SCI-CONF.COM.UA

EUROPEAN CONGRESS OF SCIENTIFIC DISCOVERY

PROCEEDINGS OF XI INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE OCTOBER 13-15, 2025

MADRID 2025

TABLE OF CONTENTS

AGRICULTURAL SCIENCES

1.	Дідора В. Г., Придворов Ю. П. ПРОДУКТИВНІСТЬ СОЇ ЗАЛЕЖНО ВІД ПЕРЕДПОСІВНОГО	10
2.	ОБРОБКУ НАСІННЯ Федяєва А. С., Шевченко О. Б., Гончарова І. І., Чалий О. І.,	17
	<i>Нагорний С. А.</i> КОНТРОЛЬ ТВАРИН У СЕЛЕКЦІЙНОМУ ПРОЦЕСІ	
	BIOLOGICAL SCIENCES	
3.	Гвоздьов М. В.	21
	ЕКСПЕРИМЕНТАЛЬНА ОЦІНКА ЗМІН ФУНКЦІОНАЛЬНОГО СТАНУ КАРДІОРЕСПІРАТОРНОЇ СИСТЕМИ ФУТБОЛІСТІВ 17-18 РОКІВ ПІД ВПЛИВОМ ТИПОВОЇ ПРОГРАМИ ПОБУДОВИ ТРЕНУВАЛЬНОГО ПРОЦЕСУ	
4.	Завірюха В. В., Пастухова В. А.	28
	РОЗЛАДИ ХАРЧОВОЇ ПОВЕДІНКИ ЖІНОК, ЯКІ ЗАЙМАЮТЬСЯ ФІТНЕСОМ, ЯК ФАКТОР ФОРМУВАННЯ НАДЛИШКОВОЇ МАСИ ТІЛА ТА РОЗВИТКУ ЕКЗОГЕННО-КОНСТИТУЦІОНАЛЬНОГО ОЖИРІННЯ	
5.	Проценко С. В., Топчій М. С., Борщенко В. В.	30
	ДИНАМІКА ФІЗИЧНОЇ ПІДГОТОВЛЕНОСТІ ОСІБ ЗРІЛОГО ВІКУ ПІД ЧАС ПРОХОДЖЕННЯ БАЗОВОЇ ЗАГАЛЬНОВІЙСЬКОВОЇ ПІДГОТОВКИ	
6.	Ширай Т. В., Пастухова В. А.	35
	ВІКОВА ДИНАМІКА РЕАКЦІЙ СЕРЦЕВО-СУДИННОЇ	
	СИСТЕМИ НА ВЕСТИБУЛЯРНЕ ПОДРАЗНЕННЯ У ЛЕГКОАТЛЕТІВ	
	MEDICAL SCIENCES	
7.	Bezrodna A. I., Pavlos Ioannou	38
	CURRENT UNDERSTANDING OF MAPLE SYRUP URINE DISEASE PATHOGENESIS, DIAGNOSTIC STRATEGIES,	
	THERAPEUTIC APPROACHES IN THE LAST FIVE YEARS	
8.	Kulbachuk O., Sid' E., Bezborodov A.	45
	MODERN OPPORTUNITIES OF LABORATORY DIAGNOSTICS	
	OF KIDNEY DAMAGE IN HYPERTENSION	
9.	Біловол А. М., Пустова Н. О., Бражник М. О.	50
	ЗНАЧЕННЯ ВІТАМІНУ С У ПІДТРИМЦІ ЗДОРОВ'Я ШКІРИ	
10.	Борис І. В., Волошина А. С., Гончарова Н. М., Євтушенко О. В.	54
11.	ЗАОЧЕРЕВИНА ФЛЕГМОНА: ДІАГНОСТИКА ТА ЛІКУВАННЯ Карелін М. Л., Пустова Н. О.	61
11.	ШКІРНІ ПРОЯВИ COVID-19	UΙ

MODERN OPPORTUNITIES OF LABORATORY DIAGNOSTICS OF KIDNEY DAMAGE IN HYPERTENSION

Kulbachuk Oleksandr MD, PhD Sid' Eugene MD, PhD

Zaporizhzhia State Medical and Pharmaceutical University, Ukraine

Bezborodov Andrii

MNE "Clinic "Family Doctor" of the Shyrokiv Village Council, Ukraine

Intoductions. Renal damage is one of the most common and prognostically unfavorable complications of arterial hypertension (AH), leading to the development of chronic kidney disease (CKD) and significantly increasing the risk of cardiovascular events.

Timely and accurate laboratory diagnostics are crucial for the early detection of kidney damage, assessment of its degree, monitoring of progression, and adjustment of treatment in patients with AH (Golafshan F., 2024; Ameer O.Z., 2022).

Aim. The purpose of the work is to analyze scientific sources on the problem of diagnostics of renal damage among patients with arterial hypertension

Materials and methods. We analyzed the scientometric databases PubMed, Scopus, Web of Science and conducted a retrospective analysis of literature sources. The most relevant sources on this topic were selected for analysis.

Results and discussion. Modern laboratory capabilities have significantly expanded, supplementing traditional methods with new, more sensitive, and specific markers. The traditional and primary laboratory markers that remain key in the diagnosis of hypertensive nephropathy, despite the emergence of new methods, include (Yang X., 2021; Mizdrak M., 2022):

Serum creatinine and estimated glomerular filtration rate (eGFR):

Serum creatinine level is a standard method for assessing kidney function. Based on the level of creatinine, age, sex, and race, the eGFR is calculated using specific formulas (e.g., CKD-EPI). A decrease in eGFR is an important criterion for diagnosing CKD and reflects a reduction in the kidneys' filtration capacity.

Proteinuria/Albuminuria:

The presence of protein (especially albumin) in the urine is a sensitive indicator of glomerular damage. Quantitative assessment of proteinuria (24-hour protein excretion) or the albumin-to-creatinine ratio in a spot urine sample are widely used for the detection and monitoring of renal damage in AH. Microalbuminuria (a small increase in albumin excretion) is often one of the first signs of hypertensive kidney damage.

New and promising biomarkers: recent studies have focused on the search for earlier and more specific markers of kidney damage that can detect injury even before a significant decrease in GFR or the appearance of pronounced proteinuria. Hypertension can lead to damage not only to the glomeruli but also to the renal tubules. (Raveendran J., 2025; Romejko K., 2023; Canki E., 2024; Younes-Ibrahim M. S., 2022; Odegbemi O. B., 2024):

Cystatin C: This protein is produced by all nucleated cells and is freely filtered by the glomeruli but not reabsorbed in the tubules. Its serum level is less dependent on muscle mass, age, and sex compared to creatinine, which makes it a potentially more accurate marker of GFR, especially in elderly individuals and those with significant variations in muscle mass.

Neutrophil gelatinase-associated lipocalin (NGAL): The level of NGAL increases in acute and chronic kidney injury, reflecting stress and damage to the tubular epithelium.

Kidney Injury Molecule-1 (KIM-1): This transmembrane protein is expressed on proximal tubular cells following their injury. Its elevation in urine serves as an indicator of tubular damage.

Liver fatty acid-binding protein (L-FABP): A protein expressed in the proximal tubules that is involved in fatty acid metabolism. Its elevation in urine may indicate ischemic or toxic tubular injury.

Uromodulin (Tamm-Horsfall protein): The most abundant protein in the urine

of healthy individuals, produced by the cells of the thick ascending limb of the loop of Henle. The serum level of uromodulin correlates with kidney function, and its decrease is associated with an increased risk of developing chronic kidney disease (CKD).

Other modern approaches:

"Omics" technologies: Proteomic and metabolomic analyses of urine and blood open new prospects for identifying panels of biomarkers that can more accurately reflect the pathogenic mechanisms of hypertensive nephropathy and predict its development and progression. Although these methods are still largely in the research stage, they hold significant potential for personalized diagnostics. (Govender, M. A., 2024).

Recent studies emphasize the importance of using both traditional and novel laboratory markers for the early and accurate diagnosis of hypertensive nephropathy. The implementation of new markers may improve the detection of the disease at its early stages and facilitate timely treatment. It is important to stress that laboratory diagnostics of kidney injury in hypertension should always be performed in conjunction with instrumental examination methods, including renal ultrasonography, Doppler imaging of the renal arteries, and, when indicated, computed tomography or magnetic resonance imaging. (Qin, Y., 2025).

Conclusions.

Thus, modern laboratory diagnostics of kidney injury in hypertension are based on the use of both established and novel biomarkers. Serum creatinine measurement with GFR calculation and the assessment of proteinuria/albuminuria remain the primary methods for screening and monitoring.

However, the inclusion of biomarkers such as cystatin C and markers of tubular injury enhances the sensitivity and specificity of diagnosis, particularly at early stages.

The further development of "omics" technologies promises the emergence of new, more advanced methods for evaluating kidney function in patients with hypertensive disease, contributing to improved prognosis and quality of life. Regular screening and a comprehensive approach to examination are critically important for the timely detection and effective management of hypertensive nephropathy.

REFERENCES:

- 1. Golafshan, F., & Shafieyoon, M. (2024). Hypertension and chronic kidney disease; a mutual relationship. *Journal of Renal Injury Prevention*, *13*(3), e32277-e32277.
- 2. Ameer, O. Z. (2022). Hypertension in chronic kidney disease: What lies behind the scene. *Frontiers in pharmacology*, *13*, 949260.
- 3. Yang, X., Fan, J., Wu, Y., Lin, J., Qian, C., & Li, J. (2021). The value of electrophoresis and chemical detection in the diagnosis of hypertensive nephropathy. *International Journal of General Medicine*, 4803-4808.
- 4. Mizdrak, M., Kumrić, M., Kurir, T. T., & Božić, J. (2022). Emerging biomarkers for early detection of chronic kidney disease. *Journal of personalized medicine*, 12(4), 548.
- 5. Raveendran, J., Gangadharan, D., Bayry, J., & Rasheed, P. A. (2025). Emerging trends in the cystatin C sensing technologies: towards better chronic kidney disease management. *RSC advances*, *15*(7), 4926-4944.
- 6. Romejko, K., Markowska, M., & Niemczyk, S. (2023). The review of current knowledge on neutrophil gelatinase-associated lipocalin (NGAL). *International journal of molecular sciences*, 24(13), 10470.
- 7. Canki, E., Kho, E., & Hoenderop, J. G. (2024). Urinary biomarkers in kidney disease. *Clinica Chimica Acta*, *555*, 117798.
- 8. Younes-Ibrahim, M. S. (2022). Biomarkers and kidney diseases: a brief narrative review. *Journal of Laboratory and Precision Medicine*.
- 9. Odegbemi, O. B., Olaniyan, M. F., Adebo, D. O., Onostale, C., & Ugege, K. F. A. (2024). Uromodulin in kidney health and disease: Genetic variants, biomarker applications, and clinical implications.
- 10. Govender, M. A., Stoychev, S. H., Brandenburg, J. T., Ramsay, M., Fabian, J., & Govender, I. S. (2024). Proteomic insights into the pathophysiology of

hypertension-associated albuminuria: Pilot study in a South African cohort. *Clinical Proteomics*, 21(1), 15.

11. Qin, Y., Zhao, J., Xing, Y., Yu, Z., Liu, P., Wang, Y., ... & Sun, S. (2025). Advancing Precision Medicine for hypertensive nephropathy: a novel prognostic model incorporating pathological indicators. *Kidney and Blood Pressure Research*, 50(1), 309-320.