Міністерство охорони здоров'я України Міністерство освіти і науки України Національний фармацевтичний університет Кафедра фармацевтичної хімії Кафедра загальної хімії Українське товариство медичної хімії

Ministry of health of Ukraine
Ministry of education and science of Ukraine
National university of pharmacy
Pharmaceutical chemistry department
General chemistry department
Ukrainian Society of Medicinal Chemistry

MODERN CHEMISTRY OF MEDICINES

Матеріали Міжнародної Internet-конференції «Modern chemistry of medicines», 7 листопада 2025 року

Materials of the International Internet Conference 'Modern chemistry of medicines', November 7, 2025

XAPKIB KHARKIV 2025

Molecular screening of N-((5-phenyl-6,11-dihydro-5H-[1,2,4]tria-zolo[1',5':1,6]pyrido[3,4-b]indol-2-yl)methyl)-R-carboxylic acid, their esters and amides

Fedotov S.O., Hotsulia A.S.

Zaporizhzhia State Medical and Pharmaceutical University, Zaporizhzhia, Ukraine serjioolegovich@gmail.com

Introduction. Derivatives of 1,2,4-triazole and indole are considered as "privileged" structures and reliable chemical platforms for rational design of pharmacologically active molecules. Compounds with a 1,2,4-triazole fragment show a wide range of activity, including antifungal (fluconazole, itraconazole, voriconazole, posaconazole), anxiolytic/antipsychotic (alprazolam, triazolam), antitumor (anastrozole, letrozole), as well as cardio- and hepatoprotective (thiotriazoline). The indole pharmacophore is characterized by polyfunctionality with proven antifungal, antiprotozoal, antiaggregant, antialzheimer, antiparkinsonian, antioxidant, and antitumor effects, which are realized through a variety of molecular targets and mechanisms of action.

The purpose of the study was to substantiate the prospects of N-((5-phenyl-6,11-dihydro-5H-[1,2,4]tria-zolo[1',5':1,6]pyrido[3,4-b]indol-2-yl)methyl)-R-carboxylic acid, their esters and amides as candidates for new biologically active substances.

Materials and methods. Molecular docking was applied for detailed analysis of "ligand-target" interactions, localization of binding sites, and quantification of energies and spatial configurations. Ligand preparation was performed using MarvinSketch 6.3.0, HyperChem 8, and AutoDockTools 1.5.6; protein structures were prepared in Discovery Studio 4.0 and AutoDockTools 1.5.6. Calculations were performed in AutoDock Vina with comparison of binding modes and affinities, taking into account energy and steric criteria.

Results and discussion. Molecular docking of the studied series (1 acid, 5 esters, 10 amides) showed that amides of N-((5-phenyl-6,11-dihydro-5H-[1,2,4]triazolo[1',5':1,6]pyrido[3,4-b]indol-2-yl)methyl)-R-carboxylic acid have the highest affinity to relevant targets, forming stable complexes through hydrogen bonding and π -stacking and, accordingly, appear most promising for potential antifungal, anti-inflammatory, antioxidant, and antitumor activity. Esters showed slightly worse binding energy values, but kept the correct orientation of the pharmacophore core, which allows them to be considered as potential promising BARs. Acid, in turn, showed worse stabilization in hydrophobic pockets of protein targets. Collectively, this allows the amides to be singled out as primary leader structures for further in vitro study.

Conclusions. N-((5-phenyl-6,11-dihydro-5H-[1,2,4]triazolo[1',5':1,6]pyrido-[3,4-b]indol-2-yl)methyl)-R-carboxylic acid amides are a promising class of compounds for further in vitro studies of antifungal, anti-inflammatory, antioxidant and antitumor activities.

References

- 1. Fedotov SO, Hotsulia AS. Pharmacological potential of 6,11-dihydro[1,2,4]triazolo[4',3':1,6]-pyrido[3,4-b]-5-carboxylic acid and its esters. Current Issues in Pharmacy and Medicine: Science and Practice. 2025;18(1):17–26. doi:10.14739/2409-2932.2025.1.321425.
- 2. Fedotov SO, Hotsulia AS. Evaluation of the pharmacological potential of N-((5-phenyl-6,11-dihydro-[1,2,4]tri-azolo[1',5':1,6]pyrido[3,4-b]indol-2-yl)methyl)benzamides. Current Issues in Pharmacy and Medicine: Science and Practice. 2025;18(2):148–159. doi:10.14739/2409-2932.2025.2.328643.
- 3. Safonov A. Method of synthesis novel N'-substituted 2-((5-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)thio)-acetohydrazides. Journal of Faculty of Pharmacy of Ankara University. 2020;44(2):242-252.

•	
n the therapy of post-traumatic stress disorder	:18
Viktorija Brit, Hanna Severyna	

Viktorija Januškevičė, Sandra Saunoriūtė, Laima Cesonienė, Mindaugas Liaudansk Vaidotas Žvikas, Yevheniia Vasylenko, Volodymyr Vasylenko

Development of the metabolic pathway scheme of a novel anticonvulsant

Structural and chemical analysis of selective serotonin reuptake inhibitors

Synthesis and anticoncultural activity of new of 1,3-diazaadamantane derivatives22 M. V. Galstyan, A. A. Mkrtchyan, R. G. Paronikyan, I. E. Nazaryan, G. Z. Macakyan,

A. S. Makaryan

Development of new ML300 analogues – a multi-method approach

Innovative Extraction Technologies

Prediction of molecular descriptors of 2-cyano-3-furan-2-yl-N-arylacrylamide derivatives ...26 Yana Drapak, Oleg Pinyazhko, Iryna Drapak, Borys Zimenkovsky

Oksana Khropot, Iryna Drapak, Yuliia Matiichuk

Determination of the antiradical activity in vitro

of Chaenomeles japonica (Thumb.) Lindl. ex Spach fruit samples acetone extracts using ABTS radical cation decolorization assay......31

Kornelija Kondrotaitė, Mindaugas Liaudanskas, Rima Šedbarė, Jonas Viškelis,

Pranas Viškelis, Valdimaras Janulis