male and female siblings uncovered
to PH at the ages of 4 and 9.5 months, against the foundation of diminished eNOS and
disabled work of SKCa and IKC channels [26]. Low levels of eNOS lead to the disruption
of NO-dependent regulation of glutathione synthesis and a reduced resistance to oxidative
stress [149]. The decrease in eNOS may occur due to a deficiency of HIF-1α, as this factor
activates eNOS expression by phosphorylating the serine residue [150].

Taking after a diminishment in eNOS after PH, there is a raised expression of iNOS,
which serves to compensate for the diminished NO generation [151]. PH increases the
expression of inducible nitric oxide synthase (iNOS) mRNA and iNOS protein levels within
the ventricles of the fetal guinea pig heart [141]. Elevated iNOS activity can be associated
with cofactor deficiencies and the generation of superoxide and other reactive nitrogen
species [152]. Be that as it may, beneath conditions of diminished thiol cancer prevention
agents, this leads to the arrangement of cytotoxic NO subsidiaries in “parasitic responses”.

Similarly, studies have shown that in preeclampsia, decreased endothelial NO syn-
thesis and redox-mediated conversion of NO to peroxynitrite cause reduced systemic NO
concentrations [128]. Such responses can happen in conditions of L-arginine insufficiency,
antioxidant inadequacy, mitochondrial brokenness, and expanded iNOS expression. The
uncontrolled arrangement of cytotoxic NO derivatives leads to the nitration of the foremost
dynamic locales in protein structures, particle channels, receptors, transmembrane pores,
and signaling particles, i.e., the development of nitrosative stress.

A similarly imperative result of myocardial ischemia is the loss of NO-mediated
effects, such as the restraint of cell multiplication, platelet aggregation, and, most crit-
ically, the concealment of monocyte enactment by so-called attachment particles [153].
Nitrosative stress also causes depletion of heat shock protein 70 (HSP70) within cells, exac-
erbated by impaired glutathione-dependent thiol-disulfide homeostasis. Cytotoxic shapes
of NO not as it was adjusted (both reversibly and irreversibly) macromolecules, count-
ing HSP70 itself, but moreover decreased the expression action of qualities encoding its
amalgamation [154,155]. The part of NO derivatives in stifling gene action and lessening
the levels of different translation variables has been illustrated [156]. It is evident that
elevated levels of nitrogen oxides like peroxynitrite and nitrosonium initially nitrate thiol–
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redox-sensitive regions of these genes and, with increasing concentrations, subsequently
oxidize them [157].

3. Mechanisms of Cardiovascular Dysfunction After Prenatal Hypoxia
3.1. Disruption of Energy Metabolism in the Myocardium and Mitochondrial Dysfunction in the
Offspring After PH

The structural integrity and functional activity of myocardial mitochondria en-
sure its main role as the cellular “power station”—producing energy to sustain cardiac
function [158–160]. Disruption of mitochondrial functional activity leads to various func-
tional and pathological shifts in heart function (Figure 2). The concept of mitochondrial
dysfunction has become a general pathological term. Mitochondrial dysfunction, whether
primary or secondary in origin, plays a significant role in the pathogenesis of numerous
cardiovascular diseases. It contributes to the development of hypertrophic cardiomyopathy,
exacerbates reperfusion injury following myocardial ischemia, and is involved in diastolic
dysfunction that can progress to heart failure. Additionally, mitochondrial impairment is
linked to the early onset of heart failure and is associated with hypertension during preg-
nancy in women [161–164]. A decrease in the functional activity of myocardial mitochon-
dria leads to ATP deficiency and disruption of the heart’s energy metabolism [115,165,166].
Impaired ATP transport results in a deficiency of creatine phosphate, suppression of the
creatine phosphate shuttle mechanism, and disruption of the energy capacity required for
rapid support of heart contraction. All of this forms the basis for the development of heart
failure [167,168].

It is known that in the heart of adult offspring after PH, there is a persistent disruption
in the activity of enzymes and the expression of proteins in mitochondrial complexes of
oxidative phosphorylation under hypoxia [169]. The succinate dehydrogenase complex,
a key component of the Krebs cycle within mitochondria, is particularly vulnerable to
prenatal hypoxia (PH). Alterations in cardiac developmental programming induced by PH
can disrupt this succinate-dependent pathway in female fetuses, potentially resulting in
lasting impairments in mitochondrial function within the hearts of young adult female
offspring [170].

PH is also known to impair electron transfer between cytochrome c and oxygen within
cardiac mitochondria, contributing to mitochondrial dysfunction. This impairment mani-
fests as reduced stroke volume and cardiac output in male offspring [171]. Additionally,
PH downregulates the expression of mitochondrial transcripts, including peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), cytochrome c oxidase
subunit II (COXII), and uncoupling proteins. This reduction compromises mitochondrial
respiratory efficiency in the hearts of affected offspring [172]. It is known that NO can serve
as a natural short-term regulator of mitochondrial physiology, enhancing the efficiency of
oxidative phosphorylation in redox processes by reducing errors and failures in proton
pumps [173]. Therefore, its deficiency due to PH may lead to disruptions in oxidative
processes in mitochondria.

Cytotoxic products of nitric oxide metabolism play a direct role in the formation of
mitochondrial dysfunction under PH conditions—reducing the energy-producing func-
tion of mitochondria, inhibiting complexes I/IV, and progressing the decline in energy
metabolism [174]. These findings align with research indicating that NO generated by
inducible nitric oxide synthase (iNOS) is converted to peroxynitrite, which inhibits mi-
tochondrial oxidative phosphorylation. Peroxynitrite irreversibly nitrosylates electron
transport chain enzymes and depletes iron, impairing respiration, lowering membrane
potential, and triggering mitochondrial dysfunction and apoptosis [175,176].
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Figure 2. NO-dependent mechanisms of mitochondrial dysfunction formation after prenatal hypoxia.
Arrows indicate increase and decrease.

Evidence also suggests that NO can directly induce the opening of the mitochondrial
permeability transition pore (megachannel), promoting cytochrome c release and activating
the caspase cascade. Moreover, NO and its derivatives (such as peroxynitrite and the
nitrosonium ion) oxidize thiol groups on mitochondrial membrane proteins, facilitating
the cytosolic release of pro-apoptotic factors [11,177–179]. Suppression of protein synthesis
in mitochondria after hypoxia is associated with an increased susceptibility of cells to
apoptotic stimuli mediated by NO [180–182].

In cases of insufficient antioxidant system activity, a vicious cycle may form between
the production of ROS by the mitochondrial electron transport chain and the mutational
process in mitochondrial DNA. The consequence of this is the progression of mitochon-
drial dysfunction after PH [183–185]. Disruption of any mitochondrial function—energy-
producing, death-inducing—or activation of ROS production by mitochondria can serve as
a cause for the development of functional and morphological heart abnormalities in the
offspring after PH [170,183,186].
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The mitochondrial apparatus of ventricular cardiomyocytes in rats after PH is charac-
terized by pronounced degradation processes in the organelles of the subsarcolemmal zone,
swelling of “high-energy” mitochondria in the intermyofibrillar zones, and “low-energy”
mitochondria in the perinuclear zone of cardiomyocytes, with a reduction in the number of
associations between mitochondria. Myofibrils appeared fragmented, and mitochondria
varied in size. Lipid inclusions were found in the sarcoplasm. In the contractile cardiomy-
ocytes after PH, areas of myofibrillar apparatus over-contraction, known as “rigor”, were
observed. Ischemic but minimally altered heart cells are often referred to in the literature
as “oscillating”, as they are in a state of electrical instability [79,187,188].

The main ultrastructural manifestation of this is the phenomenon of myofibril con-
tracture, recorded during electron microscopy studies of experimental animals after PH,
which is an undeniable confirmation of both hypoxic and ischemic cell damage. The latter
is a pathognomonic sign of disrupted sarcolemma permeability and the movement of Ca2+

ions from the intercellular space into the cardiomyocyte, indicating the development of
ion imbalance. Evidence of this is also the appearance of electron-dense inclusions in the
mitochondria and relative expansion of the sarcoplasmic reticulum. These cells can serve
as a source of rhythm disturbances [171,188–190].

Moreover, mitochondrial dysfunction can lead to the activation of the immune system.
The production of ROS from dysfunctional mitochondria can result in damage to lipids and
proteins, which may activate inflammatory pathways [191–194]. Dysfunctional mitochon-
dria can release damage-associated molecular patterns, including cardiolipin, N-formyl
peptides, ROS, and mtDNA, which can activate the inflammasome [195–197]. Activation of
the immune system and increased expression of pro-inflammatory cytokines lead to further
upregulation of iNOS expression, increasing the production of NO and ROS, which can
result in further detrimental effects on already dysfunctional mitochondria [198–200].

3.2. Nitrosative Stress in the Heart of Offspring After PH

Several studies have shown that experimental PH leads to dysfunction of the nitric
oxide system in the myocardium of both the fetus and the offspring. The authors have
demonstrated that PH suppresses the expression and activity of endothelial nitric oxide syn-
thase (eNOS) and significantly increases the inducible form (iNOS), along with increased
NO production. In this situation, NO loses its physiologically “beneficial” properties and
is converted into peroxynitrite and other cytotoxic forms [201–203]. Most of the cytotoxic
effects of NO actually belong to ONOO−, which is formed in a reaction with superoxide
(O2

−). Indeed, peroxynitrite is significantly more active; it intensely nitrosylates proteins
and can be a source of the highly toxic hydroxyl radical •OH. Under normal physiological
conditions, a balance between superoxide and nitric oxide exists in vivo. NO and superox-
ide react together at a diffusion-controlled rate, forming peroxynitrite (ONOO−), which
causes cell damage by oxidizing many biological molecules. In addition, ONOO− partici-
pates in the inactivation of Mn-SOD and Fe-SOD [11,111,115,141]. Intemperate generation
of NO can actuate nitrosative stress, leading to the arrangement of peroxynitrite, which
may increment the expression of matrix metalloproteinases (MMPs). PH causes oxidative–
nitrosative stress and alters the expression of extracellular matrix proteins through the
regulation of the iNOS pathway in the fetal heart ventricles. This characterizes NO, pro-
duced by iNOS, as a key stimulus for initiating the adverse effects of peroxynitrite in the
fetal heart [141,201].

PH promotes the accumulation of peroxynitrite in the myocardium of offspring by
elevating inducible nitric oxide synthase (iNOS)-derived NO production. Peroxynitrite
subsequently activates the nuclear translocation of transcription factors, including nuclear
factor kappa B (NF-κB) and activator protein-1 (AP-1), which enhance the transcription
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of matrix metalloproteinase (MMP) genes [204,205]. The MMP gene family comprises
various enzymes responsible for remodeling the extracellular matrix (ECM), with MMP2
and MMP9 being particularly important in the structure and function of cardiac tissue.
The involvement of MMPs in ECM modulation within the myocardium is well known
in cardiac pathologies (e.g., heart disappointment, postnatal hypoxic cardiomyopathy,
ischemia-reperfusion damage, and contractile dysfunction of the myocardium) [204,206].

The elevated expression and activation of MMP2, MMP9, and MMP13 in response to
reactive nitrogen species promote excessive collagen synthesis, disturbing the equilibrium
between ECM synthesis and degradation and ultimately contributing to collagen deposition
and myocardial fibrosis [207–209]. Peroxynitrite, a highly reactive nitrogen species, exerts
multiple downstream effects, including the regulation of gene expression, protein oxidation,
and nitration, induction of DNA damage, and promotion of lipid peroxidation [210–212].
Additionally, peroxynitrite augments MMP9 enzymatic activity by inducing autolytic
cleavage of cysteine thiol groups and enhances MMP9 gene expression by activating
nuclear factor kappa B and activator protein-1 transcriptional pathways [213–215].

Currently, there is a generalized concept of “nitrosative stress”. As a result of the
action of reactive forms of NO, either nitrosylative stress (formation of nitrosamines,
S-nitrosothiols, deamination of DNA bases) or oxidative stress develops [11,216]. NO
forms reactive intermediates such as nitrosonium (NO+), nitroxyl (NO−), and peroxynitrite
(ONOO−). Most of the cytotoxic effects of NO actually belong to ONOO−, which is
formed in a reaction with superoxide (O2

−). Peroxynitrite is significantly more active; it
intensely nitrosylates proteins and can be a source of the highly toxic hydroxyl radical
(•OH) [217,218]. NO+ is a powerful nitrosylating agent, and its targets can be nucleophilic
groups of active thiols, amines, carboxyls, hydroxyls, and aromatic rings. NO+ is formed
from excess NO with the participation of divalent iron and oxygen [216,219]. NO− has
reducing properties and exerts positive inotropic and lusitropic effects on the myocardium.
In ischemia or hypoxia, NO− in the conditions of developing lactate acidosis exhibits
pro-oxidant properties towards thiols and amines. It has been shown that NO− decreases
glutathione levels and disrupts electrical activity, inhibiting sodium channel activity in the
heart [11,220].

Apparently, the dual effect of NO− is related to its concentration, as an increase in its
levels leads to the formation of the toxic nitrite anion. N2O3, being a source of NO+, exhibits
strong nitrosylating properties, interacting with aliphatic and aromatic amines to form
N-nitrosamines. Nitrosamines, and specifically their conversion products under the action
of P450 enzymes (such as diazonium ions and formaldehyde), are alkylating agents for
nucleic acids, deaminating purines, inhibiting O6-methylguanine-DNA methyltransferase,
and increasing the formation of 8-hydroxyguanine. N2O3 reacts with cysteine to generate
S-nitrosocysteine and glutathione to form S-nitrosoglutathione, which serves as the primary
carrier for NO transport [221–225].

Research indicates that NO can be transported via N2O3-mediated nitrosylation of thiol
groups, with subsequent NO release facilitated by disulfide isomerase activity [226–228].
Another pathway for NO release involves the enzymatic action of glutamyltranspeptidase
on S-nitrosoglutathione, generating S-nitrosocysteinylglycine, which then serves as a source
of NO. Cystine participates in the transport of S-nitrosoglutathione, being reduced to
cysteine, which then reacts with S-nitrosoglutathione to form S-cysteine. S-cysteine plays
a role in rapid signal transmission, forming adaptive responses to hypoxia [229–232].
Glutathione reductase and glutathione transferase regulate these processes. Under ischemic
conditions, inhibition of these enzymes promotes oxidative modification of low-molecular-
weight thiols, causing homocysteine accumulation and impairing NO transport, which
fosters the formation of cytotoxic NO derivatives and amplifies thiol oxidation [233,234].
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An adequately functioning thiol-based antioxidant system is critical for maintaining
proper NO transport and ensuring cellular resistance to nitrosative stress. Within mi-
tochondria, NO transiently binds to cytochrome c oxidase, thereby inhibiting oxidative
phosphorylation. This disruption of electron transport promotes superoxide production
and subsequently facilitates peroxynitrite (ONOO−) formation [235–237]. Peroxynitrite
generation is particularly prominent in cells exhibiting elevated inducible nitric oxide
synthase (iNOS) activity and heightened reactive oxygen species (ROS) production via
enzymes such as xanthine oxidase, NADH oxidoreductase, cyclooxygenase, lipoxygenase,
and components of the electron transport chain. Peroxynitrite exerts its nitrosative effects
on a wide array of molecular targets, including thiols, carbon dioxide, metalloproteins,
nucleic acids, metabolite-related signaling molecules, and membrane lipids [238,239].

Peroxynitrite, although relatively stable, undergoes rapid protonation under acidic
pH, predominantly forming nitrate anions along with hydroxyl radicals and nitrogen
dioxide, which drive its oxidative reactivity. It disrupts the metabolic interplay between
methionine and cysteine by inhibiting critical enzymes regulating cysteine homeostasis,
thereby promoting homocysteine accumulation. Additionally, peroxynitrite reacts with
carbon dioxide to produce a potent nitrosylating species—nitrosoperoxocarbonate. A
key neurotoxic mechanism of peroxynitrite involves its reaction with tyrosine residues,
resulting in nitrotyrosine formation. Peroxynitrite impairs the activity of Cu-Zn-superoxide
dismutase (SOD) and Mn-SOD through nitration of tyrosine-34 and by binding to copper
ions, thereby altering their oxidation state [240–244].

This reactive species irreversibly inhibits mitochondrial respiration during ischemia by
interacting with iron centers of enzymatic active sites and by nitrosylating sulfur-, nitrogen-,
and oxygen-containing groups (thiol, phenolic, hydroxyl, amine) within enzyme proteins.
In cases of more pronounced nitrosative stress, it irreversibly oxidizes them [245,246]. The
spectrum of peroxynitrite activity also includes the nitrosylation of guanine and DNA
strand breaks, which can lead to mutations or trigger apoptosis. In relation to genomic
damage, another effect of NO is known: products of its reaction with O2 inhibit enzymes
responsible for DNA repair. Depending on the source (different NO donors), the effects
of NO on alkyltransferase, formamidopyrimidine-DNA glycosylase, and ligase have been
shown. It is also known that NO can activate PARP- and ADP-ribosylation, possibly due
to DNA breaks, but this more likely leads to necrosis due to depletion of NAD and ATP
pools [247–250].

Evidence suggests that nitric oxide (NO) directly triggers the opening of the mitochon-
drial permeability transition pore (MPTP), resulting in cytochrome c release and subsequent
activation of the caspase cascade [11,251]. These findings were obtained by treating mi-
tochondria with cytotoxic NO derivatives, including peroxynitrite and the nitrosonium
ion, which modify thiol groups of proteins within the mitochondrial pore complex [252].
NO and its reactive derivatives promote peroxidative damage to mitochondrial phospho-
lipids. Exposure to cytotoxic NO derivatives and hydroxyl radicals induces the opening
of mitochondrial pores, facilitating the release of pro-apoptotic proteins into the cytosol.
This pore opening is mediated by oxidation or nitrosylation of thiol groups within cys-
teine residues of the inner mitochondrial membrane ATP/ADP antiporter, transforming
it into a nonspecific, permeable channel. As a result, mitochondria shift from efficient
energy producers (“powerhouses”) to sites of uncontrolled substrate oxidation lacking ATP
production (“furnaces”).

Our research has demonstrated profound alterations in the myocardial NO sys-
tem of rats following PH, marked by an imbalance in eNOS/iNOS expression, reduced
NO bioavailability, and elevated nitrotyrosine levels [115,144,252], amid the inhibition
of glutathione-dependent enzymes GPX1 and GPX4 activity [253]. An equally critical



Antioxidants 2025, 14, 743 14 of 52

consequence of hypoxia-induced nitrosative stress in the myocardium is the loss of NO-
dependent functions, including inhibition of cell proliferation, platelet aggregation, and,
importantly, suppression of monocyte activation via adhesion molecules [153]. Nitrosative
stress further results in HSP70 deficiency, occurring alongside glutathione depletion within
the thiol-disulfide regulatory system. Cytotoxic NO derivatives not only modify (both re-
versibly and irreversibly) various macromolecules, including HSP70 but also downregulate
the transcription of genes responsible for HSP70 synthesis [154,155]. We have established
that PH leads to a decrease in HSP70 expression against the background of suppressed
eNOS expression and a significant increase in nitrotyrosine concentration [254]. The part of
NO subordinates within the concealment of gene movement and the reduction of various
transcription factor levels has been demonstrated [156]. Apparently, an excess of such
forms of nitric oxide as peroxynitrite and the nitrosonium ion initially nitrosylate thiol-
redox-dependent regions of these genes and then, with increasing concentration, oxidize
them [157].

3.3. NO-Dependent Mechanisms of Endothelial Dysfunction After PH

Cardiovascular disorders caused by hypoxia are a major cause of illness in newborns,
with studies showing that 40–70% of children who have undergone intrauterine hypoxia
experience these issues. These disorders play a significant role in the development of nu-
merous, often severe, diseases in both children and adults [1,4,5]. The mechanisms behind
post-hypoxic heart disorders are not yet fully understood, making them a significant issue
in pediatric cardiology. The clinical symptoms of this pathology during the acute phase are
polymorphic, often resembling other diseases, and there is frequently a need for differential
diagnosis with congenital heart defects, congenital carditis, and cardiomyopathies [36,255].

According to current understanding, endothelial dysfunction, along with disruptions
in the NO system, serves as a key underlying factor in the pathogenesis of various cardio-
vascular diseases [12,148]. Prenatal hypoxia leads to asymmetric fetal growth restriction,
hypertrophic remodeling of the heart and aorta, altered cardiac function, and increased
sympathetic innervation of peripheral resistance arteries in neonates. In later life, prenatal
hypoxia contributes to the emergence of hypertension, ischemic heart disease, heart fail-
ure, metabolic syndrome, and heightened susceptibility to ischemic injury [23,256]. The
presence of endothelial dysfunction mechanisms has been identified in cardiovascular
pathology following PH. Clinical signs of impeded utilitarian state and maladaptation
of the cardiovascular system after prenatal hypoxia directly correlated with signs of en-
dothelial dysfunction (changes in the production of endothelin-1, NO, VEGF, circulating
desquamated endothelial cells) in both newborns and in later stages of life [68,257–259].

Endothelial dysfunction and cardiovascular pathology, including those following pre-
natal hypoxia, are partially attributed to disturbances in the nitric oxide system. Research
indicates that prenatal hypoxia affects both the synthesis and bioavailability of NO. During
hypoxia in the prenatal period, increased levels of superoxide radicals and other reactive
oxygen species can lead to oxidative modification of NO, converting it into peroxynitrite,
which has a damaging effect on fetal organs [23,258,260]. Hypoxia reduces the expression
of eNOS and can also affect its enzymatic activity by modulating its post-translational
modifications. Under hypoxic conditions, when there is a deficiency of L-arginine, eNOS
may produce superoxide radicals instead of NO. These impairments in eNOS function are
regarded as a central mechanism underlying endothelial dysfunction in cardiovascular
pathologies [11,68].

We have identified a decrease in eNOS expression alongside a significant increase in
nitrotyrosine levels in both 1-month-old and 2-month-old rats after prenatal hypoxia. This
is likely due to increased ROS generation during prenatal hypoxia, which diminishes NO
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bioavailability and suppresses eNOS expression [254]. Elevated NADPH levels during
prenatal hypoxia promote ROS formation, which interacts with NO to produce stable
peroxynitrite anions, further lowering NO bioavailability [246].

PH significantly reduces NO-dependent vasodilation mediated by acetylcholine in
the thoracic aortic rings of both fetal and adult offspring. In the offspring after PH,
there is reduced expression of eNOS, primarily due to increased expression of NADPH
oxidase type 2 and high levels of ROS production against the background of elevated
miR-155-5 levels in endothelial cells of blood vessels [261,262]. NADPH oxidase type 2 is a
key component in the generation of ROS after PH, which makes NO more susceptible to oxi-
dation, reducing its stability and initiating the first step toward the formation of endothelial
dysfunction [82,263].

The excess of ROS during hypoxia removes NO produced by eNOS in endothelial cells,
thereby limiting the bioavailability of NO. ROS impairs NO-mediated dilation of coronary
microvessels by increasing the activity of arginase. The formed peroxynitrite oxidizes
tetrahydrobiopterin (BH4), a cofactor required for eNOS, leading to eNOS uncoupling.
Additionally, oxidative stress disrupts the balance between L-arginine and asymmetric
dimethylarginine (ADMA) [68]. The expression of arginase in endothelial cells during
hypoxia is induced by the activated ROS through the RhoA/Rho kinase pathway [264,265].
Chronic prenatal hypoxia results in a reduced expression of HIF-1 mRNA in cells of various
organs in rats [266], which, in our view, may reflect the depletion of compensatory-adaptive
mechanisms following intrauterine hypoxia. Hypoxia-inducible factors (HIFs) function
as transcription factors that control the expression of genes responsible for synthesizing
proteins involved in physiological responses to hypoxia or ischemia [267]. Under hypoxic
conditions, hypoxia-inducible factors (HIFs) exert cytoprotective functions by stimulat-
ing repair mechanisms and increasing the expression of antioxidant enzymes and factors,
including heme oxygenase-1, VEGF, and angiopoietins [268]. HIF-1 plays a key role in
adapting cellular energy metabolism to hypoxia by modulating compensatory ATP pro-
duction pathways, promoting glutathione biosynthesis, and enhancing cellular defenses
against oxidative stress. HSP70 is known to stabilize HIF-1 functionality, thereby pro-
longing its activity under stress conditions. Our observations indicate that intrauterine
hypoxia-induced downregulation of HIF-1 mRNA is accompanied by a concurrent reduc-
tion in HSP70 levels. Multiple studies have reported that HIF-1 levels and its isoform
expression profiles vary depending on the severity, duration, and tissue-specific context of
hypoxic exposure [265,268,269]. In the presence of nitrosative stress and the accumulation
of cytotoxic NO metabolites coupled with ATP depletion, HIF levels are reduced as a
result of enhanced ubiquitin-independent degradation of oxidatively modified HIF-1α and
suppression of its synthesis under energy-deficient conditions. The regulatory role of nitric
oxide in modulating HIF-1α mRNA expression is well documented [138].

Our experimental data provide strong evidence that modeled prenatal hypoxia sig-
nificantly impairs cardiovascular function in the offspring (rats aged 1 and 2 months). In
the myocardium of rats exposed to prenatal hypoxia, we recorded elevated levels of the
endothelial dysfunction marker sEPCR, along with decreased levels of Tie-2 and VEGF-B,
which serve protective roles, as well as a notable antioxidant deficiency (manifested as
reduced Cu/ZnSOD and GPX) [253]. The disturbances observed in the nitric oxide system
following prenatal hypoxia, along with elevated specific protein markers, indicate impaired
ischemia/reperfusion tolerance, disrupted endothelial regulation of vascular tone, and
further progression of endothelial dysfunction resulting from intrauterine hypoxia.

The development of endothelial dysfunction following prenatal hypoxia (PH) oc-
curs in the context of HIF-1α deficiency—a key factor that promotes eNOS expression
through serine phosphorylation—as well as nitrosative stress. This stress leads to a re-
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duction in HSP70 levels, depletion of the glutathione-dependent thiol-disulfide system,
diminished NO bioavailability, and inhibition of gene transcription due to cytotoxic NO
derivatives [144,155,254]. Our findings [144,253,254] indicate that PH causes pathological
alterations in the cardiovascular system of neonates and contributes to the onset of en-
dothelial dysfunction. It is established that EPCR expression is upregulated on endothelial
cells during post-ischemic neovascularization. Notably, exogenous NO administration
significantly enhances the formation of angiogenic endothelial sprouts from both aortic
rings and primary endothelial cells isolated from PAR1-mutant mice. This suggests that
maintaining NO bioavailability during angiogenesis is a crucial function of endothelial
signaling via the EPCR-PAR1 axis [270,271].

We also observed a downregulation of major antioxidant enzymes, accompanying
the previously reported elevation of nitrotyrosine levels in the myocardium of 1- and
2-month-old rats post-PH [144]. These findings indicate a marked intensification of ox-
idative stress following PH. Oxidative stress in the fetal cardiovascular system serves as
a fundamental mechanism by which PH programs future cardiovascular diseases and
endothelial dysfunction [256]. Our results align with other studies demonstrating that PH
leads to aortic wall thickening, elevated nitrotyrosine staining, increased cardiac HSP70
expression, impaired NO-mediated vascular relaxation, and heightened myocardial con-
tractility with a predominance of sympathetic tone [36].

GPX-4 is a key enzyme responsible for protecting cells during oxidative stress. It
catalyzes the reduction of lipid hydroperoxides, including those incorporated into cellular
membranes and lipoproteins. GPX-4 is capable of reducing hydroperoxides of various
substrates, such as fatty acids, cholesterol, and thymine derivatives. This enzymatic activity
is crucial for maintaining membrane integrity by preventing lipid peroxidation and thereby
protecting cells from oxidative damage. Additionally, GPX-4 is pivotal in preventing
ferroptosis, a distinct iron-dependent cell death process driven by lipid peroxidation and
ROS accumulation [272,273].

GPX-4 is also required for maintaining mitochondrial viability by reducing cardiolipin
hydroperoxides, key mediators of mitochondrial membrane destabilization. It exerts a
direct antioxidant effect on membrane lipids, thereby serving as a crucial inhibitor of
ferroptosis induced by lipid peroxide accumulation. The cytoplasmic isoform of GPX-4
plays a dominant role in ferroptosis suppression in somatic cells, whereas the mitochondrial
isoform (mGPX-4) contributes to the prevention of mitochondrial dysfunction [274]. Recent
findings have shown for the first time that prenatal hypoxia (PH) can trigger ferroptosis
in human trophoblast cells, potentially contributing to miscarriage and underscoring the
critical protective role of GPX-4 in this context [275].

GPx-1, another intracellular antioxidant enzyme, converts H2O2 into water, limiting
oxidative damage and regulating H2O2-mediated signaling pathways tied to growth factors,
mitochondrial function, and redox homeostasis. The decrease in GPx-1 expression in the
myocardium of rats post-PH, as observed in our previous study [144], may be linked to an
overproduction of cytotoxic NO forms amid high iNOS expression [276]. GPx-1 is key in
preserving endothelial function and maintaining NO bioavailability [276], and its deficiency
results in significant vasoconstriction and contributes to the development of endothelial
dysfunction [277].

Superoxide dismutases (SODs) are generally divided into four categories: manganese
SOD (MnSOD), copper–zinc SOD (Cu/ZnSOD), iron SOD (FeSOD), and nickel SOD
(NiSOD). Among them, Cu/ZnSOD and MnSOD are found in the cytoplasm and are
considered the primary enzymes responsible for eliminating free radicals inside the cell.
These forms of SOD have drawn significant interest due to their crucial physiological
roles and potential therapeutic applications [278]. In our studies, we observed reduced
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levels of Cu/ZnSOD in the cytosol of rats exposed to prenatal hypoxia (PH), a finding
consistent with other research showing that PH suppresses Cu/ZnSOD expression at both
transcriptional and post-translational stages. PH also lowers the enzymatic activity of
Cu/ZnSOD, which may contribute to the development of cardiovascular diseases [279]
and endothelial dysfunction [280].

Substantial evidence supports the association between diminished activity of an-
tioxidant enzymes and negative pregnancy outcomes. Oxidative stress adversely affects
maternal physiology, the progression of pregnancy, and fetal development. It interferes
with placental function, hinders the transfer of oxygen and nutrients to the fetus, and leads
to impairments in the cardiovascular system—especially in the form of cardiomyopathy
and endothelial dysfunction [281].

3.4. NO and Cardiomyocyte Apoptosis After PH

Since hypoxia is a powerful stress factor, many researchers show that perinatal hy-
poxia induces cell death by activating both apoptotic and necrotic pathways, depending
on the cell type [282–285]. The study of molecular mechanisms of apoptosis in various
forms of heart pathology is one of the pressing issues in medical science. For a long time,
apoptosis was considered atypical for highly differentiated tissues. However, in recent
years, cardiomyocyte apoptosis after PH has been identified. At the same time, the spe-
cific features of the induction and course of cardiomyocyte apoptosis during and after
intrauterine hypoxia are not yet fully understood [286,287].

It is known that apoptosis is programmed cell death, which, unlike necrosis, is
an active and highly regulated process. It involves a cascade of specific signaling and
effector molecules that interact with each other with a high degree of selectivity and
sequence [286,288,289]. As a result, cell and nuclear shrinkage occurs, along with DNA
fragmentation, chromatin condensation, and the subsequent formation of “apoptotic bod-
ies”, which are membrane-bound clusters of condensed cellular contents that the cell breaks
down into during apoptosis. These “apoptotic bodies” are either phagocytosed or degrade
with subsequent breakdown (secondary necrosis). However, in both cases, an inflammatory
response does not develop [287,290–292].

Programmed cell death plays a role in postnatal morphogenesis of the heart’s conduc-
tion system: the sinoatrial and atrioventricular nodes, as well as the His bundle [293,294].
Apoptosis of pacemaker cells may play a role in the development of paroxysmal arrhyth-
mias, conduction disturbances, and the genesis of sudden coronary death. For cells that
have reached terminal differentiation, such as cardiomyocytes, apoptosis is not typically
characteristic. Both internal (controlled by mitochondrial activity) and external (initiated by
death receptors) apoptotic pathways jointly regulate the mechanisms of heart development.
During heart development, many cell populations are recruited into the heart, where they
differentiate into cardiomyocytes, fibroblasts, smooth muscle cells, endocardial and en-
dothelial cells lining the inner surfaces, and epicardial cells lining the outer contours. Thus,
cell populations originating from the neural crest, which migrate to specific sites in the
heart, are prone to apoptosis [33,35,38,291,292]. However, in cardiomyopathies, myocardial
hypertrophy, and chronic heart failure of various etiologies, there is often a progressive
decline in the contractile ability of the left ventricle. This process frequently occurs in the
absence of any signs of myocardial ischemia. Therefore, apoptosis of cardiomyocytes has
been used as a working hypothesis to explain the mechanism of heart failure development,
which is supported by several experiments [293,295–299].

In the early stages of ischemia, apoptosis is the predominant form of cardiomyocyte
death in newborns. A typical response of apoptosis in hypoxic cardiomyopathies and
congenital heart defects is the intensification of its mitochondrial pathway. Heart failure
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resulting from perinatal hypoxia is accompanied by the activation of all pathways of
programmed cell death, with the extent of apoptosis induction depending on the stage
of circulatory failure [300–302]. The dynamics of apoptosis markers—lymphocytes with
activated CD95+ expression in the blood of patients with chronic heart failure—can be used
as a criterion for evaluating the effectiveness of therapy [303–305].

The initiation of apoptosis in cardiomyocytes under hypoxia can be triggered by a
variety of stimuli. However, all these activation pathways converge on the activation of the
aspartate-specific cysteine protease system, known as caspases, which are constitutionally
expressed in cells as inactive zymogens. Once, under the influence of apoptosis inducers,
caspases undergo dimerization or specific proteolysis, they become active and, through
a cascade of proteolytic reactions, initiate all the biochemical and morphological changes
that constitute the apoptosis process [287,300].

The increase in apoptosis caused by PH is supported by studies indicating that prenatal
hypoxia enhances death signaling through increased activity of caspase 3 and Fas mRNA
while suppressing survival pathways through reduced expression of Bcl-2 and Hsp70 in the
hearts of the fetus [306]. The reduction in the bioavailability of NO and the increase in its
cytotoxic forms enhance the sensitivity of cells to signals transmitted through Fas receptors.
Studies demonstrate the role of peroxynitrite in triggering the process of apoptotic cell death
in the context of decreased CuZn-SOD levels [307]. Our recent studies have confirmed that
modeling PH leads to a significant reduction in the expression of CuZn-SOD in the cytosol
of the heart in 1- and 2-month-old offspring against the backdrop of increased nitrotyrosine
levels and a disproportionate expression of iNOS/eNOS [253].

The extrinsic mechanism of apoptosis begins with the binding of specific ligands,
known as “death ligands” (such as FasL), to specific transmembrane receptors, such as
Fas/CD95/Apo1, or the binding of tumor necrosis factor alpha (TNF-α) to its receptor. In
endothelial cells after hypoxia, H2O2 stimulates the activity of iNOS, which contributes
to oxidative cell damage and apoptosis [149,308,309]. NO and its cytotoxic forms lead to
the opening of the mitochondrial permeability transition pore (mPTP), which results in the
release of cytochrome c and the initiation of the caspase cascade of apoptosis [310,311].

NO and its derivatives can cause peroxidative oxidation of phospholipids and oxida-
tion of thiol groups in mitochondrial membrane proteins, which also leads to the release of
apoptotic factors into the cytosol [115,312,313]. Data have also been obtained confirming
the direct action of excess NO on the induction of apoptosis in a cGMP-dependent manner
in isolated cardiomyocytes [314]. In fetuses subjected to PH, a decrease in the expression
of Bcl-2 mRNA, an anti-apoptotic protein, was observed in the left ventricle [315]. Physio-
logical concentrations of NO, produced in vivo by eNOS, can activate cGMP-dependent
protein kinases, which in turn influence the proteins involved in apoptotic cascades (such
as Bcl-2). A reduction in eNOS activity and NO deficiency may impact the expression
of Bcl-2. Bcl-2 can inhibit apoptosis mediated by NO and its derivatives, as well as the
cleavage of poly(ADP-ribose) polymerase [316].

Excess NO due to iNOS activity neutralizes the anti-apoptotic members of the BCL-2
family by activating the ASK1-JNK1 pathway, leading to BAX/BAK-dependent cell death.
NO and its cytotoxic forms can cause direct S-nitrosylation of cysteine residues in thiore-
doxin, thereby releasing ASK1 to induce cell death. The mechanism through which
NO activates the ASK1-JNK1 axis to initiate BAX/BAK-dependent cell death involves
the generation of reactive oxygen species (ROS) and is associated with the formation of
peroxynitrite [317–319].
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4. Molecular Mechanisms and Stress Responses
4.1. The Interaction Between NO and HIFs in the Myocardium After PH

HIFs function as transcriptional regulators, controlling the expression of genes re-
sponsible for the adaptive physiological responses to hypoxic or ischemic conditions [320].
Under low-oxygen conditions, HIFs display cytoprotective effects by promoting tissue
repair mechanisms and enhancing the expression of free radical scavengers, including heme
oxygenase-1, VEGF, and angiopoietin [267,268]. During hypoxia, HIF-1 modulates cellu-
lar energy metabolism by activating alternative ATP-generating pathways, upregulating
glutathione production, and strengthening cellular defenses against oxidative stress [321].

A sufficient amount of research has shown that the concentration of HIF-1 and its forms
varies in different types of hypoxia, its duration, and across various organs [322–326]. Under
conditions of increased nitrosative stress and elevated levels of cytotoxic NO products, along
with ATP depletion in tissues, a decrease in HIFs is observed, associated with the activation
of the ubiquitin-independent degradation pathway of oxidatively modified HIF-1α and the
suppression of its synthesis during ATP deficiency [254,327,328].

The regulation of HIF activity involves intricate control mechanisms affecting the HIFα
subunit through both oxygen-dependent and oxygen-independent pathways. Oxygen-
independent mechanisms include the regulation of HIFA gene expression by transcrip-
tion factors such as nuclear factor kappa B (NF-κB), specificity protein 1 (SP1), and NF-
E2-related factor 2 (NRF2), which can, in turn, be regulated by active ROS, cytokines,
and/or lipopolysaccharide (LPS)-dependent signaling through pathways involving pro-
tein kinase C (PKC), inhibitor of NF-κB kinase (IKK), and/or phosphoinositide 3-kinase
(PI3K) [329–331]. The levels of HIFA mRNA and/or translation can be regulated by microR-
NAs (miRNA), long non-coding RNAs (lncRNA), and/or angiotensin II-mediated signaling
involving PI3K. Post-translational modifications, such as phosphorylation, sumoylation
(SUMO), acetylation (Ac), and NO-mediated S-nitrosylation, further contribute to the
oxygen-independent regulation of HIFα stability and activity [332,333]. Our findings in-
dicate that PH leads to downregulation of HIF-1 mRNA expression in the hearts of 1-
and 2-month-old animals, which coincides with decreased expression of eNOS and re-
duced levels of NO metabolites. In this same study, we also found that the suppression
of HIF-1 mRNA expression after intrauterine hypoxia occurs in the context of HSP70
deficiency [254].

It is known that HSP70 prolongs the “lifespan” of HIF-1 under hypoxic
conditions [334,335]. The reduction in HIF-1 mRNA expression in the hearts of rats after
prolonged perinatal hypoxia has also been confirmed by other authors [265,266]. And,
in our opinion, this may indicate the exhaustion of compensatory-adaptive responses.
The regulatory role of NO in the regulation of HIF-1α mRNA expression is well known.
Physiological concentrations of NO caused a faster but temporary accumulation of HIF-1α
compared to higher doses of the same NO donor. Cytotoxic forms of NO suppressed the
expression of HIF-1α. The regulation of HIF-1α by NO is an additional important mecha-
nism through which NO can modulate cellular responses to hypoxia in mammalian cells.
NO not only modulates the HIF-1 response under hypoxic conditions but also functions as
an inducer of HIF-1 [336,337].

4.2. NO and Inflammation After PH

NO is a signaling molecule that plays a key role in the pathogenesis of inflammation.
Under physiological conditions, NO exhibits anti-inflammatory properties, contributing
to the maintenance of tissue homeostasis. Conversely, in pathological states, excessive
NO production transforms it into a pro-inflammatory mediator, promoting inflammatory
responses. NO is synthesized and released by endothelial cells via nitric oxide synthases
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(NOSs), which convert arginine into citrulline, producing NO in the process. Oxygen and
NADPH are essential cofactors in this conversion. NO is believed to cause vasodilation
in the cardiovascular system, and in addition, it plays a role in the immune responses
of activated cells. Moreover, NO is actively involved in the pathogenesis of various
inflammatory diseases [11,338].

Cytotoxic forms of NO and ROS in the hypoxia of newborns can trigger the production
of oxygen stress-induced high-mobility group box-1 (HMGB-1), an endogenous protein of
molecular structures associated with damage (DAMPs), which is linked to toll-like receptor
(TLR)-4. This activation leads to the stimulation of nuclear factor kappa B (NF-κB), resulting
in the production of an excessive amount of inflammatory mediators. Peroxynitrite, ROS,
and inflammatory mediators are produced not only in activated inflammatory cells but
also in non-immune cells, such as endothelial cells and cardiomyocytes [339].

Excessive inflammation during hypoxia in newborns and after PH exacerbates tis-
sue/organ damage through the expression of genes and proteins. Elevated cytokines
activate various inflammatory immune cells through receptors, including toll-like receptors
(TLRs), further increasing the production of cytokines and other inflammatory mediators.
For example, the concentration of cytokines such as interleukin (IL)-1β, IL-6, IL-8, and
tumor necrosis factor (TNF)-α has increased [340–343]. Hypoxia-induced IL-1β also in-
creases the expression of the NF-κB gene. Thus, both ROS and hypoxia can activate the
NF-κB pathway.

The activated NF-κB pathway, in turn, increases the expression of inflammatory medi-
ator genes and regulates RNS, including the synthesis of iNOS and the production of NO.
During inflammation, the increase in HIF-1 induces iNOS and reduces L-arginine, leading
to an increase in the production of ONOO and hydroxyl radicals, further reactivating
nitrosative stress [344–348].

4.3. NO and HSP70 After PH

Recently, a number of studies have focused on the role of heat shock proteins (HSPs)
in hypoxia, particularly prenatal hypoxia [349–352]. HSPs are synthesized in cells of
all living organisms in response to various stress factors, including cerebral ischemia.
However, the genes for these proteins are activated not only under stress conditions but
also during the normal life processes of the cell, including proliferation, differentiation, and
apoptosis [353–355]. Proteins of this class are involved in all life processes of tissues, organs,
and the entire organism.

The most studied protein of this family is the 70 kDa molecular mass protein, HSP70.
HSP70 is an inducible representative of the heat shock protein family [356–358]. HSP70
is the first protein to be called a chaperone. The function of chaperones in the cell is to
bind to damaged or newly synthesized polypeptides and assist them in adopting their
native conformation; chaperones also participate in the delivery of proteins to specific
organelles [359–361]. Chaperones are capable of identifying hydrophobic regions in target
polypeptides that are exposed to damaged proteins or may open up in normal, mature
cellular proteins during conformational changes. Such conformational changes occur, for
example, as a result of cascade modifications of proteins during the process of cellular
signal transduction [362–364].

Proteins from the HSP70 family are some of the main components of the cellular pro-
tein quality control system. Chaperone activity is generally associated with the protective
function of HSP70 [365–367]. The fact that the chaperone protects cells from a wide range
of factors, including those inducing apoptosis, in an ATP-mediated manner and removes
irreparable proteins through the proteasomal machinery has been confirmed in numerous
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in vitro and in vivo experiments using a variety of experimental models. Additionally,
much evidence supports the protective effect of HSP70 [115,368].

The results of experiments have highlighted several directions for the practical use of
the protective properties of HSP70. First, the organism’s resistance to stress conditions can
be increased by enhancing the intracellular content of HSP70 [369–371]. Secondly, a number
of studies show interest in utilizing the protective properties of extracellular HSP70. Once
outside the cell, HSP70 likely interacts with neighboring cells and protects them from cell
death. Thus, exogenous HSP70 has demonstrated protective properties similar to those of
the intracellular chaperone [372–375].

Recently, there have been data regarding the regulatory effect of heat shock proteins
on mitochondrial dysfunction, which develops during brain ischemia, myocardial ischemia,
and prenatal hypoxia, as a result of the pathobiochemical cascade of events [335,376–378].

Thus, it would be reasonable to assume that HSP70 is involved in the regulation
of signaling pathways in the cell’s response to hypoxia at the level of HIF-1α regula-
tion [334,379,380]. The cytoprotective effect of HSP70 under hypoxic conditions is realized
through its anti-apoptotic and mitochondria-protective activities. It is well known that
depending on the concentration of ROS, oxidative stress ultimately leads to either necrosis
or apoptosis [335,381,382]. A high level of ROS causes significant damage to proteins, lipids,
and nucleic acids, leading to necrosis. Moderate oxidative stress results in programmed
cell death—apoptosis. HSP70 and HIF-1α, through their prolonged action on the synthesis
of antioxidant enzymes, chaperone activity, and stabilization of active filaments, prevent
the development of necrosis [383,384].

A number of authors indicate that an increase in HSP70 levels leads to the normaliza-
tion of the glutathione linkage in the thiol-disulfide system and enhances the resistance
of cells to ischemia [115,335,385,386]. The introduction of exogenous HSP70 leads to an
increase in the functional activity of the glutathione system [351,387,388]. In other words, it
has been shown that HSP70, proteins with pronounced cytoprotective properties, under
hypoxic conditions, mobilize antioxidant resources, particularly increasing the levels of
both cytosolic and mitochondrial glutathione, which prevents the development of oxidative
stress [381,389].

Moreover, it is known that by modulating the level of endogenous reduced glutathione,
the expression of heat shock proteins can be regulated within the cell [351]. The deficit of
HSP70 in the neuron, in the case of reduced glutathione, is, in our opinion, associated with
the hyperproduction of ROS and cytotoxic forms of nitric oxide, which lead not only to the
modification (reversible and irreversible) of macromolecules, including HSP70 itself, but
also to a decrease in the expression activity of genes encoding its synthesis. By stabilizing
oxidatively damaged macromolecules, HSP70 is able to prevent the opening of the mito-
chondrial pore, thereby blocking the release of cytochrome C from the mitochondria, thus
exerting a direct anti-apoptotic effect [11,390,391].

HSP70 plays an important role in preventing oxidative stress. However, a sudden
depletion of endogenous glutathione can reduce the expression of HSP70 in tissues/organs
under hypoxia, which leads to increased oxidative damage to macromolecules and an
enhancement of hypoxic changes [392–395]. It has been shown that under in vitro con-
ditions, HSP70 is capable of preventing the aggregation of oxidatively damaged citrate
synthase, glutathione-S-transferase, glutathione reductase, superoxide dismutase, lactate
dehydrogenase, malate dehydrogenase, and regulating the thiol-disulfide balance [351,352].

Moreover, one of the main functions of HSP70 is the induction and prolongation of
the stable form of HIF-1α, which triggers further adaptive responses in the cell. We have
established that HSP70 “prolongs” the activity of HIF-1α and also independently maintains
the expression of NAD-MDH-MH, thereby sustaining the activity of the compensatory
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ATP production mechanism—the malate–aspartate shuttle mechanism—for an extended
period [396].

Thus, it can be concluded that HSP70 is an inevitable companion of the pathobio-
chemical reactions that develop as a result of PH. The current level of knowledge of the
pathophysiological and pathobiochemical processes occurring during hypoxia (ischemia)
allows for the consideration of pathogenetic correction of metabolic and morphofunctional
changes using pharmaceuticals, for which HSP70 will be the target of action.

We have established that modeling PH leads to a deficiency of HSP70 in the 1- and
2-month-old offspring against the background of glutathione deficiency and the expression
of glutathione-dependent enzymes (GPX1 and GPX4) [253,254]. We have shown that
significant activation of nitrosative stress leads to a decrease in HSP70 concentration. The
modeling of nitrosative stress in vitro was conducted by introducing a dinitrosyl iron
complex (DNIC) into the neuron suspension at a cytotoxic concentration of 250 µmol.
DNIC is an unstable complex of divalent iron, nitric oxide, and ligands [350,397].

Being a stronger nitrating agent, DNIC interacts with -SH groups, glutathione, cysteine
residues of proteins, enzymes, transcription factors, and DNA, forming S-nitrosothiols and
N-nitrosothiols [398]. After existing for several minutes, DNIC decomposes, releasing a
large amount of nitric oxide and free iron. Free iron catalyzes the Haber–Weiss reaction,
leading to the formation of hydroxyl radicals, which are capable of oxidizing proteins,
degrading cellular membrane lipids, and damaging DNA. In turn, a large amount of nitric
oxide released from the complex exhibits its toxic properties in the form of dinitrogen
trioxide (N2O3) and peroxynitrite (ONOO−), which, when excessively synthesized in vivo,
lead the organism into a state of nitrosative and oxidative stress [399–401].

At the 60th minute of observation, the HSP70 protein content decreased by 51.4%
(p < 0.05) compared to the intact group. The results of our research show that the decrease
in GSH levels at the 60th minute of observation was accompanied by a low level of HSP70
protein, which is confirmed by the strong correlation between GSH and HSP70 (Pearson’s
multiple correlation coefficient (R = 0.94678)). We also established a strong negative
correlation between HSP70 and the marker of nitrosative stress, nitrotyrosine (Pearson’s
multiple correlation coefficient (R = −0.8899)) [402].

It can be assumed that intrauterine hypoxia leads to a decrease in HSP70, which plays
a role as an endogenous cytoprotective factor through nitrosative stress in response to the
disruption of the nitroxidative system.

4.4. Oxidative Stress in Myocardial Damage After PH

Modeling PH leads to the development of postnatal heart dysfunction. In our previous
study, it was established that the use of this PH model results in a decrease in myocardial
contractile activity and dysfunction of the sinus node. In the contractile myocardium
and conduction system, cells with signs of apoptosis and dystrophy are observed, with
a certain correlation between the severity of morphological changes and bioelectrical
disturbances in rhythm and conduction [79]. The final result of hypoxic heart injury is focal
dystrophy [23]. Molecular analyses confirmed this, showing an elevated concentration of
ST2 in the blood of animals subjected to PH. ST2 serves as a highly sensitive indicator of
myocardial remodeling processes and an increased risk of heart failure [403].

Our findings regarding elevated nitrotyrosine levels after PH align with previous
research showing increased cardiac oxidative stress markers in both male and female rats
subjected to intrauterine hypoxia [149,404]. Increased oxidative stress is closely associated
with cardiovascular diseases such as hypertension and coronary artery disease. It leads to
hypertrophy, fibrosis, and apoptosis, which result in impaired heart function [405–407].
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The characteristic feature of myocardial damage after PH, according to many authors,
is the prenatal damage to myocardial mitochondria caused by hypoxia. This makes the
mitochondria a source of reactive oxygen species and pro-apoptotic proteins. Against
the background of impaired energy production (decreased ATP), this leads to significant
activation of oxidative stress and apoptosis [171,172,408–410].

According to findings from several studies, intrauterine hypoxia in rats leads to ele-
vated levels of mitochondrial cytochrome C in the bloodstream, accompanied by a decline in
both the average mitochondrial density and cristae density, along with decreased expression
of mitochondrial manganese superoxide dismutase (Mn-SOD) [411–413]. It has also been
shown that intrauterine hypoxia modifies the expression of 48 genes involved in metabolic
and oxidative stress responses, including genes encoding glutathione-S-transferase subunits
and cytochrome C oxidase [203,414–417].

The impact of intrauterine hypoxia on eNOS expression is duration-dependent, with
prolonged ROS overproduction contributing to reduced NO bioavailability and downreg-
ulation of eNOS expression [23,68]. The balance between ROS and NO, in the context of
sufficient endogenous reduced thiol compounds, determines vascular tone. This is be-
cause hypoxia-induced increases in ROS, low NO production, and a deficiency of reduced
low-molecular thiol compounds in the fetus lead to the formation of cytotoxic derivatives
of nitric oxide, which enhances peripheral vasoconstriction and exacerbates myocardial
ischemia. An excess of NADPH during prenatal hypoxia is a key factor in the formation of
ROS, which can react with NO to form the stable peroxynitrite anion, thereby reducing the
bioavailability of NO [417–420].

5. Cardioprotection and Therapeutic Approaches
5.1. Cardioprotection After PH

According to several researchers, when modeling hypoxia–ischemia–reoxygenation
conditions, the oxygen transport compound—perfluorane emulsion—demonstrated a high
degree of pharmacological cardioprotection efficacy. Solutions of adenosine triphosphate
(ATP), cocarboxylase, magnesium sulfate, riboxin, solcoseryl, cytochrome C, and essentiale
showed a medium degree of efficacy. Low efficacy was observed with ascorbic acid solution
and L-carnitine chloride solution (levocarnitine) [421–429].

For a long time, the most significant group of substances that could be classified as
regulatory antihypoxants consisted of nonspecific activators of enzymatic and coenzyme
systems. They were considered the only clinically available drugs of this kind. These
include B vitamins, thiol derivatives, and pyrimidine derivatives. However, even those
that were once extremely popular, with numerous publications on their successful clinical
application, are unlikely to remain in the arsenal of resuscitation specialists, although the
theoretical grounds for their implementation in practice were promising [430,431]. For
example, the conversion of nicotinamide to NAD requires a series of directed synthesis
reactions, which are inhibited by oxygen deficiency, and therefore, the final antihypoxic
effect of nicotinamide is small and unstable [432,433].

Recently, antihypoxants have been discovered that do not lower body temperature
or oxygen consumption, do not stimulate gluconeogenesis, almost halve glycolysis, and
do not possess antioxidant properties. The mechanism of their action is unknown and
cannot yet be linked to any of the previously discussed mechanisms, but their protective
effect significantly exceeds that of “first” and “second” generation antihypoxants. One such
drug is Meldonium (Grindex, Tinley Park, IL, USA), synthesized in the early 1980s at the
Institute of Organic Synthesis in Latvia. Structurally, Meldonium is a synthetic analog of
the precursor in carnitine biosynthesis—gamma-butyrobetaine. It has been established that,
like carnitine, it participates in the energy metabolism of cells [434–437]. Thus, it prevents
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the activation of glycolysis reactions, which dominate under tissue hypoxia conditions, and
therefore exhibits cytoprotective effects.

The anti-ischemic and cytoprotective effects of Meldonium on the postoperative
course after open-heart or brain surgery interventions have been demonstrated in various
studies [438–440]. Its effects are especially pronounced when its use is started 2–3 days
before the surgery and continued afterward. With a single dose, the drug had an optimizing
effect on the cerebral circulation system when there were significant impairments in the
reactivity of the cerebral blood vessels. At the same time, with unstable hemodynamics
after a single intravenous administration of Meldonium, a clear increase in systemic blood
pressure was observed, and the quality characteristics of circulation improved [441,442].

It has been shown that the prophylactic administration of succinic acid, aminothiol
antihypoxants such as gutimine and amtyzol, as well as succinate-containing aminothiol
antihypoxants like gutimine succinate and amtyzol succinate, exhibits pronounced antihy-
poxic and antioxidant effects [443]. There is an antihypoxant called Lipin. Lipin, a modified
egg phosphatidylcholine (lecithin), exhibits antihypoxic effects, promotes the increased
diffusion rate of oxygen from the lungs into the blood and from the blood into tissues,
normalizes tissue respiration processes, restores the functional activity of endothelial cells,
and stimulates the synthesis and secretion of endothelial relaxation factor. It also improves
microcirculation and the rheological properties of blood. Lipin inhibits lipid peroxidation
processes in the blood and tissues, supports the activity of the body’s antioxidant systems,
exhibits a membrane-protective effect, functions as a nonspecific detoxifying agent, and
enhances nonspecific immunity. When administered via inhalation, it has a positive effect
on lung surfactant, improves pulmonary and alveolar ventilation, and increases the rate of
oxygen transport through biological membranes [444–446].

Thus, in the hearts of newborn rats under conditions of intrauterine hypoxia, reversible
changes develop, and in severe cases, irreversible changes occur both in cardiomyocytes
(conducting and contractile) and in the vessels of the hemomicrocirculatory bed. This is
a manifestation not only of hypoxic damage to the heart muscle but also evidence of an
ischemic nature of the myocardial damage that has developed. Therefore, studying the
pathways for correcting antenatal hypoxia remains a relevant issue, within which it is
advisable to study the effects of modern antihypoxants on the myocardium in experimental
settings, as well as the possibilities for their combination to enhance the effect.

5.2. NO Modulators—Promising Cardioprotectors After PH

The literature data regarding the role of the NO system in the development of cardio-
vascular pathology in newborns and the potential cardioprotective effects of its modulators
is quite limited. Several studies have established the cardio- and endothelial-protective
properties of drugs that are capable of both increasing the synthesis of NO and enhancing
the bioavailability of this messenger [114,253,447,448]. In this regard, substances such as
L-arginine, Thiotriazoline, Angiolin, and Meldonium are of interest.

L-arginine is a substrate for the formation of NO in endothelial cells of blood vessels,
exhibiting antioxidant, cytoprotective, antihypoxic, and membrane-stabilizing proper-
ties [449]. Thiotriazoline (morpholinium 3-methyl-1,2,4-triazolyl-5-thioacetate) is a specific
scavenger of NO and its cytotoxic forms, enhancing the bioavailability of NO by pro-
tecting it from ROS. In ischemic conditions, Thiotriazoline strengthens the compensatory
activation of the malate–aspartate shuttle mechanism, reduces the inhibition of oxidation
processes in the Krebs cycle while preserving intracellular ATP levels, and demonstrates
hepatoprotective, cardioprotective, anti-ischemic, and antioxidant properties [450].

Angiolin ([S]-2,6-diaminohexane acid 3-methyl-1,2,4-triazolyl-5-thioacetate) increases
the expression of VEGF and the density of proliferating endothelial cells in muscular-type
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blood vessels and the microcirculatory bed. It enhances the bioavailability of NO, preserves
the ultrastructure of mitochondria during ischemia, and also boosts ATP production in
ischemic conditions by activating the compensatory malate–aspartate shuttle mechanism.
Angiolin increases the expression of eNOS and exhibits endothelial, cardioprotective,
neuroprotective, antioxidant, and anti-ischemic properties [351].

Meldonium reduces the formation of carnitine from its precursor, gamma-butyrobetaine,
and the accumulation of the latter stimulates NO synthesis. Meldonium decreases carnitine-
mediated transport of long-chain fatty acids across mitochondrial membranes without
affecting the metabolism of short-chain fatty acids and activates an alternative energy
production system—glucose oxidation [451]. Meldonium exhibits anti-ischemic and cardio-
protective properties.

In our studies using the PH model, the cardioprotective effects of NO
modulators—L-arginine, Thiotriazoline, Angiolin, and Meldonium—were demonstrated
for the first time, with varying degrees of expression. The presented drugs reduced the
concentration of ST2 protein, normalized the expression of iNOS mRNA and eNOS mRNA,
as well as iNOS and eNOS proteins, increased the concentration of HSP70 and HIF-1, and
decreased the marker of nitrosative stress—nitrotyrosine—in the blood and myocardium
of 1- and 2-month-old offspring.

Two drugs—Angiolin and Thiotriazoline—were able to have a full impact on en-
dothelial dysfunction indicators after PH (reducing sEPCR with increased Tie-2, VEGF-B,
and Cu/ZnSOD, GPX), which perform protective and antioxidant functions [144,253].
The cardioprotective effect of NO modulators was also manifested in the improvement
of the electrophysiological properties of the heart in the offspring after PH. The most
pronounced therapeutic effect was observed with Angiolin and Thiotriazoline, which
contributed to almost complete normalization of heart rate, while Angiolin also re-
stored the neurogenic control of the sinus node’s automaticity. The obtained results
allowed us to rank the therapeutic efficacy of the used drugs in descending order:
Angiolin > Thiotriazoline > Meldonium > L-arginine in eliminating disturbances in the
electrical activity of the heart [79].

5.2.1. Angiolin((S)-2,6-Diaminohexanoic Acid 3-methyl-1,2,4-triazolyl-5-thioacetate)

Angiolin exhibits pronounced endothelial-protective, neuroprotective, cardioprotec-
tive, energotropic, antioxidant, anti-ischemic, and anti-inflammatory properties. Angiolin
acts as an anti-ischemic and antioxidant agent with a significant effect on the endothe-
lium of the brain and heart vessels and metabolism. Its neuroprotective properties are
due to the conversion of L-lysine into pipecolic acid, which enhances the affinity of the
GABA-benzodiazepine receptor complex, thereby reducing manifestations of glutamate
excitotoxicity. The drug significantly reduces neuronal death in ischemic and hemorrhagic
strokes, normalizes the functioning of the compensatory GABA-shunt, and increases the
ATP level in brain tissues. Under acute ischemic conditions in the brain, the drug preserves
the functional activity of neuronal mitochondria [452,453].

The drug exhibits pronounced antioxidant properties, activates the glutathione branch
of the thiol-disulfide system, increases the activity of glutathione peroxidase and glu-
tathione transferase, reduces the formation of reactive oxygen species, and decreases the
accumulation of markers of oxidative and nitrosative stress. The endothelial-protective
effect of the drug in cerebrovascular disorders and hypertension is due to its ability to
regulate NO production, reduce the formation of peroxynitrite and homocysteine, increase
the activity of superoxide dismutase and NO-synthase, and preserve reduced thiol groups
and L-arginine. The drug increases the bioavailability of NO and can improve its transport
to target cells when endothelial function is impaired in brain blood vessels.
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In cerebrovascular disorders and vascular surgeries, the drug preserves the morpho-
functional parameters of endothelial cells in muscle-type vessels and capillaries of the
brain, increases RNA content in the nuclei and cytoplasm of endothelial cells, activates
their proliferation, and increases the binding coefficient of vascular endothelial growth
factor (VEGF) with the endothelium. The drug demonstrates anti-inflammatory properties,
reducing the expression of the pro-inflammatory cytokine IL-1β [452–454].

The cardioprotective properties of the drug are aimed at increasing the survival rate of
cardiomyocytes during acute myocardial ischemia, improving ECG parameters. The drug
improves overall and cardiodynamics during acute myocardial ischemia—normalizing
systolic blood pressure, reducing ischemic left ventricular dysfunction, increasing left
ventricular pressure, and increasing working and systolic heart indices while lowering
overall peripheral vascular resistance. In angina and myocardial infarction, Angiolin
improves myocardial energy metabolism by intensifying aerobic ATP formation reactions
and activates the compensatory malate–aspartate shuttle for ATP production [351,452–454].
When administered parenterally, the average time for Angiolin’s presence in the body is
20 min. The distribution coefficient in the body is 464 µg/g/min, indicating a rapid reach
of the drug to target organs and tissues. A total of 17% of the administered dose of the
drug binds to plasma proteins. Within the first 3–5 min, 34.7% of the administered dose of
Angiolin reaches the myocardium. The time to reach the maximum concentration in the
myocardium is 7.8 min. The maximum concentration in the myocardium (Cmax cor) is
16.7 µg/g. The clearance rate from the myocardium for Angiolin is 324 µg/min. The drug
is excreted via the kidneys, with 62% of the dose eliminated in unchanged form, and its
renal clearance is 3.6 mg/min [455].

According to acute toxicity studies of the drug “ANGIOLIN” (mice, rats, rabbits), it
was classified as a Class V of toxicity (practically non-toxic substances with no cumulative
properties according to the accumulation index). The drug “ANGIOLIN” does not cause
skin irritation on undamaged rat skin, does not have a local irritant effect on the undamaged
conjunctiva of guinea pigs’ eyes, does not cause allergic reactions in guinea pigs, and does
not have ulcerogenic effects in rats. In a 180-day intragastric administration study of
“ANGIOLIN” in doses of 100, 500, and 1000 mg/kg, it was found that the drug does
not cause structural–functional changes, does not lead to dystrophic or hemodynamic
disorders, nor does it provoke destructive reactions in the studied tissues of animals [455].

The investigated drug “ANGIOLIN” has a good safety profile, has passed the first
phase of clinical trials, and, by approval from the State Expert Center of the Ministry
of Health of Ukraine, has been authorized for the second phase of clinical trials. The
primary cardioprotective action of Angiolin, when administered after intrauterine hy-
poxia, with sustained effects even after a one-month cessation, can be explained by the
following properties.

In conditions of acute brain ischemia, Angiolin exhibits pronounced endothelial-
protective properties—it maintains endothelial cell density, increases RNA concentration in
cell nuclei, boosts the density of proliferating endothelial cells (BrdU test), enhances the
utilization of endogenous L-arginine, and increases the expression of vascular endothe-
lial growth factor (VEGF) and eNOS. Additionally, the presence of divalent sulfur in its
structure gives it the property of scavenging NO. Angiolin, together with vitamin C, forms
L-carnitine and normalizes mitochondrial function.

Our studies have shown that Angiolin improves the ultrastructure of neurons in
the CA1 zone of the hippocampus in chronic cerebral ischemia (reducing crystal destruc-
tion, uneven electron density of the matrix, and increasing mitochondrial density). It
also lowers intra-mitochondrial iNOS levels and raises the concentration of cytosolic and
intra-mitochondrial HSP70. Our work has demonstrated that Angiolin can activate the
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malate–aspartate shuttle mechanism in the myocardium during ischemia. The positive
effect on the NO system and the reduction of oxidative stress, along with the increase in
mRNA of HIF-1 and HSP70, seem to provide Angiolin with its cardioprotective effect after
intrauterine hypoxia.

It is noteworthy that the cardioprotective effect of Angiolin in offspring after PH was
sustained even one month after the discontinuation of the drug. Experimental studies have
shown that Angiolin increases the expression of eNOS mRNA and eNOS activity in ischemic
myocardium in rats. Angiolin also enhances the expression of VEGF and the binding
coefficient of VEGF to endothelial cells, as well as the density of endothelial cells and
proliferating endothelial cells in the capillary network and vessel walls. It increases RNA
concentration in endothelial cells under hypoxic and circulatory ischemic conditions [456].

Angiolin exerts a protective effect on nitric oxide (NO) and enhances its bioavailability.
Due to its inherent instability and short half-life, NO extends its activity by forming stable
S-nitrosylated complexes with low-molecular-weight compounds such as glutathione and
cysteine. A deficiency of such compounds leads to a marked reduction in NO bioavailabil-
ity. When low-molecular thiols are deficient, NO, under the influence of ROS, transforms
into peroxynitrite, which can trigger the initiation of nitrosative stress [457]. Angiolin, due
to its chemical structure, acts as a spin trap and can form a complex with NO. Angiolin
positively affects the state of the nitric oxide system in the myocardium under experimental
ischemia—it increases NO synthesis by enhancing eNOS expression, increases NO bioavail-
ability, and reduces parasitic reactions by decreasing iNOS hyperactivity. The mechanism
of its effect on eNOS expression can be explained by Angiolin’s influence on HSP70 and
HIF-1α. Angiolin prolongs the “lifetime” of HIF-1α through HSP70 mechanisms. Angi-
olin also has a positive effect on the glutathione thiol-disulfide system, which is coupled
with the NO system. Experimental studies of myocardial ischemia have demonstrated
that Angiolin enhances the activity of glutathione reductase and glutathione peroxidase
while elevating reduced glutathione levels in the myocardial cytosol of rats [335]. As is
well known, HIF-1α increases the expression of eNOS and VEGF during hypoxia and
ischemia [458].

Angiolin, due to its positive effect on the NO system, positively influenced cardio-
and hemodynamics during experimental myocardial ischemia. Administration of Angiolin
to rabbits with occlusion of the descending coronary artery led to the restoration of left
ventricular dysfunction, which was expressed in an increase in the left ventricular work
index and left ventricular stroke work index, an increase in left ventricular pressure, and
a decrease in total peripheral vascular resistance [456]. We have shown that Angiolin
can have a significant impact on endothelial dysfunction markers after PH (decrease
in sEPCR along with an increase in Tie-2, VEGF-B, Cu/ZnSOD, GPX), which perform
protective and antioxidant functions. Angiolin (S)-2,6-diaminohexanoic acid 3-methyl-
1,2,4-triazolyl-5-thioacetate, which has scavenger properties for NO, with fragments of
its chemical structure participating in this process, can form nitrothiols and enhance the
bioavailability of NO. Angiolin normalizes the expression of eNOS/iNOS. Studies on a
rat model of cerebral ischemia have demonstrated the endothelial-protective activity of
Angiolin, including increased endothelial cell density in muscular-type vessels and the
microcirculatory bed, an increase in the density of proliferating endothelial cells, as well as
an increase in the expression of vascular endothelial growth factor (VEGF) and its receptor
binding coefficient [11,456].

There is data indicating that VEGF enhances the regulation of the enzyme eNOS
and induces a biphasic stimulation of endothelial NO production [459]. This suggests
the possibility of eNOS expression being mediated through VEGF under the influence of
Angiolin. Angiolin may affect the expression of endothelial-specific factors and antioxidant
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enzymes by influencing the thiol-disulfide system through the enhancement of glutathione
levels and regulating post-translational mechanisms. Based on the conducted studies, the
experimental justification for further preclinical investigation of Angiolin as a promising
cardioprotective agent after PH has been established.

5.2.2. Tiothiazoline (Morpholine 3-methyl-1,2,4-triazolyl-5-thioacetate;
Morpholine Thiazotate)

The history of tiothiazoline dates back to the 1960s. Preclinical studies, conducted
according to the requirements of the Pharmacological Committee of the Ministry of Health
of the USSR and the State Expert Center of the Ministry of Health of Ukraine, have shown
that tiothiazoline exhibits high antioxidant, anti-ischemic, cardioprotective, and antihypoxic
properties, surpassing reference drugs in terms of strength. It has been established that
tiothiazoline has low toxicity when administered through various routes to four types of
animals, meaning the drug belongs to Class V of toxicity (practically non-toxic substances).
Tiothiazoline does not have cumulative properties, does not exhibit skin-irritating effects on
intact skin, does not cause allergic reactions, and does not have ulcerogenic or immunotoxic
effects [460].

Toxicological analysis, along with comprehensive behavioral, physiological, and bio-
chemical studies and pathological examination of the internal organs of white rats and
dogs, has shown that intraperitoneal, intravenous, and intragastric administration of tio-
thiazoline at therapeutic, intermediate, and sub-toxic doses over 180 days does not cause
structural changes, does not lead to dystrophic and hemodynamic disorders, nor does it
cause destructive reactions in the examined tissues of the animals. The administration
of the drug does not result in irreversible changes in biochemical markers of liver and
kidney functional status. Research has also established that tiothiazoline does not exhibit
teratogenic, embryotoxic, mutagenic, or carcinogenic effects [460–462].

Tiothiazoline exhibits scavenger properties for cytotoxic forms of NO and exerts
protective effects on the transport of NO by positively influencing the thiol-disulfide
equilibrium and increasing the levels of reduced thiols and glutathione. Furthermore, we
hypothesize that tiothiazoline itself may act as a carrier for NO, forming stable S-nitrosyl
complexes with it [353,463]. Thiotriazoline is capable of increasing the bioavailability
of NO in the presence of excessive ROS. It acts as an antioxidant, a scavenger of ROS
and NO, enhancing the activity of glutathione-dependent enzymes and increasing the
levels of reduced glutathione during myocardial ischemia. Thiotriazoline (10−5–10−7 M)
in vitro reduced the levels of superoxide radical and peroxynitrite due to the presence of
a thiol group in its structure. Thiotriazoline prevents the irreversible inactivation of the
transcription factor NF-kB, protecting cysteine residues (Cys 252, Cys 154, and Cys 61) in its
DNA-binding domains, which are sensitive to excess ROS. Thiotriazoline may participate
in the restoration of these groups during reversible inactivation, acting as a Redox Factor-1.
It enhances the activation of the expression of redox-sensitive genes necessary to protect
cells from oxidative stress. Additionally, tiothiazoline reduces the intensity of nitrosative
stress and increases eNOS (endothelial nitric oxide synthase) activity [351,464–466].

Thiotriazoline exhibits cardioprotective effects by positively influencing energy
metabolism in the ischemic myocardium. It increases ATP levels during ischemia and
hypoxia by normalizing the Krebs cycle, enhancing glucose utilization, and promoting
the oxidation of free fatty acids [467]. Thiotriazoline stimulates lactate dehydrogenase,
promoting the conversion of lactate to pyruvate. This not only eliminates lactate acidosis
and normalizes intracellular pH but also stimulates the Krebs cycle by increasing the pyru-
vate levels. Additionally, Thiotriazoline demonstrates antioxidant properties. Numerous
studies have established its ability to reduce the formation of end products of oxidative
and nitrosative stress while enhancing the activity of Cu/ZnSOD, GPX1, and GPX4 in
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the liver, heart, and brain of animals with various experimental pathologies [353]. It is
known that Thiotriazoline also demonstrates a cardioprotective effect and enhances the
endurance of animals under working hypoxia by increasing HIF-1 and preserving mito-
chondrial ultrastructure. Due to its antioxidant action, Thiotriazoline maintains receptor
sensitivity thresholds, preserves membrane fluidity, and protects phospholipids from oxida-
tion. Thiotriazoline also enhances the effectiveness of arginine when used in combination.
The pharmacological effect of this combination is attributed to the positive impact on the
synthesis, transport, and bioavailability of NO, as well as the physiological functions of this
molecular messenger [468]. In rats with modeling isadrin–pituitrin myocardial infarction,
Thiotriazoline stimulated LDH in the direction of the formation of pyruvate from lactate,
which eliminated lactic acidosis and normalized intracellular pH and stimulated the Krebs
cycle by increasing pyruvate [469].

In the same experimental mode, Thiotriazoline activated the malate–aspartate shunt
in the myocardium in the acute period of myocardial infarction [450]. The study involving
8298 patients with various cardiovascular diseases, including 5700 patients with different
forms of coronary artery disease, deserves attention. Proven effects of Thiotriazoline
include a significant reduction in the number of ventricular arrhythmias and correction
of rhythm disorders (ectopic beats, paroxysmal atrial fibrillation, sinus node dysfunction).
The drug also has an application in myocardial dystrophies, as it works under both oxygen
deficiency and sufficient oxygen conditions. Furthermore, Thiotriazoline improves the
metabolism not only of cardiomyocytes but also of cells in the CNS, liver, etc. Importantly,
Thiotriazoline had a positive effect on quality of life, as assessed by classical methods
using the Minnesota questionnaire and the Nottingham health profile: improvement in
overall quality of life indicators, increased physical activity, and enhanced emotional well-
being [470]. Thiotriazoline administration (600 mg/day) to 8298 patients with Class II–III
stable angina pectoris reduced the number of weekly angina attacks by 46.32%; in the
control group, it was reduced by 33.24% (p = 0.028), respectively (p = 0.031), and increased
exercise tolerance [471]. Our research has revealed that Thiotriazoline exhibits a significant
cardioprotective and endothelialotropic effect after PH, which is implemented through
the modulation of NO [114,253]. The obtained results justify the potential for conducting
additional preclinical and clinical studies of Thiotriazoline (as an approved drug) as a
treatment for cardiovascular system pathologies following intrauterine hypoxia.

5.2.3. Mildronate

Mildronate (3-(2,2,2-trimethylhydrazine) propionate) reversibly blocks gamma-butyrobetaine
hydroxylase, which catalyzes the conversion of gamma-butyrobetaine into carnitine, thus sig-
nificantly inhibiting the intake of carnitine, which is responsible for the transport of fatty acids
through the membrane into muscle cells. This effect of Mildronate is accompanied by a reduction
in carnitine-dependent oxidation of free fatty acids (FFAs) and, as a result, leads to the activation of
glucose oxidation, which is more energy-efficient under ischemic conditions [472,473]. Treatment
with Mildronate is accompanied by a compensatory increase in the expression of a number of
genes in the myocardium that code for enzymes involved in lipid metabolism—lipoprotein lipase,
fatty acid translocase, carnitine palmitoyltransferase I, and enzymes involved in triglyceride
synthesis [451].

Mildronate is capable of improving the contractile function of the myocardium, en-
hancing hexokinase activity, and modulating the ATP/ADP/AMP ratio by activating
AMP-activated protein kinase (AMPK), which helps restore ATP levels [474]. An im-
portant feature of Mildronate’s action, which distinguishes it from other drugs affecting
myocardial metabolism, is the absence of accumulation of underoxidized fatty acids within
the mitochondria and the increase in nitric oxide (NO) production. This occurs because
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Mildronate inhibits the hydroxylation of γ-butyrobetaine and increases the intracellular
pool of γ-butyrobetaine, which, through esterification, exhibits cholinomimetic properties.
The esters of γ-butyrobetaine can activate NOS via acetylcholine receptors on endothelial
cells. Mildronate improves exercise tolerance and the quality of life in patients, positively
affecting the functional parameters of the heart, including ejection fraction and systolic
volume, in cases of myocardial ischemia [441].

Our research has confirmed the antihypoxic activity of Mildronate during PH. How-
ever, no significant positive effect of Mildronate on the NO system indicators in the my-
ocardium of animals that underwent PH was observed. It was found that Mildronate
reliably increased the mRNA expression of iNOS while significantly reducing the concen-
tration of nitrotyrosine, which more strongly indicates its antioxidant properties [475].

5.2.4. L-Arginine

L-arginine is a substrate for the production of nitric oxide (NO) in the endothelial
cells of blood vessels, which is a factor responsible for the dilation of peripheral vessels.
The NO produced from arginine reduces the overall peripheral vascular resistance and
blood pressure and alleviates oxygen deprivation, particularly in the heart tissues [476].
L-arginine exerts antioxidant effects by participating in the transamination cycle and the
elimination of nitrogenous waste products from the body, including ammonia, urea, and
uric acid, which are by-products of protein metabolism. The ability to synthesize urea and
eliminate protein waste depends on the efficiency of the ornithine–citrulline–L-arginine
cycle. However, oxidative stress reduces the clinical effectiveness of L-arginine [477].

L-arginine plays an important role in protein synthesis, increasing muscle mass,
improving muscle recovery after physical exertion, accelerating wound healing, eliminating
waste, optimizing immune system function, and enhancing the production of growth
hormone [478]. L-arginine is a common substrate for both NO (nitric oxide) and polyamines
(putrescine, spermidine, and spermine). NO and polyamines play an important role in
reproduction, embryogenesis, reducing neonatal mortality, and embryonic angiogenesis.
NO regulates gene expression and protein synthesis and facilitates the proliferation, growth,
and differentiation of the fetus [479]. Therefore, researchers and clinicians have focused on
the use of the NO substrate, L-arginine, to reduce the negative consequences of PH [480].

Our studies have revealed the positive effect of L-arginine on the NO system indica-
tors in the hearts of 1- and 2-month-old rats after PH. However, in terms of effectiveness,
L-arginine was less potent than the new molecules—Thiotriazoline and Angiolin. Never-
theless, a certain positive influence of L-arginine on molecular indicators of endothelial
dysfunction in the hearts of rats after PH was identified.

The weaker effect of L-arginine compared to Angiolin and Thiotriazoline can be
explained in terms of the lifespan of NO under ischemic and hypoxic conditions, which are
accompanied by oxidative stress. The “newborn” NO is immediately at risk of being “bitten”
by the superoxide radical and converted into the harmful peroxynitrite [11,481]. Only
combinations of L-arginine with SH-group donors or antioxidants (cysteine, glutathione,
Thiotriazoline, Angiolin) are capable of enhancing its NO-modulating activity [351]. The
combined action of L-arginine and Thiotriazoline is aimed at the synthesis, stabilization,
and enhancement of the bioavailability of NO [335,482,483]. The combined action of
L-arginine and Thiotriazoline can be used to correct disorders caused by NO deficiency.

5.2.5. Repurposing Pharmacological Agents for Cardiovascular Protection in Prenatal
Hypoxia, Comorbid Conditions, and Long-Term Consequences

Contemporary pharmacological approaches are investigating the repurposing of estab-
lished drugs to address cardiovascular complications arising from PH, which impact
both neonates and adults, with long-term sequelae of hypoxia persisting into adult-
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hood [484,485]. Widely used in the management of type 2 diabetes, metformin ex-
hibits cardioprotective properties through the activation of AMP-activated protein kinase
(AMPK) [486–488], stimulation of endothelial nitric oxide synthase, and reduction of mi-
tochondrial oxidative stress [489–491], which may be beneficial in offspring exposed to
PH [492,493]. Antiviral agents developed for the treatment of COVID-19 have shown
potential in attenuating systemic inflammation and stress responses [494], which is par-
ticularly relevant for individuals with comorbidities [495–497]. Emerging evidence sug-
gests that prenatal hypoxia and viral exposure may interact with genetically regulated
pathways—including those associated with interferon signaling, nitric oxide metabolism,
and hypoxia-inducible factor-mediated mechanisms—thereby amplifying the risk of cardio-
vascular dysfunction in the offspring [498–500]. A potent antioxidant, alpha-lipoic acid can
enhance endothelial function, decrease reactive oxygen species levels, and restore cellular
redox balance, making it a promising candidate for managing PH-induced nitrosative dys-
function [501,502]. Additionally, natural compounds such as melatonin, resveratrol, and
curcumin have demonstrated the ability to modulate NO and hypoxia-inducible factor sig-
naling pathways, thereby reducing inflammation and cardiomyocyte apoptosis [503–505].
In patients with comorbid conditions, the inclusion of such agents may offer therapeutic
advantages due to their multimodal mechanisms of action [506,507]. Further preclinical
and clinical studies are required to comprehensively assess the efficacy, safety, optimal
treatment regimens, and long-term outcomes of these repurposed agents in the context of
prenatal hypoxia, associated comorbidities, and long-term consequences.

6. Conclusions
Therefore, the development and investigation of pharmacotherapeutic strategies tar-

geting the nitric oxide (NO) system for the treatment of prenatal myocardial damage remain
a pressing issue in contemporary pharmacology. This provides a theoretical basis for the
potential of studying NO system modulators with diverse mechanisms of action—such
as L-arginine, Thiotriazoline, Angiolin, and Mildronate—as cardioprotective agents for
managing post-hypoxic cardiovascular disturbances in newborns.
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